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Abstract 
The load–displacement relationship between two rough surfaces in contact determines physical properties such as thermal 
and electrical conductivity, contact stiffness, and leakage rate. Thus, many researchers have studied the relationship between 
the mean pressure and the mean gap of isotropic, Gaussian, random rough surfaces in contact, using theoretical and numerical 
multi-asperity models, and using fractal models that account for multi-scale roughness. However, fractal models are some-
times difficult to use in practice because they require numerical solution. Hence, in this paper, we provide best-fit regression 
equations that approach the numerical solutions of fractal models to enable straightforward use in engineering applications. 
We show that the load–displacement relationship between random rough surfaces is best approximated by an exponential 
function and by a complementary error function depending on the magnitude of the gap between the surfaces. We illustrate 
the application of the best-fit regression equations for contact of an as-built Inconel 718 surface manufactured with laser 
powder bed fusion. This work enables applying complex contact models to engineering problems in a straightforward fashion.

Graphical Abstract
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1  Introduction

It is well-known that unlubricated contact between two 
rough surfaces occurs at the peaks or asperities of the sur-
face roughness [1]. Hence, the surface roughness determines 
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the load–displacement relationship between contacting 
rough surfaces, which plays an important role in estimat-
ing electrical and thermal conductivity [2], the leakage rate 
between contacting surfaces in seals [3, 4], and incremental 
contact stiffness [5] to predict, e.g., the dynamic response 
of structures with bolted joints [6]. The load–displacement 
or so-called “traction” relationship is expressed as the mean 
contact pressure p̄ , which is the normal load divided by the 
nominal contact area, as a function of the mean gap ḡ , which 
is the distance between the mean lines of the roughness pro-
files of both contacting surfaces [7].

Determining the load–displacement relationship of con-
tacting rough surfaces using numerical simulations is com-
putationally expensive because a fine mesh is required to 
accurately capture surface roughness features [8, 9]. Thus, 
theoretical models, which provide closed-form rather than 
numerical solutions, are useful to establish a fundamental 
understanding of the effect of surface roughness on the 
traction relationship of contacting rough surfaces. Green-
wood and Williamson, GW [10] first documented a statis-
tical multi-asperity contact model that represents surface 
roughness as multiple, identical, spherical asperities with 
a Gaussian or exponential distribution of asperity heights. 
Later, Bush et al., BGT [11] extended the GW model to 
include spherical asperities with different radii, determined 
from Nayak’s random process theory [12].

However, asperity models and their extensions do not 
account for interactions between individual asperities and 
do not easily accommodate multi-scale surface roughness 
[13]. In contrast, multi-scale contact models characterize the 
surface roughness using the power spectral density (PSD) 
P(k) [14], with k the wavenumber, i.e.,

where k1 , kr , and k2 are the lower, roll-off, and upper wave-
number, H is the Hurst exponent, and C0 is a scaling con-
stant. Within the fractal range kr < k ≤ k2 , the surface rough-
ness exhibits self-affinity and the PSD follows a power law 
with 0 < H < 1 or a fractal dimension D ≡ 3 − H . Most 
engineering surfaces display H > 0.5 [15]. Outside the frac-
tal range k < kr , the PSD is approximately constant [16].

Theoretical contact models that implement multi-scale 
surface roughness resolve some of the intrinsic shortcom-
ings of asperity models. Ciavarella et al. [17] studied con-
tact between an elastic half-plane and a rigid multi-scale 
rough surface defined by a Weierstrass series that repre-
sents an idealized PSD with a discrete set of wavenumbers, 
and they used recursive integration to show that the real 
contact area decreases when increasing the upper limit of 

(1)P(k) =

⎧⎪⎨⎪⎩

C0, k1 ≤ k ≤ kr,

C0(k∕kr)
−2(H+1), kr < k ≤ k2,

0, k > k2,

the wavenumber in the Weierstrass series. Persson [18] 
considered elastic contact of random rough surfaces with 
a continuous PSD, and determined the effect of including 
progressively finer roughness scales on the probability that 
contact occurs for any contact pressure. He assumed that 
the additionally introduced roughness remains in full con-
tact, which required introducing a semi-empirical correc-
tion factor to account for overestimating the stored elastic 
energy [19, 20].

Joe et al. [21] implemented a theoretical model to pre-
dict the traction relationship for elastic contact between 
isotropic, Gaussian, and random rough surfaces, without 
requiring a semi-empirical correction factor. This model 
is described in detail in reference [22] and shows good 
agreement with direct numerical simulations, including 
the boundary element method, BEM [23] and Green’s 
function molecular dynamics, GFMD [9]. However, the 
formulation of this model requires a numerical solution 
of the traction relationship, which prevents easy use in 
engineering applications.

Hence, in this paper, we attempt to overcome this dif-
ficulty by numerically solving the theoretical model of Joe 
et al. [21], and deriving best-fit regression equations that 
describe the traction relationship between realistic engineer-
ing surfaces in non-adhesive, unlubricated, elastic contact. 
We show that the best-fit regression equations follow an 
exponential or complementary error function depending 
on the magnitude of the mean gap ḡ , and we observe that 
the regression coefficients are a function of H and kr∕k1 . 
Finally, we use the best-fit regression equations to determine 
the traction relationship for contact between as-built metal 
additive manufactured surfaces, as an illustrative case study.

2 � Theoretical Model

We idealize the random rough surfaces as a superposition of 
random roughness of multiple spatial frequencies. Figure 1a 
shows a continuous PSD of a rough surface with k1 ≤ k ≤ k2 , 
which decomposes into coarse-scale ( k1 ≤ k ≤ k∗ ) and fine-
scale ( k∗ ≤ k ≤ k2 ) roughness. Figure  1b schematically 
illustrates elastic contact between two random rough sur-
faces as contact between an equivalent rough surface that 
contains the coarse-scale roughness and a rigid flat [24], 
and the local traction relationship p(g;k∗, k2) implicitly 
includes the effect of the fine-scale roughness (k∗ ≤ k ≤ k2) . 
The Young’s modulus of the equivalent rough surface 
E∗ =

(
(1 − �2

1
)∕E1 + (1 − �2

2
)∕E2

)−1 , with E1 , E2 , �1 , and �2 
the Young’s modulus and Poisson coefficient of both con-
tacting random rough surfaces, respectively. Figure 1b also 
shows the local gap g, mean gap ḡ , and local surface height 
h = g − ḡ measured from the mean line of the equivalent 
roughness profile.
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We succinctly review the key aspects of the theoretical 
model [21, 22]. It is challenging to sum the effect of ran-
dom roughness of multiple scales on the traction relationship 
because even a smooth elastic problem requires solving a 
second order partial differential equation with fourth rank 
tensors. The theoretical model [21, 22] simplifies this prob-
lem as follows. When we only consider coarse-scale rough-
ness k1 ≤ k ≤ k∗ , instead of considering the entire spectrum 
of roughness scales k1 ≤ k ≤ k2 , we modify contact between 
the rough surfaces by neglecting the fine-scale roughness 
k∗ < k < k2 , and we obtain an “effective” traction relation-
ship, p(g;k∗, k2) . This effective traction relationship derives 
from the product between the probability density function of 
the gap g between the fine-scale roughness k∗ < k < k2 and 
a rigid flat 𝛷(g|ḡ; k∗, k2) . When k∗ approaches k1 , we obtain 
the traction relationship that considers the entire rough-
ness p̄(ḡ) . Thus, the theoretical model [21, 22] explicitly 
considers the coarse-scale roughness, whereas it includes 

the fine-scale roughness implicitly in the effective traction 
relationship.

The traction relationship that considers the entire rough-
ness spectrum k1 ≤ k ≤ k2 results from including gradually 
coarser roughness, i.e., k∗ approaches k1 (see Fig. 1a), and 
requires using a recursive solution procedure [21], similar to 
other theoretical models [17, 18]. We previously converted 
this recursive method to a partial differential equation to 
reduce computational complexity [22], i.e.,

(2)

�p

�k
(g; k, k2) =

1

2

[
2�kP(k)

(
1 −

2

E∗k

�p(g; k, k2)

�g

)−2
]
�2p

�g2
(g; k, k2).

Fig. 1   a Schematic illustration of the power spectral density of a 
random rough surface, indicating coarse ( k1 ≤ k ≤ k∗ ) and fine-scale 
( k∗ ≤ k ≤ k2 ) roughness. b Schematic of an equivalent rough surface 
containing coarse-scale roughness in contact with a rigid flat, show-

ing the mean gap ḡ , local gap g, surface height h ≡ ḡ − g , and local 
traction relationship p(g;k∗, k2) that implicitly includes the effect of 
fine-scale roughness

Fig. 2   The non-dimensional 
mean pressure p̄∕E∗ as a func-
tion of the non-dimensional 
mean gap ḡ∕hrms , for Eq. (2) 
(solid line), GFMD (square 
markers) and Persson (dashed 
line) models, using the rough 
surface from the “contact 
mechanics challenge” [9]
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2.1 � Comparison with Numerical Computation

Figure 2 shows a comparison of the traction relationship, i.e., 
the non-dimensional mean pressure p̄∕E∗ as a function of the 
non-dimensional mean gap ḡ∕hrms , for the theoretical models 
of Eq. (2) [22] (solid line) and Persson [16] (dashed line), 
and the GFMD [25] (square markers) numerical simulation, 
using the rough surface defined in the “contact mechanics 
challenge” [9]. The results of the “contact mechanics chal-
lenge” [9] show that the direct numerical simulations agree 
very well, while among the theoretical predictions (includ-
ing asperity-based models), Persson’s model showed the 
best agreement with the numerical result. Both theoretical 
models show good agreement with the numerical simulation 
for ḡ∕hrms ≤ 2 , but they diverge with increasing mean gap 
because of the so-called finite height effect [26]. Theoretical 
models consider an ideal rough surface with Gaussian dis-
tribution of surface heights, which results in contact for any 
mean gap ḡ∕hrms . In contrast, numerical approximations of 
a random rough surface inevitably require a finite maximum 
surface height, which limits contact to finite values of the 
mean gap ḡ∕hrms and, therefore, underestimates the mean 
contact pressure p̄∕E∗ for ḡ∕hrms > 2.

2.2 � Dimensional Analysis

Persson [27] and Pohrt and Popov [28] non-dimensionalized 
the traction relationship for non-adhesive, elastic contact of 
random rough surfaces as

Substituting Eq. (3) in Eq. (2), re-formulates the differen-
tial equation in terms of the PSD, P(k), which depends on 
the Hurst exponent H, the ratio of roll-off and lower wave-
number kr∕k1 , and the ratio of upper and lower wavenumber 

(3)
p̄(ḡ)

E∗hrmsk1
= f

(
ḡ

hrms

)
.

k2∕k1 . Engineering surfaces typically show H > 0.5 , and 
the traction relationship converges with sufficiently large 
k2∕k1 [27, 29], because the average roughness beyond k2 
approaches zero. As such, the function f only depends on the 
PSD shape factors H and kr∕k1 . It asymptotically approaches 
the vertical when ḡ → 0 and shows a concave downward 
trend with increasing ḡ.

2.2.1 � Complementary Error Function Approximation

Numerical [30, 31], theoretical [10, 11, 18], and experimen-
tal [32, 33] studies demonstrated that the mean contact pres-
sure is approximately proportional to the ratio of the real and 
nominal contact area Areal∕Anominal for Areal∕Anominal < 0.15 , 
i.e.,

Additionally, asperity models [11, 34] approximate the real 
contact area for a small normal load by calculating half of 
the area underneath the probability density function of the 
local gap between the equivalent rough surface and the rigid 
flat, �(g) , for g ≤ ḡ . Hence, we approximate the non-dimen-
sional traction relationship equation (3) as

The BGT model [11] determined that parameter B =
√
2 

in Eq. 5, based on the assumption that the asperities do not 
interact with each other. In contrast, in this work, we main-
tain parameter B as a regression parameter, because the 
mean gap decreases with increasing contact pressure and, 
thus, asperities can interact with each other.

(4)
Areal

Anominal

∝
p̄

E∗
.

(5)
p̄(ḡ)

E∗hrmsk1
= A erfc

(
ḡ

Bhrms

)
.

Fig. 3   The non-dimensional 
mean pressure p̄∕E∗k1hrms as a 
function of the non-dimensional 
mean gap ḡ∕hrms for a random 
rough surface with H = 0.8 
and kr∕k1 = 5 , showing the 
solution of Eq. (2) (solid line), 
and best-fit results for the 
complementary error function 
[square markers, see Eq. (5)] 
and exponential function [dotted 
line, see Eq. (6)]
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2.2.2 � Exponential Approximation

When applying a large normal load to the contacting rough 
surfaces, the mean gap is small and the real contact area 
is large. Thus, increasing the mean pressure increases the 
number of asperities that make contact. However, the prob-
ability density function of both the size of the contact points 
and the local contact pressure remain almost constant, inde-
pendent of the number of asperities that make contact [35, 
36]. Hence, the stored elastic energy is proportional to the 
mean contact pressure [26], which in turn explains the lin-
ear relationship between the mean contact pressure and the 
incremental stiffness, i.e., p̄ ∝ 𝜕p̄∕𝜕ḡ , which is in agreement 
with experimental observations [37]. Here, an exponential 
function accommodates the linear relationship between the 
mean contact pressure and the incremental stiffness. Hence, 
we approximate the non-dimensional traction relationship 
as [38]

Persson [27] determined that parameter B = �∕� in Eq. 6, 
with � ≈ 0.48 and � ≈ 1 , for H = 0.8. In contrast, in this 
work, we determine parameters A and B in Eqs. (5) and (6) 
using regression analysis, as a function of the two shape 
factors of the PSD, H and kr∕k1 . We show that Eqs. (5) and 
(6) establish a best-fit for the traction relationship of non-
adhesive, elastic contact between isotropic, Gaussian, and 
random rough surfaces for a large and small non-dimen-
sional mean gap, respectively.

(6)
p̄(ḡ)

E∗hrmsk1
= A exp

(
−

ḡ

Bhrms

)
.

3 � Results and Discussion

Figure  3 shows the non-dimensional mean pressure 
p̄∕E∗k1hrms as a function of the non-dimensional mean 
gap ḡ∕hrms for a random rough surface with H = 0.8 and 
kr∕k1 = 5 , derived using Eq. (2) (solid line). We superim-
pose the best-fit regression results using the complementary 
error function [square markers, see Eq. (5)] and exponential 
function [dotted line, see Eq. (6)].

From Fig.  3 we observe that the exponential func-
tion provides the best-fit with the theoretical model 
when 0.5 ≤ g∕hrms ≤ 1.5 with parameters A = 3.463 and 
B = 0.4769 . Figure 3 also shows that the complementary 
error function provides the best-fit when 1.5 ≤ g∕hrms ≤ 6.0 
with parameters A = 1.038 and B = 1.424(≈

√
2) , with 

R2 = 1.000 , as expected from asperity models. This also 
explains results presented by Buzio et al. [39], who used a 
flat punch experiment to show that the traction relationship 
deviates from the exponential function with increasing mean 
gap (or decreasing mean pressure).

Overall, the results in Fig. 3 are in agreement with the 
observations documented by Papangelo et al. [40], who 
concluded that the exponential approximation of Eq. (6) 
matches direct numerical simulations using, e.g., the BEM 
for an “intermediate range” (0.5 ≤ ḡ∕hrms ≤ 1.5) , whereas 
the complementary error function approximation of Eq. (5) 
improves with increasing mean gap (ḡ∕hrms > 1.5) for 
H = 0.8 and kr∕k1 = 1 . The regression parameters A and B 
in Eqs. (5) and (6) that yield the best-fit of Eq. (2) depend 
only on the shape factors of the PSD of the equivalent rough-
ness, i.e., H and kr∕k1.

Figure 4a shows the parameters A and B of the com-
plementary error function of Eq.  (5) as a function of H 
for kr∕k1 = 1 and with 1.5 ≤ g∕hrms ≤ 6.0 . Parameter A 
decreases whereas parameter B =

√
2 remains almost 

Fig. 4   Parameters A and B in 
the complementary error best-
fit function [see Eq. (5)] with 
1.5 ≤ g∕hrms ≤ 6.0 , a as a func-
tion of the Hurst exponent H 
with kr∕k1 = 1 and b parameter 
A (solid line) and A∕(kr∕k1) 
(dotted line) as a function of 
kr∕k1 for different values of H (B 
is constant with respect to kr∕k1)
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constant with increasing H. Furthermore, we determine 
that parameter B is also independent of kr∕k1 . Figure 4b 
shows parameter A as a function of kr∕k1 for different values 
of H (solid line). We observe that parameter A increases 
with increasing kr∕k1 and decreasing H. Increasing kr∕k1 
and decreasing H increases the contribution of fine-scale 
roughness for constant hrms and k1 , which, in turn, increases 
the mean pressure. Parameter A shows a linear trend for 
kr∕k1 > 1.4 and, thus, we also display A∕(kr∕k1) (dotted 
line), which approaches an asymptote with increasing kr∕k1 
depending on H. Increasing kr∕k1 with constant scaling fac-
tor C0 [see Eq. (1)] does not significantly affect hrms , which 
renders parameter A primarily dependent on kr∕k1.

Based on the results of Fig. 4, we write parameters A 
and B as,

(7)

A(H, kr∕k1) =
(
0.2565H−2.211 + 0.3505

)
(kr∕k1)

×
0.2652(kr∕k1)

3 + 0.1737(kr∕k1)
2 − 0.3002(kr∕k1) + 0.05017

(kr∕k1)
3 + 0.7047(kr∕k1)

2 − 1.852(kr∕k1) + 0.6203
,

The maximum error between the best-fit equation (7) and 
the results of Fig. 4 is approximately 1.3% , when H = 0.6 
and kr∕k1 = 1.

Figure 5a shows the parameters A and B of the expo-
nential best-fit function of Eq. (6) as a function of H for 
kr∕k1 = 1 and with 0.5 ≤ g∕hrms ≤ 1.5 . We observe a simi-
lar trend as for the complementary error function in Fig. 4. 
Parameter A decreases whereas parameter B remains 
almost constant with increasing H. Furthermore, param-
eter B = 0.478 is also independent of kr∕k1 . This result is 
in agreement with earlier research [5, 40], which showed 
that parameter B ≈ 0.48 and independent of H in the expo-
nential approximation.

Figure 5b shows parameter A (solid line) and A∕(kr∕k1) 
(dotted line) as a function of kr∕k1 for different values of 
H, revealing a similar trend as in Fig. 4b. We note that 
the ratio of parameter A in the complementary error func-
tion and exponential function approximation is 0.3 with a 

(8)B(H) = −0.1333H3 + 0.3848H2 + −0.4238H + 1.582.

Fig. 5   Parameters A and B 
in the exponential best-fit 
function [see Eq. (6)] with 
0.5 ≤ g∕hrms ≤ 1.5 , a as a func-
tion of the Hurst exponent H 
with kr∕k1 = 1 and b parameter 
A (solid line) and A∕(kr∕k1) 
(dotted line) as a function of 
kr∕k1 for different values of H 
(B is constant with respect to H 
and kr∕k1)

Fig. 6   Inconel 718 specimen 
manufactured with L-PBF, 
showing a schematic and pic-
ture of a dogbone specimen and 
b confocal microscopy image 
of the surface topography of the 
as-built surface
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maximum error of 3% compared to the value of parameter 
A obtained from the regression analysis with exponential 
function.

4 � Case Study: Contact Between As‑built 
Inconel 718 Surfaces Manufactured 
with Laser Powder Bed Fusion (L‑PBF)

We use the best-fit regression equations we have derived 
from the theoretical model to calculate and understand 
the traction relationship of an as-built Inconel 718 sur-
face manufactured with L-PBF in contact with a rigid 
flat, as an illustrative case study. Inconel 718 is used in 
aerospace and nuclear applications because its strength 
at elevated temperature and its corrosion resistance [41]. 
However, the surface topography of the as-built surfaces 
depends on more than 100 additive manufacturing (AM) 
process parameters. To facilitate using metal AM parts in 
engineering applications, it is important to understand the 
traction relationship as a function of the surface topogra-
phy of the as-built surfaces. Figure 6 shows (a) a picture 

of the specimen (ASTM E466-15), manufactured using a 
3D Systems ProX DMP 320 L-PBF machine with recy-
cled powder (mean diameter 39.98 μm ), bulk laser power 
220 W, contour laser power 115 W, hatch spacing 100 μm , 
layer thickness 30 μm , bulk scan speed 1180 mm/s, and 
contour scan speed 625 mm/s. The details of the manufac-
turing process are specified in [42, 43]. Figure 6b shows 
a confocal microscopy image (Olympus LEXT OLS5000) 
of the as-built surface topography, using a 20× objective 
lens, and a 6mm × 6mm area, after post-processing using 
a Gaussian filter according to ISO4287 [7].

Figure  7a shows the probability density function 
�(h∕hrms) of the non-dimensional surface height (solid line) 
compared to the standard normal distribution N(0, 1) (dotted 
line). The distribution shows a kurtosis of 3.613 and a skew-
ness of 0.4242, i.e., it is close to a Gaussian distribution. 
Thus, we consider h∕hrms to follow a Gaussian distribution. 
We point out that most engineering surfaces display a non-
Gaussian distribution of surface heights h∕hrms because they 
show a preferential manufacturing direction. Furthermore, 
Fig. 7b shows the PSD as a function of the non-dimensional 
wavenumber k∕k1 and for kr∕k1 = 1 (solid line). We also 

Fig. 7   a The probability density 
function of the dimensionless 
surface height (h∕hrms) (solid 
line) compared to the standard 
normal distribution N(0, 1) 
(dotted line), and b the PSD of 
the surface topography of the 
specimen (circle markers) and 
its linear curve fit (dashed line)

Fig. 8   The non-dimensional 
mean pressure p̄∕E∗k1hrms 
versus the non-dimensional 
mean gap ḡ∕hrms for the as-
built Inconel 718 surface with 
H = 0.6270 and kr∕k1 = 1 , 
calculated from the best-fit 
regressing equations (7)–(8)
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show the linear best-fit of the PSD (dashed line), and we 
determine that H ≈ 0.6270 with kr∕k1 = 1 . Thus, using these 
parameters, we determine the traction relationship from the 
best-fit regression equations (7)–(8).

Figure  8 shows the traction relationship for the as-
built Inconel 718 surface with H = 0.6270 , kr∕k1 = 1 , 
k1 = 2�∕6mm−1 and hrms = 17.7 μm , in contact with a 
rigid flat. We also indicate the region in which we approxi-
mate the traction relationship with the exponential function 
( 0.5 ≤ g∕hrms ≤ 1.5 ) and the complementary error function 
( 1.5 ≤ g∕hrms ≤ 6.0 ). Parameter A of the complementary 
error function best-fit is 0.3 times parameters A of the expo-
nential function best-fit to satisfy the continuity condition at 
g∕hrms = 1.5 , and parameters B is the constant 0.478.

5 � Conclusion

(1)	 We derived best-fit regression equations that approx-
imate the non-dimensional traction relationship 
expressed by Eq. (2), to render this model practically 
accessible for use in engineering applications. We 
showed that the traction relationship between random 
rough surfaces is best approximated by an exponen-
tial function [Eq. (6)] when (0.5 ≤ ḡ∕hrms ≤ 1.5) and 
by a complementary error function [Eq.  (5)] when 
(1.5 ≤ ḡ∕hrms ≤ 6.0).

(2)	 In contrast to previous publications [27, 28, 40] that 
consider a rough surface within the fractal range, i.e., 
kr∕k1 = 1 , we included the effect of roll-off wavenum-
ber, and derived best-fit regression parameters as a 
function of the random roughness PSD shape factors 
H and kr∕k1 . We confirmed that the best-fit regression 
equations follow an exponential function and the com-
plementary error function independent of the roll-off 
wavenumber. However, the regression coefficient A 
showed a linear relationship with kr∕k1 , whereas the 
regression coefficient B remained constant at 

√
2 and 

0.48 for the complementary error function and the 
exponential function, respectively. Therefore, one may 
use linear extrapolation to obtain the traction relation-
ship for a surface with a larger kr∕k1 than the one we 
presented. Furthermore, decreasing H increases the 
contribution of the fine-scale roughness and, thus, it 
changes the regression coefficient A to increase p̄.

(3)	 According to dimensional analysis, p̄ is determined 
by three surface topography parameters H, kr∕k1 , and 
hrmsk1 for different values of ḡ∕hrms . To illustrate the 
use of the best-fit regression equations derived in this 
paper, we obtained the surface topography parameters 
from an as-built Inconel 718 surface manufactured 
using L-PBF, and we derived the traction relationship. 

Additionally, we observed that the as-built surface 
exhibits fractal properties with 0.6 < H < 0.7.
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