CH EN 3453 – Heat Transfer

Shape Factors

Section 4.3

Reminders...

- Homework #4 due Friday

 Help session Wednesday 4:30 pm
- Engineering Career Fair September 23
 - Internship (and job) opportunities!
 - ca. 220 days until end of spring term finals week
 - Most of you have about 600 days until graduation

Overall Efficiency

- Definitions
 - $-\eta_{\rm f}$ efficiency of a *single* fin
 - $-\eta_{o}$ overall efficiency of a finned surface
 - A_f surface area of a single fin
 - A_b area of base where fins are NOT attached
 - A_t total area $A_f + A_b$
- · Overall efficiency of finned surface

$$q_t = N\eta_f hA_f \theta_b + hA_b \theta_b$$
$$= \eta_o hA_t \theta_b$$

where

$$\eta_o = 1 - \frac{NA_f}{A_t} (1 - \eta_f)$$

- There is no heat transfer in a direction perpendicular to heat flow lines
- Isotherms constant temperature
- Adiabats and isotherms are perpendicular to one another

Graphical Method - Plotting Heat Flux

- 1. Consider lines of symmetry and choose sub-system if possible.
- 2. Symmetry lines adiabatic and count as heat flow lines.
- Identify constant temperature lines at boundaries. Sketch isotherms between the boundaries.
- Sketch heat flow lines perpendicular to isotherms, attempting to make each cell as square as possible.

System	Schematic	Restrictions	Shape Factor
Case 8 Conduction through the edge of adjoining walls		D > 5L	0.54D
Case 9 Conduction through corner of three walls with a temperature difference ΔT_{1-2} across the walls		$L \ll$ length and width of wall	0.15L
Case 10 Disk of diameter D and temperature T_1 on a semi-infinite medium of thermal conductivity k and temperature T_2		None	2D
Case 11 Square channel of length L		$\frac{W}{w} < 1.4$ $\frac{W}{w} > 1.4$ $L \gg W$	$\frac{2\pi L}{0.785 \ln (W/w)}$ $\frac{2\pi L}{0.930 \ln (W/w) - 0.0}$
(b) Dimensionless conduction heat rates [a	$q = q_{ss}^{\oplus} kA_s(T_1 - T_2)/L_c; L_c \equiv$ Schematic	$= (A_s/4\pi)^{1/2}]$	at
Case 12 Isothermal sphere of diameter D and temperature T_1 in an infinite medium of temperature T_2		πD^2	1
Case 13 Infinitely thin, isothermal disk of diameter D and temperature T_1 in an infinite medium of temperature T_2	$\begin{array}{c c} T_1 \\ \hline \\ \hline \\ D \\ \hline \\ T_2 \end{array}$	$\frac{\pi D^2}{2}$	$\frac{2\sqrt{2}}{\pi} = 0.900$
Case 14 Infinitely thin rectangle of length L, width w, and temperature T_1 in an infinite medium of temperature T_2	T_{1}	2wL	0.932
Case 15 Cuboid shape of height d with a square footprint of width D and temperature T_1 in an infinite medium	\downarrow T_1	$2D^2 + 4Dd$	$\begin{array}{c c} \frac{d/D}{0.1} & q_{44}^{*} \\ \hline 0.1 & 0.943 \\ 1.0 & 0.956 \\ 2.0 & 0.961 \end{array}$

Example – Book Problem 4.10

A pipeline, used for the transport of crude oil, is buried in the earth such that its centerline is a distance of 1.5 m below the surface. The pipe has an outer diameter of 0.5 m and is insulated with a layer of cellular glass 100 mm thick. What is the heat loss per unit length of pipe under conditions for which heated oil at 120°C flows through the pipe and the surface of the earth is at a temperature of 0°C?