Computational Modeling –
B&W Applications in Black Liquor
Combustion and Gasification

Richard Wessel
Babcock & Wilcox
Barberton, OH, USA

B&W’s Combustion Model, COMO℠
• COMO is a proprietary CFD and combustion code
• Engineering group is dedicated to model development and applications for B&W products in Barberton, Ohio, USA
• B&W history of CFD model development since 1975
• Commercial CFD codes and analysis tools also used when applicable
• Scope of technology:
 - Processes
 - Flow
 - Heat transfer
 - Combustion
 - Pollution
 - Deposition
 - Erosion
 - Fuels
 - Coal
 - Oil
 - Gas
 - Wood
 - Refuse
 - Black liquor
 - Products
 - Boilers
 - Burners
 - Gasifiers
 - Wet scrubbers
 - Steam generators
 - SCR
Geometric Flexibility of Unstructured Mesh

Primary Air-Port with Casting

Recovery Boiler Air Systems

Application - Recovery Boiler Upgrade

- Air System Design
- Liquor Distribution
- Capacity Increase
- Carryover, ISP, and Fume
- CO and NOx
- Furnace heat flux and circulation
Animated Modeling Results

Application – Primary Air Ports

- Evaluate changes in primary air port design on flow patterns near the port
- Investigate the cause of high temperature excursions
CFD Modeling of PAP Air Flow

Original B&W Design

New Design

Sulfide Oxidation

- Falling Film of Molten Smelt
- Oxidation limited by mass transfer of O₂ to surface
- Resulting heat generation as high as 1 MW/m²

(Bird, Stewart & Lightfoot, 1960)
Summary of PAP Analysis

- Analyses of flow and combustion around primary air ports are work-in-progress
 - CFD modeling of PAP air flow
 - Smelt flow and sulfide oxidation around PAP
 - Furnace combustion modeling
- Each of these analyses is insightful, but need to be combined into a comprehensive model
 - Detailed model of PAP coupled to boiler model
 - Effects of combustion, air flow, smelt flow, and sulfide oxidation on PAP local conditions
Application – High Temperature BL Gasifier

- Two-dimensional model takes advantage of axial symmetry
- BL heterogeneous reactions including effects of pressure
- Gas-phase reactions limited by chemical kinetics and turbulent mixing

Commercial Scale Reactor (27 atm, O₂ blown)

- Velocity
- Particles
- Temperature
- Oxygen
Pilot Scale Reactor (27 atm, O₂ blown)

![Diagram of Pilot Scale Reactor]

Effect of Swirl on Flow Patterns (Streamlines)

Challenges of BL Gasification

- CFD modeling is more challenging for high-pressure, O₂ blown gasification conditions than for recovery boilers
 - high particle concentrations (2 to 65 kg/m³)
 - small mean particle diameter (30-50 microns)
 - extreme temperatures and velocity near inlet
- Enhanced transport of mass, momentum, and energy between gas and particles
- Radiation absorption and scattering coefficients are ~100 times higher than 1atm, air blown conditions
- Gas-phase chemical kinetics are strongly coupled with temperature and difficult to solve numerically.
- Simplified gas phase chemical kinetics mechanism does not predict exit composition accurately