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ABSTRACT

A massively parallel large-eddy simulation (LES) code for planetary boundary layers (PBLs) that utilizes
pseudospectral differencing in horizontal planes and solves an elliptic pressure equation is described. As an
application, this code is used to examine the numerical convergence of the three-dimensional time-dependent
simulations of a weakly sheared daytime convective PBL on meshes varying from 323 to 1024> grid points.
Based on the variation of the second-order statistics, energy spectra, and entrainment statistics, LES solutions
converge provided there is adequate separation between the energy-containing eddies and those near the
filter cutoff scale. For the convective PBL studied, the majority of the low-order moment statistics (means,
variances, and fluxes) become grid independent when the ratio z;/(CsAy) > 310, where z; is the boundary layer
height, Ais the filter cutoff scale, and C; is the Smagorinsky constant. In this regime, the spectra show clear
Kolmogorov inertial subrange scaling. The bulk entrainment rate determined from the time variation of the
boundary layer height w, = dz,/dt is a sensitive measure of the LES solution convergence; w, becomes grid
independent when the vertical grid resolution is able to capture both the mean structure of the overlying
inversion and the turbulence. For all mesh resolutions used, the vertical temperature flux profile varies lin-
early over the interior of the boundary layer and the minimum temperature flux is approximately —0.2 of the
surface heat flux. Thus, these metrics are inadequate measures of solution convergence. The variation of the
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vertical velocity skewness and third-order moments expose the LES’s sensitivity to grid resolution.

1. Introduction

Large-scale parallel computing has the potential to
alter the landscape of turbulence simulations in the at-
mospheric and oceanic planetary boundary layers (PBLs)
as increased computer power using O(10*-10%) or more
processors (National Science Foundation 2007) will
permit large-eddy simulations (LESs) of turbulent PBLs
coupling small and large scales in realistic outdoor en-
vironments. Applications include, atmosphere—land in-
teractions (Patton et al. 2005), boundary layers with
surface water wave effects (Sullivan and McWilliams
2010; Sullivan et al. 2007, 2008), weakly stable nocturnal
flows (Beare et al. 2006), flow in complex terrain
(Lundquist et al. 2010), stratocumulus clouds (Stevens
et al. 2005), tropical boundary layers beneath deep con-
vection (Moeng et al. 2009), and coupling with mesoscale
weather events (Bryan et al. 2003), to mention just a few.
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Given the prominent and important role of LES in
studying boundary layer dynamics (Wyngaard 1998), it
is important to examine the quality of LES solutions,
and in particular their dependence on the grid mesh,
subgrid-scale (SGS) parameterizations, numerical dis-
cretizations, and surface boundary conditions. Assessing
the numerical convergence and the quantification of
uncertainty in LES, induced by modeling and numerical
errors, is compounded by the significant computational
expense needed to carry out meaningful grid refinement
for a three-dimensional time-dependent turbulent flow
(Pope 2000). The subgrid-scale model and numerical
discretization errors are intertwined since both depend
explicitly on the mesh spacing (Chow and Moin 2003;
Meyers et al. 2007; Geurts and Frohlich 2002). The ef-
fective Reynolds number associated with the subgrid-
scale model can vary widely so that LES solutions can be
either deterministic or stochastic (Bryan et al. 2003;
Wyngaard 2004a). When the effective Reynolds number
is sufficiently large, resolved turbulence is supported and
LES solutions are stochastic, which requires that time-
and space-averaged statistics be examined in order to
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judge convergence. Designing metrics to assess solution
error is not obvious (Celik et al. 2006). Meyers et al. (2007)
propose a framework for LES model evaluation using
large- and small-scale metrics that are both physics and
mathematics based. They are able to extract LES dis-
cretization errors for idealized homogeneous isotropic
turbulence simulations with the Smagorinsky model but
rely on a direct numerical simulation (DNS) as ground
truth in their evaluations, which is not available for the
high-Reynolds number PBL.

Here, we investigate one aspect of assessing the quality
of LES solutions, namely the sensitivity and convergence
of LES solutions as the grid mesh is substantially varied
for a particular choice of subgrid-scale model. The phys-
ical problem investigated is a very weakly sheared day-
time convective PBL similar to that studied by Schmidt
and Schumann (1989). There have been a few previous
investigations that explored some aspects of the conver-
gence of LES solutions mainly focused on an inter-
comparison of different codes on a similar mesh [e.g., see
LES intercomparison studies by Beare et al. (2006),
Stevens et al. (2005), Bretherton et al. (1999), Andren
etal. (1994), Nieuwstadt et al. (1993) and Fedorovich et al.
(2004)]. Bryan et al. (2003) examined the resolution re-
quirements to simulate convective weather events and
found that the statistical properties of squall lines are still
not converged with a grid spacing of 125 m. Past in-
vestigations have been carried out with the intent of
clarifying the behavior of LES for different PBL flows.
Nieuwstadt et al. (1993) reports on the first inter-
comparison of simulation codes for the convective PBL
using coarse 40° meshes. Andren et al. (1994) examined
neutrally stratified PBLs, Beare et al. (2006) considered
the behavior of the stable PBL, and Bretherton et al.
(1999) studied radiatively driven entrainment in a smoke
cloud. Previous work aligned with the present study is
documented by Mason and Brown (1999). They examined
a modest range of domain size, grid resolutions, and sub-
grid-scale model constants but were particularly interested
in the influence of filter-scale C,Az; C; is the Smagorinsky
constant and Ais a characteristic subgrid length scale.

The outline of the paper is as follows: section 2 is
a brief introduction to the LES equations appropriate
for a high-Reynolds number PBL; section 3 describes the
LES grid refinement experiments; results are presented
in section 4; section 5 provides a summary of the findings;
and the appendix provides technical details about the
LES code parallelization and performance.

2. LES equations

Typical LES model equations for a dry atmo-
spheric planetary boundary layer under the Boussinesq
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approximation include (a) transport equations for mo-
mentum, (b) a transport equation for a conserved buoy-
ancy variable (e.g., virtual potential temperature 6), and
(c) a discrete Poisson equation for a pressure variable 77
to enforce incompressibility, as well as closure expres-
sions for subgrid-scale variables [e.g., an SGS equation
for turbulent kinetic energy (TKE) e]. Formally, the LES
equations are derived by applying a low-pass spatial fil-
ter to the equations of motion that leads to the decom-
position of the total velocity u=1u + u’ and total virtual
potential temperature 6 =8 + 6’, where (-) and ()’ de-
note resolved and subgrid fields, respectively. The LES
model equations used are (Moeng 1984; Moeng and
Sullivan 2002)

ou .

a—l:+ﬁ»Vﬁ=—f>< (@—U) — VF+kpo— VT,
(1a)
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E—l—u-Ve:P-&-B%-D—E. (1c)

The pressure needed to make the flow divergence free is
the solution of the Poisson equation

V.i=0=> V7=r. )

Equation (2) is formed by applying the discrete di-
vergence operator to (1a) and collecting all terms except
the pressure in the source term r [see Sullivan et al.
(1996) for details].

In (1), f = fk, where fis the Coriolis parameter and k
is the unit vector in the z direction, U, is the geostrophic
wind with x, y components (Ug, V,), and B8 = g/, is the
buoyancy parameter with (g, 6y) denoting gravity and
a reference virtual potential temperature, respectively.
The SGS momentum and scalar fluxes and SGS energy
are

T=uu, — wu, (3a)
B=uf — 16, (3b)
e = (wu; — w;u;)/2. (3¢)

In the SGS TKE equation (1c) terms on the right side are
subgrid-scale production and buoyancy (P, 5), diffusion
D, and dissipation £. The modeling of these terms and the
SGS fluxes in terms of an eddy viscosity v, and diffusivity
vy are fully described in Deardorff (1980), Moeng (1984),
Moeng and Wyngaard (1988), and Sullivan et al. (1994).



OCTOBER 2011

An excellent and insightful discussion of the subgrid-scale
dynamics contained in (lc) is given by Moeng and
Wyngaard (1988, 3581-3585). We are aware that the
specification of the subgrid-scale fluxes using a TKE eddy
viscosity model is one of many proposals available in the
literature (see, e.g., Meneveau and Katz 2000; Geurts
2001; Sullivan et al. 2003; Wyngaard 2004b). However,
the objective here is not to focus on the impact of dif-
ferent SGS prescriptions but rather to examine the so-
lution mesh dependence given a particular choice of SGS.

An important difference between smooth and rough
wall LES is the specification of surface boundary con-
ditions. As is common practice with geophysical flows,
we impose rough wall boundary conditions based on
a drag rule where the surface transfer coefficients are
determined from Monin—Obukhov similarity functions
(Moeng 1984; Moeng and Sullivan 1994). A high Rey-
nolds number model for viscous dissipation is used in
(1c) [see discussion near (6)]. Thus, molecular viscosity
and diffusivity do not appear in the LES equation set.
The sidewall (x, y) boundary conditions are periodic and
a radiation boundary condition (Klemp and Durran
1983) is used at the top of the domain.

In our LES code, (1) are integrated in time using a
fractional step method. The spatial discretization is
second-order finite difference in the vertical direction
and pseudospectral in the horizontal planes. The re-
solved vertical flux w0 in (1b) receives special treatment.
It is determined using a second-order near monotone
scheme described by Beets and Koren (1996) (see also
Koren 1993). This upwind scheme prevents unrealizable
oscillations in regions of strong vertical scalar gradients.
Dynamic time stepping utilizing a third-order Runge-
Kutta scheme with a fixed Courant-Fredrichs-Lewy (CFL)
number (Sullivan et al. 1996; Spalart et al. 1991) is em-
ployed. Evaluating horizontal derivatives with fast Four-
ier transforms (FFTs) and solving the elliptic pressure
equation are nonlocal operations that impact the code
parallelization (see the appendix).

300 K
0(z) =
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TABLE 1. Simulation grid spacings.

Run Grid points (Ax, Ay, Az) (m) Ay (m)
A 32° (160, 160, 64) 154
B 64° (80, 80, 32) 772
C 128° (40, 40, 16) 38.6
D 256° (20, 20, 8) 19.3
E 512° (10, 10, 4) 9.6
F 1024° (5,5,2) 4.8

3. Design of LES experiments

A suite of simulations on a fixed computational do-
main with varying grid resolutions is performed to ex-
amine the convergence of the LES equations given in
section 2 using the parallel algorithm described in the
appendix. A canonical daytime convective PBL is sim-
ulated in a computational domain (L,, L,, L.) = (5120,
5120, 2048) m. Six simulations are performed with grid
meshes of 32%, 64°, 128%, 256%, 512%, and 1024°, and for
each mesh the spacing is held constant in the three (x, y,
z) directions (see Table 1). The PBL is driven by a con-
stant surface buoyancy flux Q, = 024 Km s ' and
weak geostrophic winds (Uy, V) = (1, 0) m s~ 1. Other
external inputs are surface roughness z, = 0.1 m, Cori-
olis parameter f = 1 X 10™* s~ !, and initial inversion
height z; ~1024 m. In terms of the initial PBL height, the
computational domainis (L, Ly, L;)/z; = (5,5, 2), which
is sufficient to allow fully turbulent flow fields to develop
independently of the periodic sidewall boundary con-
ditions (e.g., Schmidt and Schumann 1989). At long time
scales (t = 8 h) the horizontal domain should be ex-
panded to accommodate the very large structures that
can develop under persistent forcing, as discovered by
Jonker et al. (1999) and de Roode et al. (2004).

The initial sounding of virtual potential temperature
(to streamline the text, hereafter virtual potential tem-
perature 6 is simply referred to as “temperature’’) has
a three-layer structure:

:0<z<974 m
1974<z<1074 m. 4)

308 K+ (z — 1074 m) 0.003 Km™!: z <1074 m

Thus, a sharp jump in temperature of 8 K is imposed
over a depth of 100 m near the top of the PBL. For this
combination of geostrophic wind and surface buoyancy
flux the Monin—Obukhov length scale L ~ —1.5 m and
thus the PBL is dominated by convective forcing since
—z;/L = O(500). All simulations are started from small
random seed perturbations in temperature near the

surface. The simulations are carried forward for about
25 large eddy turnover times 7 = z/w., where the
Deardorff convective velocity scale w, = (gQ..z:/60)"".
At each time step, the boundary layer top z; is diagnosed
using the “maximum gradient method” (Sullivan et al.
1998). Statistics are generated by averaging in horizontal
x—y planes and over the time interval 107-257; these



2398 JOURNAL OF THE ATMOSPHERIC SCIENCES VOLUME 68
TABLE 2. Bulk simulation properties.

Run z; (m) Zil A Z/Cls wy (ms™ 1) Welw,. (X10%) Re, U W (85, 8,)/z;
A 1132 7.2 40 2.07 9.56 238 0.084 (0.74,1.22)
B 1118 14.5 80 2.06 8.45 554 0.091 (0.75,1.18)
C 1099 28.5 158 2.05 6.84 1300 0.090 (0.77,1.12)
D 1092 56.6 314 2.05 5.23 3178 0.087 (0.80, 1.09)
E 1088 113.3 630 2.04 527 8050 0.084 (0.80, 1.07)
F 1099 229.0 1272 2.05 5.16 20 600 0.079 (0.80, 1.05)

averages, which approximate the ensemble average, are
indicated by (-). Also, we often compute statistics of
a resolved turbulence fluctuation f”=f— (f). In the
case of vertical velocity, w =Ww", since horizontal peri-
odic boundary conditions and no flow through the bot-
tom boundary require (w)(z) = 0 in order to satisfy (2).

Grid resolution tests with LES are demanding since
the resolved turbulent motions are always 3D and time
dependent. For rough-wall LES of a given domain
size, the number of mesh points in a single direction N ~
(L,/Ax) and hence N° ~ (L,/Ax)*, assuming equal spac-
ing in all three directions. However, refining the mesh
also lowers the acceptable time step owing to the limits
imposed by a CFL constraint; that is, CFL = |u|yax At/Ax.
Thus, as the grid spacing decreases, the number of time
steps needed to advance the solutions to the same time
further increases by the factor M ~ L,/Ax (see, e.g.,
Pope 2000, p. 348). The total computational work for
a complete simulation is then M - N°> ~ (L,/Ax)*. As
an example of the steep climb in work with increasing
resolution, the computational effort on a mesh with
1024° grid points is approximately 4096 times greater
than the work required on a mesh with 128> grid points.
This underestimates the effort by a factor of 2 since our
computations are dominated by FFT work, which scales
as NlogN in both x and y.

4. Results

In the analysis of the LES solutions we discuss the
variation of statistics and vertical profiles as a function of
the mesh resolution ratio z;/As or z;/Az; here z; is the
PBL depth and A¢is the LES filter width, which is related
to the mesh spacings Ax;, as discussed below. In the in-
terior of the PBL, away from the surface layer and en-
trainment zone, numerous observational and LES studies
find that z; is a characteristic scale of the energy con-
taining eddies in the convective PBL (e.g., Deardorff
1972a; Lenschow et al. 1980; Lothon et al. 2009; Jonker
et al. 1999). Thus, the nondimensional ratio z;/Arcan be
interpreted as a measure of the scale separation between
the energy-containing eddies and those near the filter
cutoff. When the SGS closure is the Smagorinsky model,

Mason and Brown (1999) and Pope (2000) prefer to
interpret the LES set of equations as a numerical system
with the degrees of freedom limited by a low-pass
“Smagorinsky filter.”” The cutoff scale of the filter is
C,As, with C; equal to the Smagorinsky constant.
Muschinski (1996) builds on this interpretation and
discusses the properties of a non-Newtonian LES fluid
with a Smagorinsky viscosity. To place our simulations
in the context of this alternate interpretation, we also
present the results as a function of the resolution ratio
zi/(CsAyp). In either interpretation, when z,/A;> 1 LES
solutions have a wide separation between the energy-
containing eddies and those near the filter cutoff scale.
Observations of subgrid-scale turbulence in the atmo-
spheric surface layer demonstrate that a similar ratio of
scales A,/Ay, where A, is the scale of the peak in the
vertical velocity spectrum, is a useful dimensionless
parameter that collapses the variation of subgrid-scale
turbulence over a range of stratification and filter widths
(Sullivan et al. 2003).

A summary of bulk PBL properties generated from
the various simulations is provided in Table 2. Entries in
this table are PBL depth z; convective velocity scale w,,
normalized entrainment rate ratio w./w,, large-eddy
Reynolds number at mid-PBL Re,, friction velocity ra-
tio u./w., bottom and top of the entrainment zone (8,
8,)/z;, and the ratio of PBL depth to filter width and
vertical resolution z;/(Ay, CsA, Az). Note that 6, and &,
are the endpoints of the entrainment zone defined as the
region where the total vertical temperature flux is neg-
ative. A broad look at the tabulated results shows that w,,
is almost invariant with the mesh resolution, while the
friction velocity shows a slight downward trend of ~10%
as the mesh varies. Our values of u./w,. ~ 0.08 for z,/zy ~
10* are close to those predicted by Schmidt and Schumann
(1989). Meanwhile, the entrainment rate and entrainment
zone depth vary substantially on the coarser meshes. The
variations of the bulk properties and the vertical profiles
of selected flow variables are discussed below.

a. Inertial subrange scaling

A fundamental basis of high Reynolds number LES is
that the resolved (large-eddy) turbulence is independent
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of subgrid-scale influences, namely the SGS viscosity v,
and scalar diffusivity vy. In other words, the large-eddy
Reynolds number Re, in LES solutions must be suffi-
ciently large that the resolved flow is in a regime of so-
called “‘Reynolds number similarity” (Townsend 1976;
Wyngaard 2010). We follow Moeng and Wyngaard
(1988) and define Re, for an LES of a convective PBL
based on the SGS viscosity v, and characteristic velocity
and length scales (u, ¢) = (w,, z;). Thus,

Re _ub Ml
Con Gdpve

©)

where we adopt the definition of SGS viscosity v, =
CkAf\/E. Here C; = 0.1 is a modeling constant that
follows from matching with an inertial subrange spec-
trum (Moeng and Wyngaard 1988). In our pseudo-
spectral code, the filter width is the characteristic
length scale of the cell averaging volume A; =AxAyAz,
where the grid spacings are Ax; and (AxAy) = 3(Ax, Ay)/2
are increased by a factor of 3/2 to account for dealiasing of
the upper 1/3 wavenumbers. Inserting the definition of
w, into (5) and adopting the high Reynolds number
inertial subrange dissipation model (Lilly 1967; Moeng
and Wyngaard 1988)

e

leads to

In (6) the modeling constant C, ~ 0.93 and for a
production—dissipation balance in (1c) the Smagorinsky
constant C, = C{*/Cl* ~0.18. Equation (7) exposes the
dependence on the Smagorinsky filter scale C;A. Moeng
and Wyngaard (1988) further argue that if the filter cut-
off lies in the inertial subrange, then the net dissipation
& should be constant, which leads to the scaling Re, ~
(zi Ay #3_This is similar to how the large-scale Reynolds
number varies in direct numerical simulation (see Pope
2000, p. 347). For our LES experiments with different
meshes we estimate based on (5) that at mid-PBL Re,
varies by almost two orders of magnitude, Re, = [240,
20600] (see Table 2). To test the LES scaling suggested
by (7) we show the product Re, (A;/z )¥? at three heights
z/z; = (0.1,0.5,0.9) for varying mesh resolution in Fig. 1.
Note that Re, is largest in the upper part of the PBL and
smallest near the surface, which is a consequence of the
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FIG. 1. Variation of large-eddy Reynolds number Re, with mesh
resolution at heights z/z; = 0.1, 0.5, and 0.9 denoted by symbols [],
<&, and O, respectively; Re, is computed from (6). Inertial subrange
scaling is obeyed when the solid line becomes flat. Note the bottom
and top x axes show the resolution ratios of z; to Arand to C,A,
respectively.

SGS e dependence in (5); (e(z)) has a maximum near the
surface and decreases monotonically toward the top of
the PBL. Also, in the PBL interior the inertial range
scaling suggested by (7) is indeed obeyed when z,/A; >
60 or z;/(CsAy) > 310; this corresponds to meshes greater
than 256° (Table 2). Moeng and Wyngaard (1988)
comment that their 96° computations with Re, = 1000
fall within the inertial subrange but are likely somewhat
close in scale to the energy-containing eddies, which is
confirmed by the present calculations. Of course, below
z/z; < 0.1, Re, is even smaller because of the high levels
of SGS e and thus meshes finer than 256° are needed
close to the wall before simulations will be able to ade-
quately reproduce an inertial subrange (see section 4d).

An alternate but equivalent statement of the high
Reynolds number scaling Re, ~ (z,—/Af)‘”3 is that the
dissipation £ is independent of the grid mesh. As a con-
sistency check, we computed the time and horizontally
averaged dissipation (£(z)) from (6) at heights z/z; = 0.1,
0.5, and 0.9 from the different simulations. We find that
(E(z)) also tends to a constant grid-independent value
in the interior of the PBL when the mesh is 256 or
greater. This shows that high Reynolds number LES
obeys one of its fundamental assumptions as the mesh
is refined.

b. Temperature profiles and entrainment statistics

The vertical structure of the mean temperature (6)
and its turbulent flux profile (W6” + B-k) are de-
pendent on the grid resolution as shown in Figs. 2 and 3.
Figure 2 compares the temperature profiles at time ¢ =
15T, which is well beyond the initial spinup period for
the turbulence and is representative of the late-time
quasi-steady behavior of (0(z)). All profiles display
a similar well-mixed structure over the interior of the
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FIG. 2. Vertical profile of virtual potential temperature (6) for
varying mesh resolution. Note all simulations are started with the
same three-layer structure for virtual potential temperature 6;,
indicated by the dotted line.

boundary layer 0.1 < z/z; < 0.9. The profile of (6(z)) near
the surface and in particular near z; exhibits a grid reso-
lution sensitivity that impacts the interior temperatures.
Since the surface heating is constant in time across the
simulations, the increased warming observed in the mid-
PBL with the lower-resolution simulations must result
from an increase in entrainment, as discussed below.
Recall that all simulations are initiated with the same
three-layer temperature sounding (4); however, on the
coarse meshes the temperature profile reaches a quasi-
equilibrium state with a much weaker inversion.

The response of the temperature flux profiles to the
varying mean 6 profiles, shown in Fig. 3, is interesting.
Despite the radical changes to the overlying tempera-
ture structure with varying mesh, all the temperature
flux profiles decrease linearly over the boundary layer,
reaching a minimum (negative) value near and below
z;. Note that Fig. 3 shows the total temperature flux
(i.e., the sum of resolved plus subgrid-scale fluxes where
the latter is retrieved from the SGS eddy viscosity
model B -k = ijaé/az). The minimum temperature
flux (w'9" + B - k)_. /Q,. ~ —0.2is weakly dependent on
the mesh resolution; it becomes slightly less negative as
Af decreases. However, the depth of the entrainment
zone, defined as the layer where the temperature flux is
less than zero, expands considerably as the mesh is
coarsened. This is consistent with the observed changes
in the mean temperature profiles.
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FIG. 3. Vertical profile of total temperature flux (w'6" + B - R)/Q*
for varying mesh resolution.

The temporal variation of the boundary layer in-
version height z;(¢), shown in Fig. 4, is a strong measure
of solution convergence. Here z; is determined using the
maximum vertical gradient in temperature; that is, for
each x, y gridpoint we search along a vertical column to
find the location of the maximum in 96/9z and then
horizontally average all those positions to define z; at
a particular ¢. This technique closely tracks local changes
in the inversion (Sullivan et al. 1998; Davis et al. 2000).
We notice immediately that the boundary layer in the
low-resolution simulations entrains fluid much more
rapidly than in the fine-mesh simulations, which reflects
the weakened inversions discussed previously. A critical
parameter, the entrainment rate w, = dz;/dt, is then
a function of the mesh resolution; w, determined from
a linear least squares curve fit to the variation of z;(¢)
over the interval 107-25T is listed in Table 2. In the
coarse 32° simulation the nondimensional entrainment
rate wo/w,, ~ 9.2 X 107, which is more than 85% larger
than the finest 1024° resolution run. Notice in Table 2
that the entrainment rate does not change appreciably
once the mesh resolution exceeds 256>, while the en-
trainment rate from the 128* simulation is about 30%
larger than the average of the fine-mesh runs (runs D, E,
and F).

To further expose the coupling between the mean
temperature field and turbulence in the entrainment
zone we examine the average budget equations for the
resolved vertical temperature flux and temperature
variance (e.g., see Mironov et al. 2000):
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FIG. 4. Variation of the boundary layer height z; with non-
dimensional time #7T; the large-eddy time scale T = z;/w,. The
labels A-F correspond to the grid resolutions 323,643, 1283, 256°,
5123, and 1024°, respectively. The high-resolution runs (D-F)
overlap. The simulation marked with an open square uses a mesh of
64° but with no monotone vertical temperature flux; that marked
with an open circle uses a mesh of 256* and is identical to simulation
D but uses a filter width Ay equal to simulation B.
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In these equations T is turbulent transport, M is mean-
gradient production, B is buoyant production, P is pressure
destruction, and S is a subgrid-scale term (i.e., a correlation
between resolved and SGS variables). Temperature flux
(8a) and temperature variance (8b) are coupled with each
other and both depend on the mean temperature through
its vertical gradient 8(6)/dz. There is of course feedback to
the mean temperature through the vertical divergence of
temperature flux. In (8a), the resolved vertical flux (w"9")
depends on the mean-gradient production term M, which
acts as both source and sink since the mean temperature
gradient has both positive and negative slopes in the
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convective PBL. In (8b), resolved temperature variance
reflects the balance between flux mean-gradient pro-
duction and the subgrid-scale term. On the coarse meshes
the internal balance within the LES leads to weaker
temperature gradients near z;, but the region where
a(0)/dz >0 is spread over a greater extent of the PBL
(see Fig. 2). As a result, the production of temperature
variance by term M in (8b) on the coarse meshes is sig-
nificantly lower since the minimum value of the tem-
perature flux changes only slightly with resolution. At
the same time, the mean-gradient term M in (8a) acts as
a sink for temperature flux over a larger depth near the
PBL inversion and hence the entrainment zone—that is,
the layer where (w"0") <O—expands on the coarse
meshes, as observed in Fig. 3 (see also Table 2).

The couplings among mean temperature, temperature
flux, and temperature variance in (8) are subtle and
complex and apparently depend critically on the mean
temperature gradient. This in turn impacts the overall
entrainment predicted by LES. To illustrate the in-
fluence of 9(A)/dz on the LES solutions we perform two
additional simulations. Simulation D1 uses a 256° mesh
but sets the filter width A;equal to the value for the 64
mesh with all other parameters held constant. Thus D1
has fine vertical resolution Az = 8 m but sets Ay =
77.2 m. Simulation B1 uses a 64° mesh but turns off the
monotone computation of the vertical temperature flux
in (1b). Figure 4 shows the entrainment rate D1 ~ D and
B1 =~ B. These results indicate that the weakening of the
inversion in the coarse-mesh simulations is a conse-
quence of sparse vertical resolution of the mean tem-
perature gradient and its internal couplings with the
turbulence and is not a result of monotone numerics
and/or SGS effects. We note that LES studies of
stratocumulus-topped PBLs by Stevens et al. (2005),
which have very sharp inversions, find that the best
comparison between LES and observations occurs when
the vertical resolution within the LES is very fine. The
meshes used in those simulations are, however, very
anisotropic, with (Ax, Ay) > Az.

Based on our LES experiments we conclude that to
generate grid-independent solutions the mesh needs to
have sufficiently fine vertical resolution to capture both
the mean temperature gradients in the overlying inver-
sion and the turbulence. However, vertical refinement
requires a comparable refinement of the horizontal grid
in order to maintain reasonable aspect ratio grids; grid
isotropy impacts inertial range SGS constants (e.g.,
Scotti et al. 1993). Generally, the impact of grid anisot-
ropy Ax # Ay # Az on LES solutions is not well un-
derstood (e.g., Kaltenbach 1997; Silva Lopes and Palma
2002). We note, however, that in all our computations
Ax = Ay and hence the explicit (dealiasing) filtering used
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in horizontal x—y planes is isotropic. Tong et al. (1998)
shows that 2D (isotropic) filtering, as used here, is nearly
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FIG. 5. Effect of mesh resolution on the (left) total turbulent kinetic energy (TKE) and
(right) total temperature variance ®*. TKE is normalized by w3 and the temperature variance
is normalized by O, = Q./w..
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equivalent to 3D filtering.

These mesh resolution experiments have implications
for LES studies of entrainment. There is a subtle in-
terplay among mesh resolution, the overlying inversion,
the minimum temperature flux, and the entrainment
rate. Insufficient vertical resolution weakens the in-
version and increases the entrainment rate while main-
taining nearly the same minimum temperature flux. A
first-order entrainment jump model (Betts 1974) shows
how a finite inversion thickness contributes to the en-
trainment rate (see Sullivan et al. 1998). Linearity of the
temperature (or heat) flux profile and minimum tem-
perature flux approximately equal to —0.2Q,, are rela-
tively insensitive to the mesh resolution and thus are
insufficient to judge the convergence of LES solutions
for the convective boundary layer. The variation of the
entrainment rate w, = dz;/dt is a much more sensitive
indicator of LES solution convergence.

c. Convergence of variances statistics

One of the main attributes of LES is its ability to ac-
curately compute turbulence. To judge whether the
turbulence statistics generated by LES are mesh in-
variant, we need to account for both the resolved and
SGS contributions to the variances. Figure 5 compares
vertical profiles of the normalized total TKE

sk

for varying mesh resolutions. Ideally, with small sam-
pling errors all profiles should collapse onto the same
curve independent of Ay Overall there is broad agree-
ment among the profile shapes for varying Ag, but the
TKE profile displays more sampling variability than the
total temperature flux, especially in mid-PBL. Despite
this variability, the shape of the TKE profile near z; is
clearly mesh dependent, which is an indirect conse-
quence of the changes to the temperature structure in
the entrainment zone discussed in section 4b. Also, there
is a persistent trend where the total TKE in the lower
PBL z/z; < 0.5 on the coarse meshes is reduced com-
pared to the fine mesh calculations. Near the surface the
total TKE profiles on the coarse meshes show noticeable
departures from their fine mesh counterparts. This is
likely due to a combination of effects such as inaccurate
modeling of SGS fluxes near a rough boundary (e.g.,
Sullivan et al. 2003; Brasseur and Wei 2010) and in-
teractions with an outer flow that varies with mesh res-
olution. The large entrainment rates on the coarse
meshes imply that the turbulence in those PBLs is only
quasi-stationary in time.

Inspection of the vertical profiles of total vertical
variance (w?), = (W' + 2¢/3) and total horizontal ve-

tot

locity variance (1), = (@ + 79" +4e/3) (see Fig. 6)
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FIG. 6. Total variance (resolved plus SGS contributions) of the (left) vertical and (right)
horizontal velocities. The horizontal variance uy, is the sum of the u and v components; see

definition below (9).

provides additional insight as to how the TKE varies
with z;/As. The value 2e/3 is an estimate of the contri-
bution from the SGS velocity variance for an isotropic
SGS model and thus 2w%E = (w? + uj), . All the profiles
of the total w variance display the same smooth slightly
asymmetric shape over the PBL. There is a remarkably
good collapse among the profiles when the mesh is 256>
[i.e., z/(CiAy) > 310]. The variability in the TKE profile
observed in Fig. 5 clearly arises from the horizontal
variances. The (u}) variance has peaks near the ground
and z;; the upper maximum shifts its vertical location
and shape depending on the structure of the overlying
inversion. Generally, we do not see the same high de-
gree of convergence of the horizontal variance with
mesh resolution as observed for the vertical velocity
variance. A possible cause of this variability is the pres-
ence of abrupt wind reversals that occur sporadically over
long time intervals in thermal convection as observed by
Sreenivasan et al. (2002).

Our SGS closure prescription for temperature flux is
based on an eddy viscosity and a turbulent Prandtl
number assumption: we do not carry a prognostic equa-
tion for the subgrid-scale temperature variance. The total
temperature variance is

(6" + o)

0%(z) =
(z) )

(10)

and we diagnose the SGS variance contribution from

20,B -k yp
Cy/e 0z

¢~ (11)

Equation (11) is a truncated balance between variance
destruction and variance production by the vertical
temperature gradient. Here B -k is the SGS vertical
temperature flux in (3b), 0, = Q./w,, Cy = 2.02
(Schmidt and Schumann 1989; Deardorff 1972b), and ¢,
is a stability-corrected length scale (Moeng 1984;
Deardorff 1980). We find that ¢ ~ O(8"?) only very near
the surface. In the inversion /; is small because of the
stable stratification that damps the SGS temperature
variance in (11). Figure 5 shows the total temperature
variance ©?(z) over the entire PBL. In the interior 0.1 <
z/z; < 0.9, the temperature variance on all meshes is
small and appears converged. At the upper edge of the
PBL the temperature variance has a pronounced maxi-
mum that varies with mesh resolution. The peak total
variance on the 1024° mesh is nearly 5 times as large as
on the 64° mesh and furthermore is concentrated over
a thinner vertical extent. The weaker temperature gra-
dient that develops on the coarse mesh, discussed in
section 4b, greatly reduces the temperature variance.
Temperature variance generated by LES converges in
the interior of the PBL but becomes mesh dependent in



2404

JOURNAL OF THE ATMOSPHERIC SCIENCES

VOLUME 68

101 T T oo T T oo T T IE E LA LR AL | T T rrrrg L]
100 B 3 F
10° 3
10"
. E
3 -
— 102
_|><10 E
2 o
s -
s
g10 E
w o
10 3
E —— 323
10 -—— = 64°
128°
1024°
- L L IIIIIII L 11 IIIIII L L Il L 11 IIIIII L L IIIIIII L L1l 1
1061o0 10’ 10 10° 10' 10°?
k z k z

h =i

h i

F1G. 7. Two-dimensional energy spectra of (left) vertical velocity w and (right) horizontal
velocity u in the PBL for varying meshes. The spectra are functions of the magnitude of the
horizontal wavenumber vector k;, = |k|. The groups of spectra at the top, middle, and bottom in
each plot correspond to the heights z/z; = 0.9, 0.5, and 0.1, respectively. For clarity, the spectral
amplitudes in each group are multiplied by the numerical factor on the left-hand side of the

plot. The dashed line has slope &;, 3.

the entrainment zone and very near the surface because
of the variation of the mean temperature gradient and
a mesh-dependent triple-moment term (#w"8"?) shown in
section 4e. SGS models based on rate equations that
include a prognostic conservation equation for SGS
variance should improve the convergence of the LES
solutions for temperature variance in these regions
(Wyngaard 2004b; Hatlee and Wyngaard 2007).

d. Spectral analysis

Figure 7 shows two-dimensional spectra of the vertical
and horizontal velocity at nondimensional heights z/z; =
(0.9,0.5,0.1) for varying mesh resolutions. These spectra
are functions of the horizontal wavenumber vector
k, = (kxi, ky j) and are smoothed by averaging in circular
rings at constant k, =, /k% + k} and over time. These
two-dimensional spectra vanish at zero wavenumber
and are more representative of the spatial eddy scale
than their one-dimensional counterparts, which are
contaminated by aliasing from averaging in either x or y
directions (see Wyngaard 2010, p. 351).

In the upper boundary layer, z/z; = 0.9, all the meshes
capture the peak in the vertical velocity spectrum rea-
sonably well and also display a k> slope, which is es-
pecially clear in the fine 1024° resolution run. There is

asmall departure from k; 3° at the highest wavenumbers

in the spectrum of the horizontal velocity. Similar be-
havior occurs at mid-PBL z/z; = 0.5, as shown in Fig. 7.
Near the outer edge of the surface layer (z/z; = 0.1), we
notice a pronounced broadening of the peak in the
vertical velocity spectrum with a clear shift to higher
wavenumbers; this is due to inviscid blocking by the
presence of the wall. The coarser-resolution runs with
meshes of 128 and less are just barely able to resolve the
peak in the vertical velocity spectrum at this height. It is
encouraging that all runs display a similar variation at
low wavenumbers k;z; = 10.

The spectrum of horizontal velocity displays an in-
triguing behavior at z/z; = 0.1, and to a lesser extent at
zlz; = 0.9, Its peak energy is clearly at a lower wave-
number compared to the vertical velocity, and the finest-
resolution run hints at a two-slope character (i.e., it
displays a slope transition near k;z; ~ 25). This behavior
reflects the redistribution of energy near the lower sur-
face because of the wall presence. This is exposed more
clearly in Fig. 8 where we show the z variation of the
spectra from the 1024° simulation as the lower boundary
is approached. We notice a smooth gradual decrease in
the magnitude of the vertical velocity spectrum at low
wavenumbers accompanied by a gradual shift in the
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FIG. 8. Two-dimensional energy spectrum of (left) vertical velocity w and (right) horizontal
velocity u near the lower boundary at various heights z/z; = 0.1, 0.2, 0.3, and 0.5 for a simula-
tions with 10247 grid points. The dashed line has slope k;, .

peak toward higher wavenumbers as z/z; decreases. A
slope of k,9° is always maintained as z/z; decreases as
predicted by Wyngaard (2010, p. 355). The spectrum of
the horizontal velocity, however, displays an opposite
trend that reflects the amplification of the u variance as z
decreases. We notice that the increases in u variance occur
at low wavenumbers with the peak in its spectrum growing
by almost a factor of 10 at wavenumber k,z; ~ 3, with
almost no change to the spectral components k;z; = 40.
These changes are barely captured by the 128> simulation.
Near the lower boundary, the spectral distribution of en-
ergy reflects the enhancement of the (u, v) variances
caused by descending downdrafts that transfer energy into
horizontal motions. Pope (2000, p. 433) discusses a num-
ber of different effects induced by the presence of a wall.

e. High-order moments

Velocity and scalar moments higher than second or-
der appear in ensemble average TKE and flux budgets
and are used in the interpretation of PBL dynamics (e.g.,
Mironov 2009). Often LES flow fields are used to com-
pute high-order moments, but it is unknown how grid
resolution impacts these estimates. Moeng and Rotunno
(1990) identify the vertical velocity skewness S, as
a critical parameter in boundary layer dynamics. In
convective PBLs, S, is an indicator of the updraft—
downdraft distribution, provides clues about vertical
transport, and is utilized in dispersion studies (Weil

1988, 1990). Further, Moeng and Rotunno (1990) find
that vertical velocity skewness is sensitive to the type of
surface boundary conditions and also varies with Rey-
nolds number in direct numerical simulations.

The definition of vertical velocity skewness is

(w?)

S 232

w

» (12)

where w is the total velocity. To examine the impact of
grid resolution on §,,, the solutions from the different
simulations are analyzed with the caveat that we use the
resolved or filtered vertical velocity w =w". Hence we
compute the resolved skewness

(13)

Since typical LES uses Smagorinsky closures with SGS
fluxes parameterized at the second moment level, SGS
triple moments are unknown and thus there is not a clear
definition of ‘‘subgrid-scale skewness’’ in an LES.
Vertical profiles of S_ are shown in Fig. 9. These
profiles exhibit a clear and striking dependence on grid
resolution; near the surface (z/z; < 0.15) S_ decreases
and eventually becomes (unrealistically) negative on the
coarse meshes. Meanwhile as z/z; — 1 an opposite trend
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FIG. 9. Effect of mesh resolution on resolved vertical velocity
skewness S_. The lines legend indicates the mesh size of the various
simulations. The skewness is computed using the resolved (or fil-
tered) vertical velocity field w = w". The observations are taken
from the results provided in Moeng and Rotunno (1990).

is observed. With decreasing grid resolution S_ becomes
larger and shows a pronounced maximum below the in-
version. In the PBL interior (0.1 < z/z; < 0.9), the
skewness estimates appear to converge when z;/(C,Ap) >
310 or greater (i.e., when the mesh is greater than or equal
to 256°). Near the lower boundary (z/z; < 0.4) the
skewness estimates on the 256°, 512°, and 1024> meshes
are in good agreement with the few available observa-
tions. Above z/z; > 0.75, we have no compelling expla-
nation for the differences between the fine-mesh LES
predictions and the few observations but note that the
presence of wind shear reduces vertical velocity skewness
(Fedorovich et al. 2001, 2004; Lothon et al. 2010). Also,
the temporal averaging needed to obtain reliable skew-
ness estimates increases with z (Lenschow et al. 1994),
which adds uncertainty to the observations of S, in the
upper PBL. Recently, Lenschow et al. (2011) analyzed
vertical velocity collected from a ground-based lidar, over
a wider range of shear and convective forcing, and find
that their measurements of S, bracket our LES results.

Our interpretation of Fig. 9 hinges on the behavior
and modeling of the subgrid-scale fluxes in LES. To
expose this dependence we introduce the definitions of
the third- and second-order SGS moments

p=w2 — W =ww — ww, (14a)
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b=w3 — W =www — www, (14b)
where () indicates a spatially filtered variable. Because
the filtering operator commutes with ensemble
averaging—that is, (w3) = (w3) = (w3)—the total skew-
ness given by (12) is next written in terms of resolved
and subgrid contributions defined by (14):

g _ (M)t

4>. 15
") )" )

Algebraic manipulation of (15) utilizing (14) leads to

(1 _ 111)3/2
=5~ 7 16
YT g (1o
where S_ is the resolved-scale skewness (13) and
b= W) (w2). (17a)
= ($)/(w), (17b)

are nondimensional second- and third-order SGS mo-
ments. Equation (16) is useful—it defines the total
skewness in terms of LES resolved and subgrid-scale
variables.

To evaluate the importance of the SGS moments
(i, @) to vertical velocity skewness we filter the 1024°
simulation results to produce resolved and SGS vari-
ables on a coarser mesh. This step is justified since the
LES solutions for vertical velocity are converged at this
mesh resolution with a negligible contribution from the
SGS (see Fig. 6a). The vertical velocity field from cases
E and F are filtered in horizontal x—y planes to a reso-
lution of 64% using a sharp spectral filter—no filtering is
applied in the z direction. Tong et al. (1998) show that
2D filtering in a plane is a good approximation to 3D
filtering. As an independent check we verified that the
filtered fields satisfy (16) exactly.

Vertical profiles of skewness and SGS moments con-
structed from the filtered 1024° simulation (referred to
as case Fy) are presented in Fig. 10; results obtained from
filtering case E are similar. The skewness estimates from
F, are similar to the comparable 64° coarse simulation
result (i.e., small in the surface layer and large near the
inversion) but exhibit important quantitative differ-
ences. In the surface layer, the skewness from case Fis
always positive except very near the ground, in contrast
to simulation B. This is in agreement with our physical
expectation. Also the skewness from F; matches the
high-resolution result in the mid-PBL. The SGS mo-
ments in Fig. 10b illustrate the shortcomings of the
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FIG. 10. (a) Skewness from the 1024° simulation (solid), the 1024 simulation filtered in
horizontal planes to 64> resolution (dotted), and the 64° simulation (dashed). (b) Third- and
second-order SGS moments computed from 1024° simulation, showing (}5, the third-order
moment (dotted); ¢, the second-order moment (dashed); and the SGS skewness correction

(1 = )*2/(1 — ¢) [which appears in (16)] (solid).

coarse 64° simulation (case B). In the surface layer the
triple moment ¢ is very large, contributing more than
50% to (w3), in the mid-PBL ¢ ~ ¢, and near the in-
version ¢ <. Also, ¢ is always greater than zero.
Overall the SGS “‘contribution” to skewness given by
the ratio on the right-hand side of (16) is >4 in the
surface layer and ~1 in mid-PBL, and falls to ~0.8 near
the inversion on a mesh with 64° resolution in the x—y
directions. Hunt et al. (1988) note that Smagorinsky
closures are Gaussian SGS models and hence assume
¢ =0. As a consequence, coarse-mesh LES results pre-
dict erroneous values of skewness because of their SGS

closure schemes. In general, we find that coarse-mesh
LES tends to overpredict (#w), underpredict (w?), and
thus overpredict S;; compared to fine-resolution simu-
lations as shown in Fig. 11. When Smagorinsky-type
closures are used with LES, the resolution ratio z,/(C,Ay)
needs to be greater than 630 to obtain mesh-independent
estimates of S_.

The turbulent transport (term T) in (9a) and (9b)
depends on the vertical divergence of the third-order
moments y, = (W?9") and 7y, = (W), respectively.
Vertical profiles of these moments are given in Fig. 12.
As might be anticipated based on their content, the

1
0 0.1 0.2
(W) [ w?

FIG. 11. Comparison of third- and second-order resolved vertical velocity moments from the
1024° simulation (solid), the 1024° simulation filtered in horizontal planes to 64% resolution

(dotted), and the 64° simulation (dashed), showing (a) normalized (#"*)/w?3, and (b) normalized
@)W
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FIG. 12. Effect of mesh resolution on resolved third-order moments (left) y, = (w"6") and
(right) y, = W'9").

moments (y,, ) are broadly similar to the (w, ) vari-
ances, respectively. Each displays reasonable conver-
gence in the interior of the PBL on the fine meshes.
There is a clear mesh dependence in the inversion layer
and also near the surface for the y, moment. This is
a consequence of the temperature variance mesh de-
pendence. Hence LES that utilize eddy viscosity clo-
sures require a very fine mesh to adequately estimate
high-order moments in the inversion and wall regions.

f- Flow visualization

A complete discussion of the impact of mesh resolu-
tion on the formation and dynamics of coherent struc-
tures and their connection to the statistical moments in
the convective PBL is beyond the scope of the present
work. Here we briefly illustrate one aspect of large- and
small-scale interaction that can occur in high-resolution
LES. In Fig. 13, we observe the classic formation of
plumes in a convective PBL. Vigorous thermal plumes
near the top of the PBL can trace their roots through the
middle of the PBL down to the surface layer. Conver-
gence at the common corners of the hexagonal patterns
in the surface layer leads to the formation of strong
updrafts that evolve into large-scale plumes that fill and
dominate the dynamics of the daytime PBL. Near the
inversion a descending shell of motion readily develops
around each plume.

Closer inspection of the large-scale flow patterns in
Fig. 13 also reveals coherent smaller-scale structures.

This is demonstrated in Fig. 14 where we track the evo-
lution of 10° particles over about 400 s. Over the limited
region where the particles are released the flow is domi-
nated by a persistent line of larger-scale upward convec-
tion. On either side of the convection line descending
motion develops and near the surface these downdrafts
turn laterally and converge. The outcome of this surface
layer convergence spawns many small-scale vertically
oriented vortices that resemble dust devils. These rapidly
rotating vortices are readily observed, persist in time, and
rotate in both clockwise and counterclockwise directions.
Often the vortices coalesce in a region where a coherent
thermal plume erupts. Coarse-mesh LES hints at these
coherent vortices but fine-resolution simulations allow a
detailed examination of their dynamics within the larger-
scale flow. Previously, Kanak (2005) observed the for-
mation of dust devils in convective simulations, but in
small computational domains O(750 m).

5. Summary

A highly parallel large-eddy simulation (LES) code
for the atmospheric boundary layer is developed based
on a high-Reynolds number Boussinesq flow model with
a fully rough lower boundary. The numerical scheme
employs pseudospectral differencing in horizontal planes
and solves an elliptic pressure Poisson equation utilizing
2D domain decomposition. Despite these global opera-
tions, the code exhibits both weak and strong scaling over
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FIG. 13. Visualization of the vertical velocity field in a convective PBL at different heights from the 1024° simu-
lation: z/z; = (top left) 0.04, (top right) 0.1, (bottom left) 0.5, and (bottom right) 0.9. The gray scale color bar changes

between the panels and is in units of m s~ .

a wide range of problem sizes with scaling tests are carried
out using as many 16 384 processors (see the appendix).
This code is used to carry out a grid sensitivity study of
a daytime convective PBL for a wide range of meshes
varying from 32° to 1024°. Based on the variation of the
second-order statistics, spectra, and entrainment statis-
tics we find that the 3D time-dependent LES solutions
numerically converge as the mesh is refined for this ca-
nonical problem. In the boundary layer interior (0.1 <
z/7; < 0.9, where z; is the boundary layer height), the
total variances and temperature flux have effectively
converged when the mesh resolution is 256 or greater.
The convergence of the total vertical velocity is very
good. For our mesh of 256°, the ratio zi/Ap > 60 or z;/
(CsAp) > 310, where Ayis the LES filter width and Cj is

the Smagorinsky constant. In this regime, the scale sep-
aration between the energy containing eddies and the
filter cutoff scale is sufficiently wide that the large-eddy
Reynolds number Re, ~ (z/Ap)** and the parameter-
ized viscous dissipation £ ~ ¢ 2/Af (e is the subgrid-scale
energy) approaches a mesh-independent constant. Two-
dimensional spectra of the vertical and horizontal
velocities in horizontal planes scale as k;,>3(k;, is the
horizontal wavenumber) over almost two decades at the
highest resolution. Thus, the LES solutions show clear
Kolmogorov inertial subrange scaling, which is the basis
of most high-Reynolds number subgrid-scale modeling.
Near the rough lower surface and in the entrainment
zone, the total (resolved plus subgrid) temperature
variance increases with mesh refinement. This is partly
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FIG. 14. Visualization of 10° particles randomly released in a convective PBL at z/z; ~ 0.01 over a limited horizontal
extent from the 1024° simulation of convection. The viewed area, ~3.8% of the total horizontal domain, is the
topmost left corner from the top-left panel of Fig. 13. Notice the evolution of the larger-scale line of convection into
small-scale vortical motions that resemble dust devils. Time advances from left to right beginning along the top row of
images. The images are 71.6, 151, and 390 s after the initial release. Vertical vorticity w, =v, — %, is shown in the

bottom-right panel at t = 390 s. The gray scale bar is in units of s~ .

a consequence of the subgrid-scale model, which does not
employ a prognostic equation for subgrid-scale tempera-
ture variance. Potentially, this can be improved by utiliz-
ing a fuller set of rate equations for subgrid-scale variables
(e.g., Wyngaard 2004b; Hatlee and Wyngaard 2007).
The entrainment rate determined from the time var-
iation of the boundary layer height w, = dz;/dt is a sensi-
tive measure of the LES solution convergence. The LES
estimates of entrainment velocity become mesh in-
dependent when the vertical grid resolution is able to
capture both the mean structure of the overlying in-
version and the turbulence. The entrainment rate

1

increases with decreasing mesh resolution because of
inadequate resolution of the mean temperature gradients
in the inversion. For all mesh resolutions used, the ver-
tical temperature flux varies linearly over the boundary
layer with the minimum temperature flux ~ —0.2 of the
surface flux. Thus, these scalar-flux properties are not
adequate to judge the convergence of LES solutions.
The variation of third-order moments, often used to
interpret PBL dynamics, depends on the grid resolution;
skewness of resolved vertical velocity S highlights the
grid resolution sensitivity. The mesh dependence of S is
a consequence of a Smagorinsky closure that neglects
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F1G. Al. The 2D domain decomposition on nine processors: (a) base state with y—z decomposition, (b) x—z decomposition used for
computation of y derivatives and 2D planar FFT, and (c) x—y decomposition used in the tridiagonal matrix inversion of the pressure

Poisson equation.

third-order SGS moments of vertical velocity. In-
terrogation of the 1024° simulations shows the subgrid-
scale correction to vertical velocity skewness is greater
than one in the surface layer, near unity in mid-PBL, and
less than one near the inversion. Simulations with 512°
mesh points or more are needed to estimate vertical ve-
locity skewness and higher-order moments from the re-
solved LES flow fields. Flow visualization of the 1024
simulations shows the coupling between large-scale
thermal plumes and small-scale vortical motions that re-
semble dust devils. The dust devil cores tend to develop in
the branches or spokes of the surface updrafts.

The criterion z,/(C;Ay) > 310 proposed here for sim-
ulations of convective boundary layers needs to be
tested for simulations of boundary layers dominated by
shear, stable stratification, cloudy boundary layers, and
boundary layers with surface heterogeneity where the
energy containing eddies are concentrated at scales
smaller than the boundary layer height z;.
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APPENDIX

Algorithm Parallelization
a. Domain decomposition

The parallelization of the LES algorithm is based on
the following criteria: 1) to accomplish 2D domain de-
composition using solely the Message Passing Interface
(MPI) (Aoyama and Nakano 1999); 2) to preserve
pseudospectral differencing in x—y planes using fast
Fourier transforms (FFTs); and 3) to maintain a Bous-
sinesq incompressible flow model. The ability to use 2D
domain decomposition is a significant advantage in
pseudospectral simulation codes as it allows direct nu-
merical simulations of isotropic turbulence on meshes
of 2048* or more (Pekurovsky et al. 2006). A sketch of
the domain decomposition layout that conforms to
our constraints is given in Fig. A1l. We mention that 2D
domain decomposition in x—y planes is often used with
low-order finite-difference schemes (Raasch and Schroter
2001) and mesoscale codes that adopt compressible equa-
tions (Michalakes et al. 2005).

In our 2D domain decomposition, each processor
operates on constricted three-dimensional “bricks or
pencils” subsampled in x, y, or z directions. Brick-to-
brick communication is a combination of transposes and
ghost point exchange. To preserve pseudospectral dif-
ferencing in the horizontal directions a custom MPI
matrix transpose was designed and implemented. Other
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FI1G. A2. Computational time per grid point for different com-
binations of problem size and 2D domain decomposition for the
Cray XT4 (an example of strong scaling), showing problem sizes
(a) 512° (&), (b) 1024° (O), (c) 2048* (1), and (d) 3072 (A). For
a given number of total processors NP the symbols are varying
vertical and horizontal decompositions [i.e., different combinations
(NP, NP,,)].

nonlocal schemes—such as compact finite difference
(Lele 1992) or fully spectral direct numerical simulation
codes (Werne and Fritts 1999)—require similar com-
munication patterns. Given a field f(x, y, z) discretized at
(Ny, Ny, N_) locations, our transpose routines perform
the forward and inverse operations

all x ally

f(ky’kx’z) ySSyEye ‘DfT(}’»X,Z) xxs‘xs‘xe
ZSSZSZe ZSEZSZe

(A1)

using a subset of horizontal processors as shown in Figs.
Ala and Alb. In (Al) and the following equations,
subscripts (-),. denote starting and ending locations in
the (x, y, z) directions. The data transpose shown sche-
matically in Figs. Ala and Alb only requires local
communication, that is, communication between pro-
cessors in groups [0, 1, 2], [3, 4, 5], and [6, 7, 8]. De-
rivatives df/dy, which are needed in physical space, are
computed using this sequence of steps:

(i) forward x to y transpose f — f7,
(ii) FFT derivative af"/dy, and
(iii) inverse y to x transpose af'/dy — 9fldy.

Existing serial 1D FFT routines for real and complex
arrays are used as in previous implementations (see
http://www.cisl.ucar.edu/css/software/fftpack5/). With this
algorithm, so-called ghost points used in computing
derivatives df/dz are only needed on the top and bot-
tom faces of each brick in Fig. Ala.

The 2D decomposition of the computational domain
also impacts the pressure Poisson equation solver. In an
incompressible Boussinesq fluid model the pressure 7 is
a solution of the elliptic equation (see section 2)
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F1G. A3. Computational time per grid point for a fixed amount of
work per processor (an example of weak scaling). Shown are 60 000
points per processor for the Cray XT4 (O), dual core IBM SP5+
(<), and single core IBM SP5 ([), and 524 288 points per processor
for the Cray XT4 (A). For a fixed number of total processors NP
multiple symbols are different combinations of (NP_, NP,,).

VeE=r, (A2)

where the source term r is the numerical (discrete) di-
vergence of the unsteady momentum equations (e.g.,
Sullivan et al. 1996). The solution for 7 begins with
a standard forward 2D Fourier transform of (A2):

i . allky
—(kx+k§)w+ﬁ=r(ky,kx,z) for |k, =k =kl

=7
z,=z=gz,

(A3)
where the 2D Fourier transform for 7 or r is
1 R .
Fep2) = 2 D fk ke, )T (Ad)
NxNy ky kx * Y

and (k,, k,) are horizontal wavenumbers. At this stage
the data layout on each processor is as shown in
Fig. A1b. Next, custom routines carry out forward k,
to z and inverse z to k,, matrix transposes on the source
term of (A3):

all ky all z
f(k)”kx’z) kx.s = kx = kx,e hnd fT(Z’kx’ky) kx*s = kx = kx’e :
L=1=2, ky =k,=k,

(AS)

Again notice the communication pattern needed to
transpose from Fig. A1b to Alc is accomplished locally
by processors in groups [0, 3, 6], [1,4,7],and [2, 5, 8]. The
continuous storage of 71 along the z direction allows
standard tridiagonal matrix inversion for pairs of hori-
zontal wavenumbers on each processor. This step is re-
peated for all pairs of horizontal wavenumbers and
provides the transposed field 71 (z, k sk ky_s: ky’e). To

x.e’
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recover the pressure field in physical space we retrace our
steps: 71 =>7r followed by an inverse 2D Fourier trans-
form 7r = 7. In designing the present algorithm, we also
considered using the parallel tridiagonal solver described
by Gibbs (2004) for the solution of the Poisson equation
but found it not as flexible as the present scheme.

With these enhancements our new algorithm allows a
very large number of processors O(10%) or more to be
utilized. No global communication between processors
is required; that is, we do not call MPI’'s ALL_TO_ALL
routine. Instead, the MPI routine SENDRECV is
wrapped with FORTRAN statements to accomplish the
desired communication pattern. The scheme outlined
above introduces more communication but the send-
receive messages are smaller and hence large numbers
of grid points can be used. Also, the total number of
processors is not limited by the number of vertical grid
points. This flexibility allows simulations in boxes with
large horizontal and small vertical extents. The trans-
pose routines are general and allow arbitrary numbers of
mesh points, although the best performance is of course
realized when the load is balanced across processors.

b. Scaling

The performance of the code for varying workload as a
function of the total number of processors NP is provided
in Figs. A2 and A3 for three different machine architec-
tures (NP = NP, X NP,, where NP, and NP,, are the
number of processors in the vertical and horizontal di-
rections, respectively). In each figure, the vertical axis is
total computational time ¢ X NP divided by total work.
Also, N, is the number of vertical levels and M., is pro-
portional to the FFT work (i.e., My, = Ny, logN,,, with
N,, being the number of grid points in the x and y di-
rections). Ideal scaling corresponds to a flat line with in-
creasing number of processors. The timing tests illustrate
the present scheme exhibits both strong scaling (i.e.,
where the problem size is held fixed and the number of
processors is increased) and weak scaling (i.e., where the
problem size grows as the number of processors increases
so the amount of work per processor is held constant) over
a wide range of problem sizes and is able to use as many as
16 384 processors (i.e., the maximum number available to
our application). Further, the results are robust for vary-
ing combinations of (NP., NP,,). Generally, the perfor-
mance only begins to degrade when the number of
processors exceeds about 8 times the minimum of (N, N,,
N,) because of increases in communication overhead.
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