std::find_end
Defined in header <algorithm>
|
||
template< class ForwardIterator1, class ForwardIterator2 > ForwardIterator1 find_end( ForwardIterator1 first, ForwardIterator1 last, |
(1) | |
template< class ForwardIterator1, class ForwardIterator2, class BinaryPredicate > ForwardIterator1 find_end( ForwardIterator1 first, ForwardIterator1 last, |
(2) | |
Searches for the last subsequence of elements [s_first, s_last) in the range [first, last). The first version uses operator== to compare the elements, the second version uses the given binary predicate p.
Contents |
[edit] Parameters
first, last | - | the range of elements to examine | |||||||||
s_first, s_last | - | the range of elements to search for | |||||||||
p | - | binary predicate which returns true if the elements should be treated as equal. The signature of the predicate function should be equivalent to the following:
The signature does not need to have const &, but the function must not modify the objects passed to it. |
[edit] Return value
iterator to the beginning of last subsequence [s_first, s_last) in range [first, last).
If no such subsequence is found, last is returned. (until C++11)
If [s_first, s_last) is empty or if no such subsequence is found, last is returned. (since C++11)
[edit] Complexity
does at most S*(N-S+1) comparisons where S = distance(s_first, s_last) and N = distance(first, last).
[edit] Possible implementation
First version |
---|
template<class ForwardIterator1, class ForwardIterator2> ForwardIterator1 find_end(ForwardIterator1 first, ForwardIterator1 last, ForwardIterator2 s_first, ForwardIterator2 s_last) { if (s_first == s_last) return last; ForwardIterator1 result = last; while (1) { ForwardIterator1 new_result = std::search(first, last, s_first, s_last); if (new_result == last) { return result; } else { result = new_result; first = result; ++first; } } return result; } |
Second version |
template<class ForwardIterator1, class ForwardIterator2, class BinaryPredicate> ForwardIterator1 find_end(ForwardIterator1 first, ForwardIterator1 last, ForwardIterator2 s_first, ForwardIterator2 s_last, BinaryPredicate p) { if (s_first == s_last) return last; ForwardIterator1 result = last; while (1) { ForwardIterator1 new_result = std::search(first, last, s_first, s_last, p); if (new_result == last) { return result; } else { result = new_result; first = result; ++first; } } return result; } |
[edit] Example
The following code uses find_end() to search for two different sequences of numbers.
#include <algorithm> #include <iostream> #include <vector> int main() { std::vector<int> v{1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4}; std::vector<int>::iterator result; std::vector<int> t1{1, 2, 3}; result = std::find_end(v.begin(), v.end(), t1.begin(), t1.end()); if (result == v.end()) { std::cout << "subsequence not found\n"; } else { std::cout << "last subsequence is at: " << std::distance(v.begin(), result) << "\n"; } std::vector<int> t2{4, 5, 6}; result = std::find_end(v.begin(), v.end(), t2.begin(), t2.end()); if (result == v.end()) { std::cout << "subsequence not found\n"; } else { std::cout << "last subsequence is at: " << std::distance(v.begin(), result) << "\n"; } }
Output:
last subsequence is at: 8 subsequence not found
[edit] See also
finds two identical (or some other relationship) items adjacent to each other (function template) | |
(C++11) |
finds the first element satisfying specific criteria (function template) |
searches for any one of a set of elements (function template) | |
searches for a number consecutive copies of an element in a range (function template) |