Caching Networks
Lecture 1
Introduction to Caching Networks (Motivations)
Examples Caching Networks: shared link and Device-to-Device (D2D) caching networks
Lecture 2
Basic Information Theory: Entropy
References:
C. E. Shannon, “A mathematical theory of communication,” in The Bell System Technical Journal, vol. 27, no. 3, pp. 379-423, July 1948.
Cover, Thomas M., and Joy A. Thomas. Elements of information theory. John Wiley & Sons, 2012. (Chapter 2)
Lecture 3
Basic Information Theory:
Entropy Family: Joint Entropy, Conditional Entropy, Chain Rule
Relative Entropy Family: Mutual Information, Relative Entropy, Chain Rule
Fundamental Information Inequalities: Data Processing Inequality
References:
Cover, Thomas M., and Joy A. Thomas. Elements of information theory. John Wiley & Sons, 2012. (Chapter 2)
El Gamal, Abbas, and Young-Han Kim. Network information theory. Cambridge university press, 2011. (Chapter 2)
Lecture 4
Basic Information Theory:
Fundamental Information Inequalities: Fano's Inequality
Asymptotic Equipartition Property: Definition, Typical Average Lemma, 4 Properties
References:
Cover, Thomas M., and Joy A. Thomas. Elements of information theory. John Wiley & Sons, 2012. (Chapter 2, 3)
El Gamal, Abbas, and Young-Han Kim. Network information theory. Cambridge university press, 2011. (Chapter 2)
Lecture 5
Lossless Source Coding Theorem
Achievability: Typicality Coding, Random Binning
Converse
References:
El Gamal, Abbas, and Young-Han Kim. Network information theory. Cambridge university press, 2011. (Chapter 3, 10)
Lecture 6
Introduction to Network Coding
Historic Notes
Multiuser Information Theory: Point-to-Point channel, Multiple Access Channel, Broadcast Channel
Networking: Noiseless Link, Routing
The Butterfly Network: Single Source Multicast, Multiple Source Multicast
Lecture 7
Introduction to Network Coding
The Butterfly Network: Single Source Multicast, Multiple Source Multicast, Multiple Source Unicast
Wireless/Satellite System and Examples of Index Coding
Source Separation
Definition of Point-to-Point Communication Networks (Graphical Networks)
Max-Flow Min-Cut Theorem
Examples of Routing achieving min-cut
References:
Yeung, Raymond W. Information theory and network coding. Springer Science & Business Media, 2008. (Chapter 17, 18)
Lecture 8
Examples of Routing and Networks Coding (Butterfly networks, Storage System)
Proof of Max-Flow Min-Cut Theorem via Linear Programming
References:
Yeung, Raymond W. Information theory and network coding. Springer Science & Business Media, 2008. (Chapter 18)
El Gamal, Abbas, and Young-Han Kim. Network information theory. Cambridge university press, 2011. (Chapter 15)
Lecture 9
Definition of Network Codes (NC)
Proof of Max-Flow Upper Bounds
Lecture 10
Global and Local Encoding Kernels
Koetter Medard Formula
References:
Yeung, Raymond W. Information theory and network coding. Springer Science & Business Media, 2008. (Chapter 19)
Koetter, Ralf, and Muriel Medard. “An algebraic approach to network coding.” IEEE/ACM Transactions on Networking (TON) 11, no. 5 (2003): 782-795.
Lecture 11
Implementation of Linear Network Codes (LNC)
Existence and Constructions
References:
Yeung, Raymond W. Information theory and network coding. Springer Science & Business Media, 2008. (Chapter 19)
Koetter, Ralf, and Muriel Medard. “An algebraic approach to network coding.” IEEE/ACM Transactions on Networking (TON) 11, no. 5 (2003): 782-795.
Lecture 12
Combination Networks
Desirable Properties of LNC
References:
Xiao, Ming, Muriel Medard, and Tor Aulin. “A binary coding approach for combination networks and general erasure networks.” In 2007 IEEE International Symposium on Information Theory, pp. 786-790. IEEE, 2007.
Yeung, Raymond W. Information theory and network coding. Springer Science & Business Media, 2008. (Chapter 19)
Lecture 13
Index Coding (IC)
Definitions and Examples
Graph Theory and Index Codes (clique number, chromatic number, independence number, etc)
References:
Birk, Yitzhak, and Tomer Kol. “Informed-source coding-on-demand (ISCOD) over broadcast channels.” In INFOCOM’98. Seventeenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, vol. 3, pp. 1257-1264. IEEE, 1998.
Bar-Yossef, Ziv, Yitzhak Birk, T. S. Jayram, and Tomer Kol. “Index coding with side information.” IEEE Transactions on Information Theory 57, no. 3 (2011): 1479-1494.
Lecture 14
Minrank
Interference Alignment and Index Coding
References:
Bar-Yossef, Ziv, Yitzhak Birk, T. S. Jayram, and Tomer Kol. “Index coding with side information.” IEEE Transactions on Information Theory 57, no. 3 (2011): 1479-1494.
Jafar, Syed Ali. “Topological interference management through index coding.” IEEE Transactions on Information Theory 60, no. 1 (2014): 529-568.
Lecture 15
Equivalence between IC and NC
References:
El Rouayheb, Salim, Alex Sprintson, and Costas Georghiades. “On the index coding problem and its relation to network coding and matroid theory.” IEEE Transactions on Information Theory 56, no. 7 (2010): 3187-3195.
Effros, Michelle, Salim El Rouayheb, and Michael Langberg. “An equivalence between network coding and index coding.” IEEE Transactions on Information Theory 61, no. 5 (2015): 2478-2487.
Lecture 16
Conventional Caching Networks
Single Cache Systems
Lecture 17
Shared Link Caching Networks
Examples
Networking Equivalent problem
References:
ISIT 2015 Tutorial: Part 3
Maddah-Ali, Mohammad Ali, and Urs Niesen. “Fundamental limits of caching.” IEEE Transactions on Information Theory 60, no. 5 (2014): 2856-2867.
Lecture 18
Shared Link Caching Networks
Converse (example)
Formal Problem Definition
Single-Cache System Converse
General Centralized Achievability
References:
Maddah-Ali, Mohammad Ali, and Urs Niesen. “Fundamental limits of caching.” IEEE Transactions on Information Theory 60, no. 5 (2014): 2856-2867.
Lecture 19
General Centralized Achievability (Cont.)
General Converse
Tight Bound Example (Converse)
References:
Maddah-Ali, Mohammad Ali, and Urs Niesen. “Fundamental limits of caching.” IEEE Transactions on Information Theory 60, no. 5 (2014):
2856-2867.
Lecture 20
Tight Bound Example (Achievability)
Memory Sharing Scheme (Example)
Decentralized Achievability
References:
Maddah-Ali, Mohammad Ali, and Urs Niesen. “Decentralized coded caching attains order-optimal memory-rate tradeoff.” IEEE/ACM Transactions on Networking (TON) 23, no. 4 (2015): 1029-1040.
Lecture 21
Complexity Analysis and Greedy Constraint Coloring
Device-to-Device Caching Networks
Problem Definitions
References:
Ji, Mingyue, Antonia M. Tulino, Jaime Llorca, and Giuseppe Caire. “Order-optimal rate of caching and coded multicasting with random demands.” arXiv preprint arXiv:1502.03124 (2015).
K. Shanmugam, M. Ji, A. M. Tulino, J. Llorca and A. G. Dimakis., “Finite-Length Analysis of Caching-Aided Coded Multicasting,” in IEEE Transactions on Information Theory, vol. 62, no. 10, pp. 5524-5537, Oct. 2016.
Ji, Mingyue, Giuseppe Caire, and Andreas F. Molisch. “Fundamental limits of caching in wireless D2D networks.” IEEE Transactions on Information Theory 62, no. 2 (2016): 849-869.
Lecture 22
Online Coded Caching
Cache-aided Interference Networks
References:
Pedarsani, Ramtin, Mohammad Ali Maddah-Ali, and Urs Niesen. “Online coded caching.” IEEE/ACM Transactions on Networking 24, no. 2 (2016): 836-845.
Yan, Qifa, Udaya Parampalli, Xiaohu Tang, and Qingchun Chen. “Online Coded Caching with Random Access.” IEEE Communications Letters (2016).
Naderializadeh, Navid, Mohammad Ali Maddah-Ali, and A. Salman Avestimehr. “Fundamental limits of cache-aided interference management.” arXiv preprint arXiv:1602.04207 (2016).
Hachem, Jad, Urs Niesen, and Suhas Diggavi. “Degrees of freedom of cache-aided wireless interference networks.” arXiv preprint arXiv:1606.03175 (2016).
Lecture 23
D2D Caching Networks
Definition
Achievability (Centralized )
Converse
References:
Ji, Mingyue, Giuseppe Caire, and Andreas F. Molisch. “Fundamental limits of caching in wireless D2D networks.” IEEE Transactions on Information Theory 62, no. 2 (2016): 849-869.
Lecture 24
D2D Caching Networks
Achievability ()
Tradeoff between complexity and communication schemes
Throughput-Outage
References:
Ji, Mingyue, Giuseppe Caire, and Andreas F. Molisch. “Fundamental limits of caching in wireless D2D networks.” IEEE Transactions on Information Theory 62, no. 2 (2016): 849-869.
Ji, Mingyue, Giuseppe Caire, and Andreas F. Molisch. “The throughput-outage tradeoff of wireless one-hop caching networks.” IEEE Transactions on Information Theory 61, no. 12 (2015): 6833-6859.
Lecture 25
Decentralized D2D Caching Networks
Concentration of Measure (Entropy Method)
References:
Ji, Mingyue, Giuseppe Caire, and Andreas F. Molisch. “Fundamental limits of caching in wireless D2D networks.” IEEE Transactions on Information Theory 62, no. 2 (2016): 849-869.
Ledoux, Michel. The concentration of measure phenomenon. No. 89. American Mathematical Soc., 2005. (Chapter 6)
Raginsky, Maxim, and Igal Sason. Concentration of Measure Inequalities in Information Theory, Communications, and Coding. Now Publishers Inc., 2014.
Lecture 26
The Proof of the Main Theorem in Decentralized D2D Caching Networks
Shared Link Caching Networks with Multiple Requests
References:
Ji, Mingyue, Giuseppe Caire, and Andreas F. Molisch. “Fundamental limits of caching in wireless D2D networks.” IEEE Transactions on Information Theory 62, no. 2 (2016): 849-869.
Ji, Mingyue, Antonia M. Tulino, Jaime Llorca, and Giuseppe Caire. “Caching and coded multicasting: Multiple groupcast index coding.” In Signal and Information Processing (GlobalSIP), 2014 IEEE Global Conference on, pp. 881-885. IEEE, 2014.
Ji, Mingyue, Antonia Tulino, Jaime Llorca, and Giuseppe Caire. “Caching-aided coded multicasting with multiple random requests.” In Information Theory Workshop (ITW), 2015 IEEE, pp. 1-5. IEEE, 2015.
Sengupta, Avik, and Ravi Tandon. “Improved approximation of storage-rate tradeoff for caching with multiple demands.” arXiv preprint arXiv:1606.04202(2016).
Hachem, Jad, Nikhil Karamchandani, and Suhas Diggavi. “Effect of number of users in multi-level coded caching.” In 2015 IEEE International Symposium on Information Theory (ISIT), pp. 1701-1705. IEEE, 2015.
Lecture 27
Shared Link Caching Networks with Random Demands
Femtocell Caching Networks
References:
Niesen, Urs, and Mohammad Ali Maddah-Ali. “Coded caching with nonuniform demands.” In Computer Communications Workshops (INFOCOM WKSHPS), 2014 IEEE Conference on, pp. 221-226. IEEE, 2014.
Ji, Mingyue, Antonia M. Tulino, Jaime Llorca, and Giuseppe Caire. “On the average performance of caching and coded multicasting with random demands.” In 2014 11th International Symposium on Wireless Communications Systems (ISWCS), pp. 922-926. IEEE, 2014.
Ji, Mingyue, Antonia M. Tulino, Jaime Llorca, and Giuseppe Caire. “Order-optimal rate of caching and coded multicasting with random demands.” arXiv preprint arXiv:1502.03124 (2015).
Hachem, Jad, Nikhil Karamchandani, and Suhas Diggavi. “Multi-level coded caching.” In 2014 IEEE International Symposium on Information Theory, pp. 56-60. IEEE, 2014.
Shanmugam, Karthikeyan, Negin Golrezaei, Alexandros G. Dimakis, Andreas F. Molisch, and Giuseppe Caire. “Femtocaching: Wireless content delivery through distributed caching helpers.” IEEE Transactions on Information Theory 59, no. 12 (2013): 8402-8413.
Karamchandani N, Niesen U, Maddah-Ali MA, Diggavi SN. Hierarchical coded caching. IEEE Transactions on Information Theory. 2016 Jun;62(6):3212-29.
Lecture 28
Femtocell Caching Networks
Distributed Storage Theory
References:
Shanmugam, Karthikeyan, Negin Golrezaei, Alexandros G. Dimakis, Andreas F. Molisch, and Giuseppe Caire. “Femtocaching: Wireless content delivery through distributed caching helpers.” IEEE Transactions on Information Theory 59, no. 12 (2013): 8402-8413.
Dimakis, Alexandros G., P. Brighten Godfrey, Yunnan Wu, Martin J. Wainwright, and Kannan Ramchandran. “Network coding for distributed storage systems.” IEEE Transactions on Information Theory 56, no. 9 (2010): 4539-4551.
Dimakis, Alexandros G., Kannan Ramchandran, Yunnan Wu, and Changho Suh. “A survey on network codes for distributed storage.” Proceedings of the IEEE 99, no. 3 (2011): 476-489.
Lecture 29
Distributed Storage Theory
The Relation between Distributed Storage System, Caching Networks and Distributed Computing Systems
References:
Ji, Mingyue, Giuseppe Caire, and Andreas F. Molisch. “Fundamental limits of caching in wireless D2D networks.” IEEE Transactions on Information Theory 62, no. 2 (2016): 849-869.
Dimakis, Alexandros G., P. Brighten Godfrey, Yunnan Wu, Martin J. Wainwright, and Kannan Ramchandran. “Network coding for distributed storage systems.” IEEE Transactions on Information Theory 56, no. 9 (2010): 4539-4551.
Li, Songze, Mohammad Ali Maddah-Ali, Qian Yu, and A. Salman Avestimehr. “A Fundamental Tradeoff between Computation and Communication in Distributed Computing.” arXiv preprint arXiv:1604.07086 (2016).
|