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ABSTRACT

Ultrasound directed self-assembly (DSA) allows organizing particles dispersed in a fluid medium into user-specified patterns, driven by the
acoustic radiation force associated with a standing ultrasound wave. Accurate control of the spatial organization of the particles in the fluid
medium requires accounting for medium viscosity and particle volume fraction. However, existing theories consider an inviscid medium or
only determine the effect of viscosity on the magnitude of the acoustic radiation force rather than the locations where particles assemble,
which is crucial information to use ultrasound DSA as a fabrication method. We experimentally measure the deviation between locations
where spherical microparticles assemble during ultrasound DSA as a function of medium viscosity and particle volume fraction.
Additionally, we simulate the experiments using coupled-phase theory and the time-averaged acoustic radiation potential, and we derive
best-fit equations that predict the deviation between locations where particles assemble during ultrasound DSA when using viscous and
inviscid theory. We show that the deviation between locations where particles assemble in viscous and inviscid media first increases and
then decreases with increasing particle volume fraction and medium viscosity, which we explain by means of the sound propagation velocity
of the mixture. This work has implications for using ultrasound DSA to fabricate, e.g., engineered polymer composite materials that derive
their function from accurately organizing a pattern of particles embedded in the polymer matrix.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0087303

I. INTRODUCTION

Ultrasound directed self-assembly (DSA) allows organizing
and orienting particles dispersed in a fluid medium into user-
specified patterns, driven by the time-averaged acoustic radiation
force that results from scattering of the ultrasound wave.' King”
studied the acoustic radiation force that acts on an incompressible
spherical particle dispersed in an inviscid medium, whereas
Yosioka and Kawasima® extended the theory to include compress-
ibility of the spherical particle. Gorkov' summarized earlier work
and derived a general acoustic radiation force theory for compress-
ible spherical particles, substantially smaller than the wavelength of
the ultrasound wave, dispersed in an inviscid medium. The theory

depending on the density and compressibility of the particles and
the medium.

In contrast with electric™® or magnetic* external field-based
DSA methods, ultrasound DSA is not restricted to electrically con-
ductive or magnetic particles. Additionally, low-attenuation of
ultrasound waves in low-viscosity media enables scalability.” Based
on those advantages, ultrasound DSA finds application in, e.g.,
non-contact particle manipulation,'’ manipulation of cells in bio-
logical experiments'' and biomedical devices,'* and filtering of par-
ticles in microfluidic devices."” Furthermore, integrating ultrasound
DSA with freeze casting,14 mold casting,'5’l(’ or additive manufac-
turing'”'® enables fabricating engineered composite materials with

shows that particles subject to a standing ultrasound wave assemble
at locations where the acoustic radiation force approaches zero and
the acoustic radiation potential is locally minimum, which coin-
cides with the nodes or antinodes of the standing ultrasound wave,

a 3D macroscale geometry and a user-specified pattern of particles
embedded in the matrix material. The bulk properties of these
engineered materials depend on the properties of the particles and
matrix material, the spatial organization of the particles in the

J. Appl. Phys. 131, 134901 (2022); doi: 10.1063/5.0087303
Published under an exclusive license by AIP Publishing

131, 1349011


https://doi.org/10.1063/5.0087303
https://doi.org/10.1063/5.0087303
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0087303
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0087303&domain=pdf&date_stamp=2022-04-01
http://orcid.org/0000-0002-6954-6779
http://orcid.org/0000-0001-8746-3582
http://orcid.org/0000-0001-5902-3782
mailto:bart.raeymaekers@utah.edu
https://doi.org/10.1063/5.0087303
https://aip.scitation.org/journal/jap

Journal of

Applied Physics

matrix, and the interaction between them.'” Modifying those
parameters changes the properties of the composite material and,
thus, accurately tuning the spatial organization of particles in the
matrix material allows fabricating engineered composite materials
with designer properties. Hence, understanding the relationship
between the ultrasound wave field and the patterns in which parti-
cles assemble is crucial for using ultrasound DSA as a fabrication
method for engineered composite materials with designer
properties.

Ultrasound DSA reduces to a “forward problem,” which quan-
tifies the patterns of particles that result from a user-specified ultra-
sound wave field, and an “inverse problem,” which determines the
ultrasound wave field required to assemble a user-specified pattern
of particles. Our research group has previously demonstrated theo-
retical solutions of the forward and inverse ultrasound DSA prob-
lems for spherical particles in two dimensions (2D)' and three
dimensions (3D)'” and high aspect ratio particles in 2D*’ and
3D,”" but only considering inviscid media. Additionally, we have
demonstrated experimental validation of the theory in both invis-
cid' and viscous media."”

Using ultrasound DSA to fabricate composite materials
requires the assembly of particles in a viscous rather than an invis-
cid medium, such as a thermoset resin or a (photo)polymer resin
when integrating ultrasound DSA with, e.g., mold casting'® and
additive manufacturing,'” respectively. The locations where parti-
cles assemble, ie., the nodes or antinodes of the standing ultra-
sound wave field, depend on the sound propagation velocity of the
mixture of particles and viscous medium, which is a function of
the frequency of the ultrasound wave, the compressibility and
density of the medium and particles, the medium viscosity, and the
particle volume fraction.”” Thus, accurately assembling user-
specified patterns of particles in a viscous medium requires
accounting for medium viscosity and particle volume fraction
rather than relying on inviscid theory only.

Several approaches exist to calculate these parameters.
Phenomenological theory defines the sound propagation velocity
based on an effective density and compressibility of the
mixture.”** However, this approach is only valid when particles
are sufficiently far apart from each other so that interactions
between them are negligible, which is not satisfied when, e.g,
assembling patterns of closely packed particles and when the sound
propagation velocity and density of the particles and medium are
similar.”> Alternatively, multiple-scattering theory predicts the
sound propagation velocity based on scattering of an ultrasound
wave in a mixture of particles and a viscous medium,”®*” but it
only shows good agreement with experiments for dilute mixtures
because it accounts for the acoustic interaction between particles
but neglects hydrodynamic interactions that are important in con-
centrated mixtures.”® Finally, coupled-phase theory provides an
alternative to multiple-scattering theory and considers the hydrody-
namic interaction between particles and medium resulting from
viscous, inertial, and buoyancy forces.”” It shows better agreement
with experiments than multiple-scattering theory, especially when
the sound propagation velocity and density of the particles and
medium are dissimilar.”

Calculating the acoustic radiation force that acts on spherical
particles dispersed in a viscous medium also requires accounting
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for the medium viscosity.’” For instance, Settnes and Bruus’'
included viscosity in the acoustic radiation force theory for com-
pressible particles and demonstrated that the acoustic radiation
force can deviate by orders of magnitude between the viscous and
inviscid theory when a large density contrast exists between the
particles and the medium, thus emphasizing the importance of
accounting for medium viscosity and particle volume fraction when
calculating the acoustic radiation force. However, none of these
publications evaluate how the locations where particles assemble
change with viscosity, which is critical for using ultrasound DSA as
a fabrication method for engineered composite materials with user-
specified patterns of particles embedded in the matrix material.

Thus, the objective of this paper is twofold. First, we experi-
mentally measure the locations where particles assemble during
ultrasound DSA as a function of medium viscosity and particle
volume fraction. Second, we derive an ultrasound DSA theory that
accounts for the effect of medium viscosity and particle volume
fraction on the location where particles assemble. To solve this
problem, we integrate the complex wavenumber from the coupled-
phase theory into the Helmholtz equation and we use the boundary
element method (BEM) to calculate the ultrasound velocity poten-
tial in a 2D solution domain, from which we derive the time-
averaged acoustic radiation potential and acoustic radiation force.
The particles assemble at the local minima of the time-averaged
acoustic radiation potential, where the acoustic radiation force
approaches zero. We determine the deviation between locations
where particles assemble using viscous and inviscid theory and
compare experimental measurements to simulation results, and we
clarify the underlying physical phenomena.

Il. METHODS AND MATERIALS
A. Experimental demonstration

Figure 1 shows a schematic of the experimental setup, which
consists of an acrylic reservoir with two ultrasound transducers
(piezoelectric ceramic plate, SM111, center frequency f;; Steminc,

Function
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FIG. 1. Schematic of the experimental setup, showing a typical experiment with
dimethyl silicone oil 350¢cS and borosilicate particles (@=0.05), with
Ly =14.40 mm, f,, =710 kHz, N=20, and d,;s» = 0.68 mm.
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FL, USA) affixed to two opposing reservoir walls. The reservoir is
filled with a mixture of viscous oil (dimethyl silicone oils 350 and
1000 ¢S with dynamic viscosity 7,,; =0.34 and 7,,, =0.97 Pas, GT
Products, TX, USA) and borosilicate particles (GL0179B/-74 borosi-
licate glass spheres, average radius a =20um, Mo-Sci Corporation,
MO, USA). We energize both ultrasound transducers using a func-
tion generator (Tektronix AFG 3102) and a radio frequency (RF)
power amplifier (E&I 2100L) with the same operating frequency f
close to their center frequency f;; to establish a standing ultrasound
wave between both transducers and organize the particles into a
pattern of N =20 parallel lines that coincide with the nodes of the
standing ultrasound wave. To accomplish this, we use three different
reservoirs with lengths L; =17.33, L, =14.40, and L;=10.23 mm,
in tandem with ultrasound transducers with f;; = 590 kHz, f., =710
kHz, and f, ;3 = 1 MHz, respectively. The inset image of Fig. 1 shows
a typical pattern of borosilicate particles (particle volume fraction
@=0.05) organized in parallel lines in dimethyl silicone oil 350 ¢S
inside the reservoir with length L,. The power amplifier supplies 2
and 4W to the ultrasound transducers for experiments with
dimethyl silicone oil 350 and 1000 cS, respectively, which enables
driving particles to the nodes of the standing ultrasound wave before
they precipitate to the bottom of the reservoir, yet also avoids acous-
tic streaming, which destroys the patterns of particles.

We experimentally determine the distance between adjacent
lines where particles assemble d,;; as a function of the medium vis-
cosity 7,, and particle volume fraction @. However, instead of mea-
suring d,;, which is prone to error, we maintain d,;;=L;/(N+1)
constant but measure the operating frequency f=f.,, required to
establish a standing ultrasound wave that arranges the particles in
N =20 parallel lines within the reservoir, for each L; and corre-
sponding f.;. Specifically, d,;;; =0.82 mm for L, =17.33 mm and
fo1=590kHz; d;s, = 0.68 mm for L, = 1440 mm and f,, = 710 kHz;
and d,;;3 =0.49 mm for L; =10.23 mm and f,; =1 MHz.

Table I shows the material properties of the viscous media and
particles we have used in our experiments. Throughout this paper,
the subscripts p and m refer to the particle and medium, respec-
tively, when referring to the sound propagation velocity ¢, density
p, dynamic viscosity 77, and compressibility 8= 1/pc>. We measure
the sound propagation velocity in both virgin viscous media c,,
(i.e., without particles) using a pulse-echo time-of-flight experi-
ment. We consider a constant sound propagation velocity c,, in
each viscous medium, based on the center frequency f.; of each
ultrasound transducer, for all operating frequencies f, because they
deviate only slightly from f; ;.

We determine f,,, for each possible combination of parame-
ters, i.e., a mixture of two viscous media and six different particle
volume fractions for three different values of d,;; and corresponding

TABLE I. Material properties and experimental parameters.
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L; and f,;. Prior to each experiment, we disperse the specific parti-
cle volume fraction in the viscous medium with sonication (25 W,
2 min, UP200Ht, Hielscher, Teltow, Germany) to minimize particle
agglomeration. We initiate each experiment with f=f,;, and we
sequentially adjust f in 0.5 kHz intervals until we visually observe
the best defined pattern of N =20 parallel lines of particles, when
f=fexp- For each possible combination of parameters, we perform
three repetitions and report the average and minimum and
maximum values. We calculate the distance between adjacent lines
where particles assemble in an inviscid medium as i, = ¢,/ (2fexp)
and quantify the deviation E,,, between adjacent lines where parti-
cles assemble in a viscous d,;; and an inviscid d;,, medium as
Eexp = |dyis — din| diny = |2fexpdyis — Cul/cn. Note that the factor of 2
in d,,, accounts for two parallel lines of particles per wavelength.
Furthermore, for each wavelength A=2d,;; and particle
volume fraction @, we experimentally determine the sound propa-
gation velocity in the mixture of particles and viscous medium

Cexp = Mexp-

B. Theoretical model

We derive a theoretical forward model of ultrasound DSA to
predict the locations where particles with radius a (volume fraction
@) assemble in a viscous medium. Figure 2 displays a schematic of
a rectangular reservoir with a mixture of spherical particles and a
viscous medium. We use the boundary element method (BEM) to
simulate the ultrasound wave field within the reservoir and apply
the acoustic radiation force theory for viscous media derived by
Settnes and Bruus’' to calculate the time-averaged acoustic radia-
tion potential U, from which we determine where particles assem-
ble, i.e., at the local minima of U.

Figure 2 shows a simple-closed boundary B with N}, boundary
elements that enclose the solution domain D with N; domain
points. The width of the jth boundary element with center point g;
is £, A boundary element represents either a part of the reservoir
wall (with velocity v;=0) or a part of an ultrasound transducer that
acts as a piston source with velocity v;= v0e™? along its normal
direction n;, with v, being the velocity amplitude and @ and 6
being the operating frequency and phase, respectively. We maintain
the acoustic impedance Z, constant along the entire boundary B,
whereas the acoustic impedance of the fluid medium is Z,,, = p,,,¢-

We neglect boundary effects confined to the immediate vicin-
ity (~31) of the boundary B and, thus, only simulate the far-field.”
The time-independent velocity potential ¢ satisfies the Hglzmholtz
equation throughout the solution domain D, ie., V2(p +k ¢=0.
Here, k is the complex wavenumber that accounts for the effect of
the medium viscosity 7,, and particle volume fraction @ on the

Sound propagation Density, Dynamic viscosity,
Material velocity, ¢ (m/s) p (kg/m3) N,m (Pas) Radius, a (um)  Particle volume fraction, @
Dimethyl silicone oil, 350 cS 974 970 0.34 0-0.250
Dimethyl silicone oil, 1000 ¢S 983 970 0.97 0-0.125
Borosilicate glass spheres 5500 2600 20
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FIG. 2. Rectangular reservoir with a mixture of particles and a viscous medium.

sound propagation velocity (real part) and wave attenuation (imagi-
nary part) of the mixture, given in the coupled-phase theory as™

py(1— @) +p,[S+ (1 — D)]

>

K =0’[(1 - DB, + DB,] x

1)

with @ =27zf, f is the operating frequency of the ultrasound
wave field, and S=Q+iR. Q=1/2[(1+2®)/(1 — ®)] + 9/4(5/a),
R=9/4(8/a + 8*1a°), § = (anﬁ/wpm)” 2 is the viscous boundary layer
thickness around a particle, and i = (=1)"2. We calculate the effec-
tive viscosity of the mixture as 7nqr=(1+2.5@+ 7.349¢%).%°
Additionally, the impedance boundary condition d¢/On + ikZe
= v exists along boundary B, with 7= Zu1Zy,, which accounts for
absorption and reflection of the ultrasound wave at the boundary
B. We use the BEM based on Green’s theorem to calculate the
velocity potential ¢ in all domain points.'

The time-averaged acoustic radiation potential U in a viscous
medium is given as’’

4 3 m 2 3 m 2
v="a (ﬁ%<p>—fz%<v >), @

where the (e) operator represents the time-average over one wave
period, and the velocity and pressure fields in the solution domain
D derive from the velocity potential ¢ as v= V¢ and p = ipwe.”" f;.
=1-B,/B,, is the monopole scattering coefficient, and f, = R{[2
(1 =9)op/om— D]/ [20p/pm+1—3y]} is the dipole scattering coef-
ficient, with y =—3/2[1 +i(1 + 6/a)]6/a. R{s} indicates the real part
of the expression. The acoustic radiation force F=—VU drives par-
ticles to locations where F=0 and F points toward these locations
in their immediate vicinity, which coincides with locations where U
is locally minimum.

We simulate a 2D solution domain D that replicates our
experiments, including the dimensions of the reservoir L;, medium
viscosity 7,,, and particle volume fraction @, and we also simulate
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the methodology of the experiments. For each parameter combina-
tion, we determine the operating frequency f= f;;,, that minimizes
the average of the local minima of the time-averaged acoustic radia-
tion potential U in the N =20 locations where particles assemble,
by simulating U for each 0.975f.,, <f<1.025f,, with 0.5kHz
intervals. Here, f.., is the operating frequency for each experiment
we perform (d,;;, 17> @) that assembles the pattern of N = 20 paral-
lel lines of particles. Hence, the simulations match the experimental
methodology. Correspondingly, locations where particles assemble
are identical in the simulations and experiments because we main-
tain N=20 and, thus, the distance between adjacent local minima
of U is d,;. We calculate the distance between adjacent local
minima of U in an inviscid medium as d,,,, = ¢,/ (2fsim). The simu-
lated deviation of the distance between locations where particles
assemble with viscous and inviscid ultrasound DSA theory is
Egip = |d1/is - dinv|/dinv = |2fsimdvis - Cm|/cm- _

Furthermore, for each wavelength A = 2d,;; = 27/R{k} and
particle volume fraction @, we solve Eq. (1) for @ and determine
the sound propagation velocity in the mixture of particles and
viscous medium ¢y, = Aw/27.

lll. RESULTS AND DISCUSSION

Figures 3(a) and 3(b) show the percent deviation of the dis-
tance between adjacent locations where particles assemble in a
viscous and inviscid medium as a function of particle volume frac-
tion @, and for different values of d,;; [d,;; = 0.82 mm (black dot),
d,is>» =0.68 mm (blue square), d,;; 3 = 0.49 mm (red triangle), which
correspond to different sizes of the reservoir L; and ultrasound
transducers with different f, ;. We show both experimental results
Ey, (solid markers) and simulation results Eg;,, (hollow markers)
for medium viscosity 7,, =0.34 Pas in Fig. 3(a) and 7,,=0.94 Pas
in Fig. 3(b). The solid markers show the arithmetic mean of three
E., measurements, and the error bars show the minimum and
maximum values, whereas the hollow markers show a single simu-
lation. In Fig. 3(b), we limit the particle volume fraction @ <0.125
for the experimental results (solid markers) for practical reasons;
medium viscosity 7,,=0.94Pas in combination with @>0.125
causes high viscosity and attenuation of the ultrasound waves that
prevent reliable assembly of particles in parallel lines. We derive
third order polynomial best-fit equations of the E,, data points,
which predict the deviation between locations where particles
assemble when using viscous versus inviscid theory for ultrasound
DSA. Conversely, it also allows an ultrasound DSA-user to deter-
mine whether to use viscous or inviscid theory to predict the loca-
tions where particles will assemble, based on the deviation for
specific operating parameters (d,i 7, @) and the required
accuracy.

Additionally, Figs. 3(c) and 3(d) show the sound propagation
velocity ¢ in a mixture of spherical particles and viscous medium as
a function of the particle volume fraction @, for different values of
d,is and for medium viscosity 7,,=0.34Pas in Fig. 3(c) and
Nm=0.94Pas in Fig. 3(d). We show experimental results c,, with
different markers and the theoretical solution ¢, from Eq. (1) with
different line types.

From Fig. 3, we observe that E first increases and then decreases
with increasing particle volume fraction @, independent of 7,, and
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FIG. 3. Percent deviation E,, (solid markers) and Eg;,, (hollow markers) of the distance between adjacent locations where particles assemble in a viscous and inviscid
medium as a function of particle volume fraction @, for dy;s 1 =0.82 mm (black dot), dyis» =0.68 mm (blue square), dy;s3 = 0.49 mm (red triangle), and for medium viscosity
(@) 7n=0.34Pas and (b) 17,,=0.94 Pas. The lines represent best-fit equations of the simulated data (hollow markers). The sound propagation velocity in the mixture of
viscous medium and spherical particles based on experiments c,y, (markers) and theory ¢y, (lines) as a function of particle volume fraction @, for dy; 4 (black dot/solid
line), dyis.» (blue square/dashed line), dy;s 3 (red triangle/dotted line), and for medium viscosity (c) 1, =0.34 Pas and (d) 7,,=0.94 Pas.

d,i»> which results from competing mechanisms. First, the effective
viscosity 7.5 of the mixture increases with increasing @, which
increases the viscous layer thickness 6 around each particle and,
thus, increases the drag force it experiences when moving in the
viscous medium during ultrasound DSA.”” Increasing @ also
increases the number of particles in a specific control volume within
the mixture. Together, these two phenomena decrease the rate of
momentum transfer in the mixture,”” which decreases the sound
propagation velocity of the mixture ¢ <c,, and, thus, increases E = |
dyis — iy |/ diny = 2fd is — Cu/C = |¢ — il lCim»  cOnsidering  that the
distance between adjacent lines of particles d,;; = ¢/(2f). E and f may
either have the exp or sim subscript as it is valid for both the experi-
mental and simulation results. On the other hand, increasing @ also
increases the density and decreases the compressibility of the
mixture.”” For the parameters considered in this work, the ratio of
medium to particle compressibility is much larger than the ratio of

particle to medium density and, thus, the sound propagation velocity
of the mixture ¢ = (1/pB)°*> < c,, increases with increasing @, which
decreases E. We verify that the particle volume fraction @ for which
E is maximum [see Figs. 3(a) and 3(b)] corresponds to @ for
which the sound propagation velocity of the mixture is minimum
[see Figs. 3(c) and 3(d)], independent of d,;s; and 7,,,.

Furthermore, we observe from Fig. 3 that E increases with
increasing d,;; and, correspondingly, decreasing operating fre-
quency f. The viscous layer thickness 6= (21]eﬁ/a)pm)1/2 around a
particle increases with decreasing operating frequency f=w/2r,
which increases the drag force on a particle driven through the
mixture by the acoustic radiation force and, in turn, decreases the
rate of momentum transfer in the mixture, which decreases the
sound propagation velocity ¢ < c,, and increases E.

Comparing Figs. 3(a) and 3(b), we observe that E;,, increases
with increasing 7,, (and 74), which increases the viscous layer
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thickness ¢ around a particle and, thus increases the drag force on
particles. Consequently, it decreases the rate of momentum transfer
in the mixture, which decreases the sound propagation velocity ¢
and increases E.

We note that the percent deviation between adjacent loca-
tions where particles assemble using viscous and inviscid theory is
small (<3%). However, it multiplies over the entire scale of the
experiment and, thus, increases in importance when using ultra-
sound DSA to manufacture macroscale material specimens.
Additionally, we note that we calculate the percent deviation
between locations where particles assemble using viscous and
inviscid theory, but we use the viscosity of the dimethyl silicon oil
in the inviscid theory. However, when determining the deviation
between adjacent locations where particles assemble with viscous
theory for a viscous medium and inviscid theory using an inviscid
medium such as water at standard temperature and pressure
(7=0.001 Pas), we observe the same trends as those depicted in
Fig. 3, but the maximum deviation reaches 35%. Evidently, using
inviscid theory with an inviscid medium is not a good predictor
for locations where particles assemble in a viscous medium
because the sound propagation velocity in water (c,,, = 1490 m/s) is
substantially higher than that in the viscous medium (see Table I),
which affects the wavelength of the standing ultrasound wave and,
thus, the locations of its nodes.

Finally, we mark six numbered labels in Figs. 3(a) and 3(b) to
illustrate both the experimental and simulation results of selected
individual data points. Figure 4(a) illustrates the experimental results
for each numbered label (solid markers in Fig. 3), showing lines of
aligned particles (dark) in a viscous medium (bright), whereas Fig. 4
(b) shows the corresponding simulation results (hollow markers in
Fig. 3) of the time-averaged acoustic radiation potential U, with blue
contour lines indicating local minima. Figure 3 shows good quantita-
tive agreement between E,., and Eg;,,, which the images of individual
data points in Fig. 4 illustrate. For each numbered label, we observe
good agreement between the simulated acoustic radiation potential
and the corresponding experimental results that show where particles
assemble, including details of the standing ultrasound wave field,
which is remarkable. We determine a maximum absolute differ-
ence between experiments E.., and simulations E;,, of 0.21%
(for d,is1 =0.82 mm, n,,=0.97 Pas, @=0.10).

Differences in the experimental and simulation results are
likely due to imperfections in fabricating the experimental setup,
including the imperfect rectangular shape of the reservoir and the
alignment of the ultrasound transducers. Furthermore, the spheri-
cal particles are denser than the viscous medium in our experi-
ment, which causes them to sink while subject to the ultrasound
wave field. This may create a non-uniform spatial distribution of

tbe pgrtlges ;rthoz&gg)r}al to the V\;lave prqplaa gatl(l)n dlrefctlop (z dlrfﬁ_ FIG. 4. (a) Experimental results for each numbered label in Fig. 3, showing
tion in Fig. 2) and increases the particle volume fraction at the lines of aligned particles (dark) in viscous medium (bright), and (b) the corre-

bottom of the reservoir, thus affecting the sound propagation veloc- sponding simulation results of the time-averaged acoustic radiation potential U.
ity. We also use a constant average particle radius a = 20 um in our

simulations. However, 90% of the particles have radius a <37 um
and 50% of particles have radius 18 <a <22 um. Hence, this may

minimum U maximum

affect the sound propagation velocity of the mixture c. Finally, changing the effective particle size, and it also increases ultrasound
imperfect dispersion of particles in the viscous medium prior to attenuation, which decreases the acoustic radiation force that acts
the start of each experiment may also cause inaccuracy. Increasing on the particles in the mixture. Each of these effects potentially dis-

particle volume fraction increases particle agglomeration, thus torts and fades the pattern of particles.
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We also emphasize that the viscous DSA theory we have
implemented in our simulations determines the locations where
particles assemble in a viscous medium, accounting for both
medium viscosity 7,, and particle volume fraction @, which are dif-
ferent than where they assemble in an inviscid medium. This
builds on the theory of Settnes and Bruus,”" which describes the
acoustic radiation force that acts on spherical particles in a viscous
medium as a function of medium viscosity but did not determine
or discuss the locations where particles assemble.

IV. CONCLUSION

In conclusion, the steady-state locations where spherical parti-
cles organize during ultrasound DSA are different in a viscous and
inviscid medium and depend on particle volume fraction @ and
medium viscosity 7,,. We experimentally measure the deviation
between locations where particles assemble as a function of particle
volume fraction @, medium viscosity 7,,, and operating frequency
f- In addition, we simulate the experiments by implementing an
ultrasound DSA simulation that integrates the Helmholtz equation
with a complex wave number k to account for particle volume frac-
tion @, in combination with the acoustic radiation potential theory
that accounts for medium viscosity 7,,. The maximum absolute dif-
ference between experiments and simulations is 0.21%. We provide
best-fit equations to predict the deviation between locations where
particles accumulate during ultrasound DSA in viscous and inviscid
media. The deviation increases with increasing particle volume
fraction and medium viscosity because the sound propagation
velocity of the mixture of particles and viscous medium changes
compared to that of the inviscid medium. When considering ultra-
sound DSA of a periodic pattern of lines of particles, we determine
a 3% maximum deviation between adjacent particle locations but
note that this deviation scales with the dimensions of the experi-
ment/simulation. These results have implications for using ultra-
sound DSA as a fabrication process for, e.g., engineered polymer
composite materials whose properties depend on the spatial organi-
zation of patterns of particles in the matrix material.
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