Transient Conduction: Spatial Effects

(when lumped capacitance does not apply)

Reminders…

• Homework #5 due Friday

• Friday we start working on the project
 – Scientific reporting
 – Be there!!

• Midterm #1 coming up Wed. October 1
 – Covers chapters 1, 2, 3, 4, 5
 – Make sure you have read the material

• Career fair tomorrow!!
Review: The Biot Number

\[\text{Bi} = \frac{hL}{k} \]

- If Bi < 0.1 then the lumped capacitance approach can be used
 - Eq. 5.5 to find time to reach a given T
 - Eq. 5.6 to find T after a given time
 - Eq. 5.8a to find total heat gain (loss) for given time

- \(L \) depends on geometry
 - General approach is \(L = \frac{V}{A_s} \)
 - \(L/2 \) for wall with both sides exposed
 - \(r_o/2 \) for long cylinder
 - \(r_o/3 \) for sphere
 - Conservative approach is to use the maximum length
 - \(L \) for wall
 - \(r_o \) for cylinder or sphere (preferred to use this)

Lumped Capacitance Equations

- Time to reach specified temperature (5.5):
 \[t = \frac{\rho V c}{h A_s} \ln \left(\frac{\theta}{\theta_i} \right) \]

- Temperature after specified time (5.6):
 \[\frac{\theta}{\theta_i} = \frac{T - T_\infty}{T_i - T_\infty} = \exp \left[-\left(\frac{h A_s}{\rho V c} \right) t \right] \]

- Thermal time constant (5.7):
 \[\tau_t = \left(\frac{1}{h A_s} \right) (\rho V c) = R_t C_t \]

- Heat transferred during heating (5.8a):
 \[Q = (\rho V c) \theta_i \left[1 - \exp \left(-\frac{t}{\tau_t} \right) \right] \]
About that Pie…
(Can we use a lumped analysis approach?)

Spatial Effects
(When lumped analysis cannot be used)

Dimensionless Variables

Temperature:
\[\theta^* \equiv \frac{\theta}{\theta_i} = \frac{T - T_\infty}{T_i - T_\infty} \]

Position:
\[x^* \equiv \frac{x}{L} \]

Time:
\[t^* \equiv \frac{\alpha t}{L^2} = \frac{kt}{\rho c_p L^2} \]
Exact Solution for a Plane Wall

- Temperature distribution

\[\theta^* = \sum_{n=1}^{\infty} C_n \exp \left(-\zeta_n^2 Fo \right) \cos \left(\zeta_n x^* \right) \]

where

\[C_n = \frac{4 \sin \zeta_n}{2 \zeta_n + \sin (2\zeta_n)} \]

and

\[t^* \equiv \frac{\alpha t}{L^2} \equiv Fo \]

Note: \(\zeta \) is the eigenvalue (root) of the transcendental equation

Approximate Solution for a Plane Wall

- For plane wall with \(Fo > 0.2 \), temperature distribution

\[\theta^* = \theta_o^* \cos \left(\zeta_1 x^* \right) \]

where the midpoint \((x = 0)\) temperature \(\theta_o^* \) is

\[\theta_o^* = C_1 \exp \left(-\zeta_1^2 Fo \right) \]

and \(C_1 \) and \(\zeta_1 \) are found in a table.

- Total heat transfer is:

\[\frac{Q}{Q_o} = 1 - \frac{\sin \zeta_1}{\zeta_1} \theta_o^* \]
Table 5.1 – ζ_1 and C_1 vs. Bi

<table>
<thead>
<tr>
<th>Bi^*</th>
<th>ζ_1 (rad)</th>
<th>C_1</th>
<th>ζ_1 (rad)</th>
<th>C_1</th>
<th>ζ_1 (rad)</th>
<th>C_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.0998</td>
<td>1.0017</td>
<td>0.1412</td>
<td>1.0025</td>
<td>0.1730</td>
<td>1.0030</td>
</tr>
<tr>
<td>0.02</td>
<td>0.1410</td>
<td>1.0033</td>
<td>0.1995</td>
<td>1.0050</td>
<td>0.2445</td>
<td>1.0060</td>
</tr>
<tr>
<td>0.03</td>
<td>0.1723</td>
<td>1.0049</td>
<td>0.2440</td>
<td>1.0075</td>
<td>0.2991</td>
<td>1.0090</td>
</tr>
<tr>
<td>0.04</td>
<td>0.2034</td>
<td>1.0065</td>
<td>0.2910</td>
<td>1.0095</td>
<td>0.4745</td>
<td>1.0137</td>
</tr>
<tr>
<td>0.05</td>
<td>0.2710</td>
<td>1.0130</td>
<td>0.3960</td>
<td>1.0197</td>
<td>0.4860</td>
<td>1.0239</td>
</tr>
<tr>
<td>0.06</td>
<td>0.3075</td>
<td>1.0145</td>
<td>0.4195</td>
<td>1.0222</td>
<td>0.5150</td>
<td>1.0268</td>
</tr>
<tr>
<td>0.07</td>
<td>0.3111</td>
<td>1.0161</td>
<td>0.4417</td>
<td>1.0246</td>
<td>0.5423</td>
<td>1.0298</td>
</tr>
<tr>
<td>0.08</td>
<td>0.3779</td>
<td>1.0237</td>
<td>0.5376</td>
<td>1.0365</td>
<td>0.6609</td>
<td>1.0445</td>
</tr>
<tr>
<td>0.09</td>
<td>0.4328</td>
<td>1.0311</td>
<td>0.6170</td>
<td>1.0483</td>
<td>0.7593</td>
<td>1.0592</td>
</tr>
<tr>
<td>0.10</td>
<td>0.4801</td>
<td>1.0382</td>
<td>0.6656</td>
<td>1.0598</td>
<td>0.8247</td>
<td>1.0737</td>
</tr>
<tr>
<td>0.11</td>
<td>0.5218</td>
<td>1.0459</td>
<td>0.7465</td>
<td>1.0712</td>
<td>0.9208</td>
<td>1.0880</td>
</tr>
<tr>
<td>0.12</td>
<td>0.5932</td>
<td>1.0580</td>
<td>0.8516</td>
<td>1.0932</td>
<td>1.0528</td>
<td>1.1164</td>
</tr>
<tr>
<td>0.13</td>
<td>0.6533</td>
<td>1.0701</td>
<td>0.9408</td>
<td>1.1143</td>
<td>1.1656</td>
<td>1.1441</td>
</tr>
<tr>
<td>0.14</td>
<td>0.7051</td>
<td>1.0814</td>
<td>1.0184</td>
<td>1.1345</td>
<td>1.2644</td>
<td>1.1713</td>
</tr>
<tr>
<td>0.15</td>
<td>0.7596</td>
<td>1.0919</td>
<td>1.0873</td>
<td>1.1539</td>
<td>1.3525</td>
<td>1.1978</td>
</tr>
<tr>
<td>0.16</td>
<td>0.7910</td>
<td>1.1016</td>
<td>1.1490</td>
<td>1.1724</td>
<td>1.4320</td>
<td>1.2236</td>
</tr>
<tr>
<td>0.17</td>
<td>0.8274</td>
<td>1.1107</td>
<td>1.2048</td>
<td>1.1902</td>
<td>1.5044</td>
<td>1.2488</td>
</tr>
<tr>
<td>0.18</td>
<td>0.8603</td>
<td>1.1191</td>
<td>1.2558</td>
<td>1.2071</td>
<td>1.5708</td>
<td>1.2732</td>
</tr>
<tr>
<td>0.19</td>
<td>1.0769</td>
<td>1.1785</td>
<td>1.5994</td>
<td>1.3384</td>
<td>2.0288</td>
<td>1.4793</td>
</tr>
</tbody>
</table>

*Bi = hL/A for the plane wall and $h\sqrt{\varepsilon}/k$ for the infinite cylinder and sphere. See Figure 5.6.

Midplane Temp for Plane Wall

![Midplane temperature as a function of time for a plane wall of thickness 2L [1]. Used with permission.](image)
Temp. Distribution for Plane Wall

Figure 58.2 Temperature distribution in a plane wall of thickness $2L$

Heat Transferred – Plane Wall

Figure 58.3 Internal energy change as a function of time for a plane wall of thickness $2L$. Adapted with permission.
Spatial Effects

• Arises from inadequate solution using lumped capacitance method
 – Temperature gradients are no longer negligible in the medium
• Requires initial and boundary conditions
• Exact solutions involve infinite series
• Approximate solutions use only first term
 – Use Table 5.1 to determine C_1 and ζ_1
 – Can use the one-term approximation when $Fo > 0.2$
 – Equations for time, temperature, position, and fraction of total energy transfer for walls, cylinders and spheres

Example – Book Problem 5.39

The 150-mm-thick wall of a gas-fired furnace is constructed of brick ($k = 1.5 \text{ W/m} \cdot \text{K}$, $\rho = 2600 \text{ kg/m}^3$, $c_p = 1000 \text{ J/kg} \cdot \text{K}$) and is well insulated at its outer surface. The wall is at an initial temperature of 20°C when the burners are fired and the inner surface is exposed to products of combustion for which $T_\infty = 950°C$ and $h = 100 \text{ W/m}^2 \cdot \text{K}$.

How long does it take for the outer surface of the wall to reach 750°C?

\[Bi = \frac{hL}{k} = \frac{(100)(0.15)}{1.5} = 10 \]

• Assume $Fo > 0.2$
• Use the for plane wall:
 \[\theta_o^* = C_1 \exp\left(-\zeta_1^2 Fo\right) \]
• Solve for t via Fo:
 \[Fo = \frac{kt}{\rho c_p L^2} = \frac{\ln(\theta_o^* / C_1)}{\zeta_1^2} \]
Table 5.1 – ζ_1 and C_1 vs. Bi

<table>
<thead>
<tr>
<th>Bi</th>
<th>Plane Wall ζ_1 (rad)</th>
<th>C_1</th>
<th>Infinite Cylinder ζ_1 (rad)</th>
<th>C_1</th>
<th>Sphere ζ_1 (rad)</th>
<th>C_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.0998</td>
<td>1.0017</td>
<td>0.1412</td>
<td>1.0025</td>
<td>0.1730</td>
<td>1.0030</td>
</tr>
<tr>
<td>0.02</td>
<td>0.1410</td>
<td>1.0033</td>
<td>0.1995</td>
<td>1.0050</td>
<td>0.2445</td>
<td>1.0080</td>
</tr>
<tr>
<td>0.03</td>
<td>0.1723</td>
<td>1.0049</td>
<td>0.2440</td>
<td>1.0075</td>
<td>0.2991</td>
<td>1.0099</td>
</tr>
<tr>
<td>0.04</td>
<td>0.1987</td>
<td>1.0066</td>
<td>0.2814</td>
<td>1.0099</td>
<td>0.3450</td>
<td>1.0120</td>
</tr>
<tr>
<td>0.05</td>
<td>0.2218</td>
<td>1.0082</td>
<td>0.3143</td>
<td>1.0124</td>
<td>0.3854</td>
<td>1.0149</td>
</tr>
<tr>
<td>0.06</td>
<td>0.2425</td>
<td>1.0098</td>
<td>0.3438</td>
<td>1.0148</td>
<td>0.4217</td>
<td>1.0179</td>
</tr>
<tr>
<td>0.07</td>
<td>0.2615</td>
<td>1.0114</td>
<td>0.3709</td>
<td>1.0173</td>
<td>0.4551</td>
<td>1.0209</td>
</tr>
<tr>
<td>0.08</td>
<td>0.2791</td>
<td>1.0130</td>
<td>0.3960</td>
<td>1.0197</td>
<td>0.4860</td>
<td>1.0239</td>
</tr>
<tr>
<td>0.09</td>
<td>0.2956</td>
<td>1.0145</td>
<td>0.4195</td>
<td>1.0222</td>
<td>0.5150</td>
<td>1.0268</td>
</tr>
<tr>
<td>0.10</td>
<td>0.3111</td>
<td>1.0161</td>
<td>0.4417</td>
<td>1.0246</td>
<td>0.5423</td>
<td>1.0298</td>
</tr>
<tr>
<td>0.15</td>
<td>0.3779</td>
<td>1.0237</td>
<td>0.5376</td>
<td>1.0365</td>
<td>0.6609</td>
<td>1.0445</td>
</tr>
</tbody>
</table>

9.0 1.4149 1.2598 2.1566 1.5611 2.8044 1.9106
10.0 1.4289 1.2620 2.1795 1.5677 2.8363 1.9249
20.0 1.4961 1.2699 2.2881 1.5919 2.9857 1.9781

Problem 5.39

Temperature Distribution over Time

Temperature, °C

Dimensionless location, x/L

- t=0 s
- t=10,000 s
- t=20,000 s
- t=33,800 s
Approximate Solutions for Cylinders and Spheres

- Similar approach as for plane wall
 - NOTE: For cylinders and spheres, use r_o for calculation of Bi and use that Bi to look up values in the table

- Cylinder:
 \[
 \theta^* = \theta_o^* J_0(\zeta_1 r^*)
 \]
 \[
 \theta_o^* = C_1 \exp(-\zeta_1^2 Fo)
 \]
 with centerline T:
 \[
 \frac{Q}{Q_o} = 1 - \frac{2\theta_o^*}{\zeta_1} J_1(\zeta_1)
 \]
 and total energy transfer:
 \[
 \frac{Q}{Q_o} = 1 - \frac{3\theta_o^*}{\zeta_1^3} [\sin(\zeta_1) - \zeta_1 \cos(\zeta_1)]
 \]

...and for spheres

- Sphere:
 \[
 \theta^* = \theta_o^* \frac{1}{\zeta_1 r^*} \sin(\zeta_1 r^*)
 \]
 with center T:
 \[
 \theta_o^* = C_1 \exp(-\zeta_1^2 Fo)
 \]
 and total energy transfer:
 \[
 \frac{Q}{Q_o} = 1 - \frac{3\theta_o^*}{\zeta_1^3} [\sin(\zeta_1) - \zeta_1 \cos(\zeta_1)]
 \]