AN OVERVIEW OF CHEMREC® PROCESS CONCEPTS

Mats Lindblom, Chemrec AB

Presentation at the Colloquium on Black Liquor Combustion and Gasification
May 13-16, 2003, Park City, Utah
AN OVERVIEW OF CHEMREC® PROCESS CONCEPTS

1. CHEMREC - Major Applications
2. Development Milestones of CHEMREC
3. Gasification Technology Principles
4. Atmospheric Black Liquor Gasification system
5. The Chemrec Booster in New Bern
6. Atmospheric BLG Performance
7. The Pressurized Black Liquor Gasification system
8. The BLG Process – Mill Integration Flow Scheme
9. BLGCC concept
10. Performance - Chemrec BLGCC
11. BLGMF concept
12. Performance - Chemrec BLGMF
13. BLGMF Process Biomass to Fuel Efficiency
14. Technical Development
1. CHEMREC® - MAJOR APPLICATIONS

Ready for commercialisation:
- Booster (atmospheric air blown gasification)
 - Relieve overloaded recovery boilers
 - Capacity expansion projects

Continued development:
- BLGCC - Black Liquor Gasification Combined Cycle (pressurised oxygen-blown gasification)
 - Replacing recovery boiler
 - Increasing green power production
 - Improved pulp cooking liquors

- BLGAMF - Black Liquor Gasification with Methanol/DME Production as Motor Fuels for Automotive Uses
 - Replacing recovery boiler
 - Introducing new profitable green product line
 - Improved pulp cooking liquors
2. CHEMREC® DEVELOPMENT MILESTONES

• Atmospheric pilot plant, 3 tDS/24 h, SKF, Hofors, 1987
• Booster demonstration plant, 75 tDS/24 h, AssiDomän, Frövi, 1991
• Pressurized air-blown pilot plant, 6 tDS/24 h, Stora Enso, Skoghall, 1994
• Commercial Booster plant, 300 tDS/24 h, Weyerhaeuser, New Bern, 1996
• Pressurized oxygen-blown rebuilt pilot, 10 tDS/24 h, Stora Enso, Skoghall, 1997
• Piteå Development Plant 1 engineering starts 2001
• Start-up of the rebuilt, second generation Booster plant, Weyerhaeuser, New Bern, June 2003.
3. GASIFICATION TECHNOLOGY PRINCIPLES
4. ATMOSPHERIC, AIR-BLOWN BLACK LIQUOR GASIFICATION SYSTEM

- Gasification
- Particulate removal / Gas cooling
- Venturi scrubber
- Weak wash
- Gas cooling and dissolving of chemicals
- Reactor
- Steam
- Air
- Oxidized white liquor
- Sulphur removal
- Stack
- Green liquor
- Liquor recycle
5. THE CHEMREC BOOSTER IN NEW BERN
6. PERFORMANCE - CHEMREC BOOSTER

Black Liquor throughput: 200 - 400 tDS/d
Operating temperature: 950 °C
Pressure: 0.7 bar(g)
Carbon conversion: >99 %
Thermal efficiency: 45 %
Syngas LHV: 2.5 -3.5 MJ/ Nm³

-”- Composition:
 H₂ 10-15 %vol
 CO 8-12 -”-
 CH₄ 0.2-1 -”-
 CO₂ 15-17 -”-
 N₂ 55-65 -”-

Na & Sulphur Separation 15% of incoming S found in syngas.
7. THE PRESSURISED BLG SYSTEM
8. THE BLG PROCESS - MILL INTEGRATION FLOW SCHEME

Pressurized BLG Process

Black Liquor

Gasifier/Quench

Gas Cleanup Plant

Electric Power or Synfuel Plant

El. Power or Methanol/DME

Oxygen

Low Sulfdity Green Liquor

Air

Oxygen Plant

Cooking Liquor Preparation

Polysulfide Liquor

High Sulfdity Green Liquor

Green/White Liquor

Sulfur Conversion

SO₂

H₂SO₄

Oxygen
9. CHEMREC BLGCC PROCESS

Air separation

Gasification

Gasifier

Quench

Gas cooling

Counter Current Condenser

Pulverization

Oxygen

MP/HP Steam

Steam water

Gas

Gas Turbine

Air

BFW

Flue gas

HRSG

HP Steam

LP Steam

BFW

Flue gas

Power and Steam in a Combined Cycle

Condensate

Fuel Gas

Weak wash

Black liquor

Green liquor

Absorber

Stripper

Sulphur handling

Sulphur generation

Polysulfid-generation

Gas

Polysulfide

White Liquor

Power
10. PERFORMANCE - CHEMREC BLGCC

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black Liquor throughput:</td>
<td>>1000 tDS/d</td>
</tr>
<tr>
<td>Operating temperature:</td>
<td>950 °C</td>
</tr>
<tr>
<td>Pressure:</td>
<td>30 bar(g)</td>
</tr>
<tr>
<td>Carbon conversion:</td>
<td>>99 %</td>
</tr>
<tr>
<td>Total thermal efficiency:</td>
<td>80 %</td>
</tr>
<tr>
<td>Syngas LHV:</td>
<td>7 - 9.5 MJ/ Nm³</td>
</tr>
<tr>
<td>Composition:</td>
<td></td>
</tr>
<tr>
<td>H₂</td>
<td>30-35 %vol</td>
</tr>
<tr>
<td>CO</td>
<td>28-32 %</td>
</tr>
<tr>
<td>CH₄</td>
<td>0.5-2 %</td>
</tr>
<tr>
<td>CO₂</td>
<td>30-35 %</td>
</tr>
<tr>
<td>N₂</td>
<td>1-4 %</td>
</tr>
</tbody>
</table>

Na & Sulphur Separation: 55% of incoming S found in gas.
11. CHEMREC BLGMF CONCEPT (EXCL. BIOMASS BOILER)
12. PERFORMANCE - CHEMREC BLGMF

Black Liquor throughput: [As for BLGCC]
Operating temperature: [As for BLGCC]
Pressure: [As for BLGCC]
Carbon conversion: [As for BLGCC]
Total thermal efficiency: 80 - 90 %*)

*) depending on product purity and type.

Syngas LHV: [As for BLGCC]
 ""- Composition: [As for BLGCC]

Na & Sulphur Separation: [As for BLGCC]

Major Thermal Losses in BLGMF:
 - Cooling Water needs: Syngas cooler, Rectisol Unit
 - Steam consumption: MeOH Distillation, Rectisol-stripper, CO-shift
 - Electric Power: ASU-, SG- and MeOH loop compressors

05/20/2003
13. BLGMF PROCESS BIOMASS TO FUEL EFFICIENCY

Production Efficiency = \frac{\text{Methanol/ DME}}{\text{Additional Renewable Energy}} = 65-75 \%
14. CHEMREC DEVELOPMENT PLANTS DP-1 AND DP-2

<table>
<thead>
<tr>
<th>Plant</th>
<th>Location</th>
<th>Process Units</th>
<th>Capacity tDS per d/ MW_t</th>
<th>Pressure (bar)</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| DP1*)| Piteå, North Sweden | - Gasification
- Gas Cooling
- Gas Cleaning | 20 / 3 | 32 | - Verify Plant technical features.
- Secure performance for DP-2 |
| DP2*)| Kappa Kraftliner Piteå | - Full BLGCC concept | ~300 / 45 | 32 | - Fully develop the BLGCC concept.
- Net product approx .10 MW_e and 35 t/h of steam. |

*) Plant Investments Supported by a Grant from the Swedish Government of 238 MSEK, approx 25 Mill €