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A B S T R A C T   

Engineered polymer matrix composite materials with designer electrical properties are important for a myriad of 
engineering applications including flexible actuators and wearable sensors. We use stereolithography in com
bination with ultrasound directed self-assembly to align electrically conductive microfibers in a photopolymer 
matrix. We relate the fabrication process parameters to the resulting filler material alignment and corresponding 
electrical conductivity using supervised machine learning methods and quantify the prediction accuracy of data- 
driven models derived from different interpretable and non-interpretable algorithms. We determine that decision 
tree and artificial neural network algorithms result in data-driven models with R2 scores that are 79.8% and 
83.2% higher, respectively, than a traditional multivariate regression analysis benchmark model in predicting 
the microfiber alignment. Similarly, random forest and artificial neural network algorithms result in data-driven 
models that predict composite material electrical conductivity 9.1% and 13.7% more accurately, respectively, 
than a logistic multivariate regression benchmark model. Relating the fabrication process parameters to the 
resulting electrical conductivity of the material is a crucial step towards fabricating polymer matrix composite 
materials with designer electrical properties for use in engineering applications.   

1. Introduction 

Polymer matrix composite materials consist of a polymer matrix 
material and one or more continuous or discontinuous filler materials 
[1]. Continuous filler materials, such as carbon [2], glass [3], or Kevlar 
[4] fiber tow, orient in a user-specified direction under mechanical 
tension during fabrication and increase the mechanical properties of the 
composite material in the fiber direction [5]. Discontinuous filler ma
terials, such as carbon nanotubes (CNTs) [6], spherical nanoscale par
ticles [7], microscale platelets [8], or microfibers [9], either orient 
(angle) and organize (location) randomly [10] or align with each other 
in a user-specified orientation and organization [11] within the polymer 
matrix material. The orientation, organization, and material properties 
of the filler material, together with the properties of the matrix material, 
and the interaction between filler and matrix materials, determine the 
properties of the composite material [12]. 

To fabricate polymer matrix composite materials with filler material 

in a user-specified orientation and organization, one must combine a 
technique to orient and organize the filler material with a method to 
form the macroscale matrix geometry of the material [13]. Conventional 
fabrication methods, such as mold casting [14] or injection molding 
[15], typically inject a mixture of resin and filler material into a hollow 
cavity or mold that constrains the material geometry. Alternatively, 
additive manufacturing (AM) methods, such as fused filament fabrica
tion [16], direct ink writing [17], and stereolithography (SLA) [18], 
enable freeform polymer matrix composite material fabrication in a 
layer-by-layer fashion, without the use of a mold [19]. Furthermore, 
several methods exist to directly orient and organize discontinuous filler 
material in a polymer matrix material. For instance, shear force fields 
orient filler material in the shear direction [20] but require high-aspect- 
ratio filler material, and the method does not allow controlling the or
ganization of the filler in the material. Alternatively, electric or mag
netic fields allow controlling both the filler material orientation and 
organization but require electrically conductive or ferromagnetic filler 
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material and ultra-high external field strengths (on the order of 20 kV/m 
electric field [21] and 8000 mTesla magnetic field [22], respectively), 
which limits material choice and dimensional scalability. In contrast, 
ultrasound directed self-assembly (DSA) relies on the acoustic radiation 
force associated with a standing pressure (acoustic) wave to orient [23] 
and organize [24] filler material within a liquid matrix material. Ul
trasound waves show low attenuation in low-viscosity fluids [25], and 
the acoustic radiation force is almost independent of the material 
properties and shape of the filler material [26]. 

Changing the orientation, organization, and material properties of 
the discontinuous filler material, in addition to the properties of the 
polymer matrix material, allows changing the physical properties of the 
polymer matrix composite material [27]. Correspondingly, one can en
gineer these materials to exhibit designer mechanical [28], thermal 
[29], or electrical [30] material properties, which is useful in the context 
of a myriad of engineering applications, such as stretchable strain sen
sors [31], combined sensors and actuators [32], chemical or biological 
sensors [33], and wearable electronics [34]. 

In this paper, we specifically focus on the electrical conductivity of 
polymer matrix composite materials. Orienting discontinuous filler 
material in a user-specified direction and aligning them with each other 
in the polymer matrix increases physical connectivity between individ
ual filler material particles (e.g., electrically conductive microfibers), 
which decreases the percolation threshold [35] and increases the elec
trical conductivity in the alignment direction of the filler material [36]. 
Fabricating polymer matrix composite materials with designer electrical 
properties requires relating the electrical conductivity of the composite 
material to the filler material alignment and the corresponding fabri
cation process parameters. Several researchers have attempted to relate 
the composite material fabrication process parameters to the filler ma
terial alignment or the resulting electrical conductivity using interpo
lation of experimental results and regression analysis. For instance, 
using interpolation of experimental results, Ma et al. related the elec
trical conductivity to the weight percent wf of CNTs (0.5% ≤ wf ≤ 5%), 
aligned with a magnetic field in epoxy composite materials, and deter
mined that the electrical conductivity increased with increasing wf [37]. 
They also showed that electrical conductivity was highest in the CNT 
alignment direction and exceeded that of using randomly oriented CNTs. 
Similarly, Yunus et al. related the electrical conductivity of aligned and 
randomly oriented filler material to their weight percent (0.5% ≤ wf ≤

9.0%) in a photopolymer matrix material [7]. Chapkin et al. aligned 
CNTs in epoxy using an electric field and used regression analysis to 
show that the alignment of CNTs (wf = 0.005%) increased with 
increasing field strength (100 V/cm – 5000 V/cm) [38]. Niendorf and 
Raeymaekers combined stereolithography and ultrasound DSA to align 
carbon microfibers in photopolymer and used multivariate regression 
analysis to show that the alignment of carbon microfibers (0.1% ≤ wf ≤

0.5%) increased with increasing wf and ultrasound field strength, and 
decreased with increasing distance between ultrasound transducers. In a 
later study, Niendorf and Raeymaekers used logistic multivariate 
regression analysis to characterize the electrical conductivity of photo
polymer composite materials with ultrasonically aligned silver-coated 
glass microfibers (1.0% ≤ wf ≤ 4.0%) and determined that increasing 
wf and microfiber alignment increased the probability of the specimen 
conducting electricity [30]. 

The literature shows that first principles, interpolation of experi
mental results, and regression analysis can be used to derive models to 
predict filler material alignment and corresponding electrical conduc
tivity of composite material specimens as a function of fabrication 
process parameters. However, these methods show critical limitations. 
Models derived using interpolation of experimental results assume a 
linear relationship between neighboring experimental data points. 
Furthermore, models derived using multivariate regression analysis 
consider parameter interaction effects that are limited to combinations 
of the most important effects [39], which can limit prediction accuracy 
in datasets with complex interactions or interactions that change within 

the solution domain. In contrast, machine learning (ML) algorithms are 
well-suited to implement complex and changing physical relationships 
between dependent and independent parameters [40]. Therefore, the 
objective of this paper is to establish data-driven models that relate 
experimental data of microfiber alignment and electrical conductivity to 
the ultrasound DSA fabrication process parameters, using different 
interpretable and non-interpretable ML algorithms, and to evaluate their 
prediction accuracy compared to traditional multivariate regression 
models. These algorithms capture complex relationships between the 
fabrication process parameters (input) and corresponding microfiber 
alignment and electrical conductivity (output) of the composite material 
specimens and, thus, go beyond the knowledge that can be derived from 
multivariate regression analysis and interpolation of experimental 
results. 

2. Materials and methods 

2.1. Fabricating electrically conductive specimens with embedded lines of 
aligned microfibers 

We use polymer matrix composite material specimens from our 
previous work, in which we employed multivariate regression analysis 
to characterize microfiber alignment and its corresponding electrical 
conductivity as a function of the ultrasound DSA fabrication process 
parameters [30]. 

Fig. 1 illustrates the ultrasound DSA and SLA process we use to 
fabricate composite material specimens with lines of aligned silver- 
coated glass microfibers (average diameter 15 µm, average length 
130 µm, ρ = 1,000 kg/m3, Potters Industries Inc. Conduct-O-Fil AG 
CLAD 12). First, an ultrasonic sonicator (Hielscher UP200Ht, 35.0 W, 5 
min) disperses microfibers (weight percent 1.0 ≤ wf ≤ 4.0%, measured 
before sonication) in photopolymer resin (viscosity = 250 cP, c = 1305 
m/s, Makerjuice Standard). Fig. 1 (a) shows a mixture of silver-coated 
glass microfibers dispersed in liquid photopolymer resin contained in 
an acrylic reservoir (30.4 mm × 30.0 mm × 6.0 mm) with two ultra
sound transducers (PZT type SM111, center frequency fc = 1.5 MHz) 
separated by distance d = 36λ. Here λ = c/f is the wavelength of the 
ultrasound wave and f ≈ fc is the operating frequency. We energize the 
ultrasound transducers using a function generator (Tektronix AFG 3102) 
and radio frequency (RF) amplifier (E&I 2100L) to establish a standing 
ultrasound wave field in the reservoir. The acoustic radiation force 
associated with the standing ultrasound wave field organizes dispersed 
microfibers at the nodes of the standing wave, where they also orient 
along the nodes and align with each other [23]. Fig. 1(b) shows aligned 
silver-coated microfibers organized in parallel lines along the nodes of 
the standing ultrasound wave field. Finally, selective ultraviolet (UV) 
light curing solidifies the specimen geometry. Fig. 1 (c) depicts selective 
UV light exposure (data projector ViewSonic PJD7822HDL), which 
fixates the microfibers in their aligned and organized positions, and 
Fig. 1 (d) shows a typical composite material specimen (15.00 mm ×
10.00 mm × 0.75 mm) with lines of aligned, electrically conductive 
silver-coated glass microfibers. 

We use dimensional analysis and the Buckingham Pi theorem [41] to 
reduce the number of degrees of freedom of the ultrasound DSA process 
and minimize the number of experiments we must conduct. Specifically, 
three dimensionless fabrication process parameters describe the ultra
sound DSA process: microfiber weight percent wf, ultrasound transducer 
input power P, and ultrasound transducer separation distance D [42]. 
We use 138 composite material specimens fabricated using different 
treatment levels of wf and P, with 10–20 specimen replications for each 
treatment level combination, to ensure statistically significant results 
[30]. Table 1 shows the ultrasound DSA fabrication process parameter 
treatment levels of the full factorial experiment used to fabricate the 
composite material specimens with different levels of microfiber 
alignment. 
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2.2. Quantifying microfiber alignment and electrical conductivity 

We sand and polish the top surface of each composite material 
specimen using sequentially finer abrasive polishing papers up to 1200 
grit, to maintain a consistent surface finish of all specimens for optical 

imaging and to expose the electrically conductive microfibers to mea
sure electrical conductivity. We quantify microfiber alignment by 
calculating the microfiber alignment probability pα according to the 
methodology documented in earlier work by our research group [42]. 
Briefly, we image (100x magnification, 2.47 mm × 2.47 mm area) each 
specimen in the area that qualitatively shows the best microfiber 
alignment using an optical microscope (Keyence VHX-5000). We 
binarize the image and calculate the fast Fourier transform (FFT) 
anisotropy [43] to determine the alignment probability pα, which rep
resents the probability that microfibers organize at the nodes of the 
ultrasound standing wave field, i.e., parallel to the ultrasound trans
ducers, orient along the nodes, and align with each other. 

Fig. 2 illustrates the electrical resistance measurement (Mastech MY- 
65), from which we derive electrical conductivity by accounting for the 
total volume of silver in each material specimen, which depends on the 
microfiber weight percent wf. It is well-known that contact resistance is 
an important consideration when quantifying the electrical resistivity or 
conductivity of polymer matrix composite materials with micro- or 
nanoscale filler material using a macroscale measurement device [44]. 
We minimize the contact resistance between the measurement probes 
and the composite material specimen by painting high-purity silver 
electrodes (SPI Supplies 05001-AB) along the edges of each specimen, 
such that each electrode covers approximately 2.5 mm × 15.0 mm, with 
the distance between both electrodes L = 5.0 mm. Each electrode con
tacts all parallel lines of electrically conductive microfibers within the 
material specimen and, thus, we consider a single percolated microfiber 
network for each material specimen. We categorize a composite material 
specimen as electrically conductive if its conductivity exceeds 4.35∙10-4 

S/m, which represents the minimum electrical conductivity of semi
conducting materials [45]. However, we note that the electrical con
ductivity of all electrically conductive specimens in this work varies 
between 31 and 793 S/m, i.e., the least conductive specimen is still five 
orders of magnitude more conductive than the cutoff value. Thus, slight 
variations in the magnitude of the electrical conductivity, resulting from 
contact resistance between the measurement probes and the silver 
electrodes, or between individual microfibers within a percolated mi
crofiber network, do not influence the outcome of the measurement. 

2.3. Dataset and supervised ML implementation 

We use ML regression algorithms to derive data-driven models that 
predict microfiber alignment probability pα as a function of wf and P 
(dataset 1), and ML (binary) classification algorithms that create data- 
driven models to predict the probability that a composite material 
specimen is electrically conductive pconductive as a function of pα and wf 
(dataset 2). Both regression and classification ML algorithms are 

Fig. 1. Pictures of the ultrasound DSA and SLA fabrication process showing (a) 
silver-coated glass microfibers dispersed in photopolymer resin contained 
within an acrylic reservoir. (b) Microfibers align along the nodes of the standing 
ultrasound wave field, after energizing the ultrasound transducers with a 
function generator and RF amplifier. (c) Schematic illustration of selective UV 
curing of a composite material specimen and (d) a picture of a typical composite 
material specimen with lines of aligned microfibers. 

Table 1 
Dimensionless ultrasound DSA fabrication process parameter treatment levels 
used to fabricate 138 composite material specimens with aligned silver-coated 
glass microfibers [30].  

Dimensionless 
fabrication process 
parameter 

Treatment 
1 

Treatment 
2 

Treatment 
3 

Treatment 
4 

Microfiber weight 
percent, wf  

1.0  2.0  3.0 4.0 

Ultrasound 
transducer input 
power, P  

2.87∙1013  5.11∙1013  1.07∙1014 N/A  

Fig. 2. Electrical resistance measurement of composite material specimens, 
showing a typical specimen with painted electrodes that contact all parallel 
lines of exposed silver-coated microfibers. 
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sensitive to the quality and integrity of the dataset, including missing, 
incorrect, or inconsistent data points [46]. We identify outliers accord
ing to the box plot rule, which categorizes data points according to their 
position within the quartiles of the dataset [47]. Therefore, we deter
mine the lower (Q1) and upper (Q3) quartiles and the interquartile range 
(IQR = Q3-Q1) of the alignment probability pα for the composite material 
specimens fabricated with each treatment level (e.g., all specimens with 
wf = 2.0). A data point is an outlier when it is>1.5∙IQR lower or higher 
than Q1 or Q3, respectively, i.e., outside the middle 99.3% of observa
tions [47]. We scale each independent parameter such that the 
maximum and minimum values are equal to one and zero, respectively, 
which allows the ML algorithms to treat parameters of different mag
nitudes equally. A hold-out method partitions each dataset into training 
and validation pools with a random 80/20 split, which reduces over
fitting the model and ensures model validation with data not used to 
train the model [48]. 

We implement supervised ML algorithms using the open source 
scikit-learn toolbox in Python [49] and consider several interpretable 
ML algorithms that define explicit relationships or decisions between the 
ultrasound DSA fabrication process parameters (input parameters) and 
microfiber alignment or electrical conductivity (output parameter). 
These include linear and polynomial regression [50], Bayesian ridge 
regression [51], Gaussian Naïve Bayes [52], decision tree [53], random 
forest [54], and k-nearest neighbors (kNN) [55]. We use linear and 
polynomial regression to relate the fabrication process parameters to 
electrical conductivity according to the least-squares method. The 
Bayesian ridge regression algorithm works similar to linear regression 
but relies on probability distributions as data points rather than explicit 
point estimates. Gaussian Naïve Bayes creates a classifier model by 
estimating the probability that a specimen is electrically conductive 
according to the continuous, normally distributed, fabrication process 
parameters. Alternatively, the decision tree algorithm builds a model 
made up of nodes (parameter values), branches (decisions), and leaves 
(predictions). Subsequently, the random forest algorithm randomly di
vides the dataset to make multiple, smaller decision tree models and 
averages the predictions of all the trees. We optimize the data-driven 
models, created by the decision tree and random forest algorithms, to 
minimize prediction error by tuning the number of leaves per node, 
depth of tree, and pruning branches. In contrast, kNN creates a model 
that estimates microfiber alignment or electrical conductivity by 
calculating a weighted average of the k most similar points, and we tune 
a parameter weighting function and k to minimize the prediction error 
of the model. 

We also implement non-interpretable ML algorithms that derive 
data-driven models without explicitly defining the relationship between 
input and output parameters, including support vector machine (SVM) 
and artificial neural network (ANN). SVM fits a multidimensional hy
perplane through the data such that predictions minimize the error 
between alignment probability or electrical conductivity predictions 
and the experimental data. We optimize the SVM model to minimize its 
prediction error by changing the functions (kernel) to transform data 
such that it can be separated by the hyperplane. ANN creates a network 
of nonlinearly interconnected neurons consisting of an input layer, one 
or more hidden layers, and an output layer. We optimize the ANN model 
to minimize its prediction error by tuning the size of the hidden layer 
and by changing the solver that optimizes the parameter coefficients. 

Common metrics to quantify the prediction error of data-driven 
models derived from regression and classification ML algorithms 
include the square of the correlation coefficient (R2), root mean square 
error (RMSE), mean absolute error (MAE), accuracy score, precision, 
recall, and F1 score [56]. A single metric may be sufficient to describe 
certain aspects of a model, but it is often desirable to consider multiple 
metrics to indicate model accuracy [57]. We calculate R2

, RMSE, and 
MAE for each data-driven model resulting from the ML regression al
gorithms, where R2 is given as 

R2 = 1 −
∑n

i=1(ai − pi)
2

∑n
i=1(ai − a)2 (1) 

such that ai and pi are the actual and predicted values of the ith data 
point in the dataset of n data points and ais the arithmetic mean of the 
actual dataset. Similarly, RMSE is given as 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(ai − pi)

2

n

√
√
√
√
√

(2) 

and MAE is given as 

MAE =

∑n
i=1|ai − pi|

n
(3) 

Data-driven models derived from binary classification ML algorithms 
predict whether a composite material specimen is electrically conduc
tive or insulating. The accuracy score is the ratio of the number of cor
rect and total predictions, which is useful for a balanced dataset, i.e., 
with a similar number of electrically conductive and insulating speci
mens. The precision is the ratio of the number of correct predictions of 
electrically conductive specimens and the total number of predictions of 
conductive specimens. Recall is the ratio of the number of correct pre
dictions of electrically conductive specimens and the total number of 
conductive specimens. The F1-score is the harmonic average of precision 
and recall. 

F1 − score = 2
precision × recall
precision + recall

(4)  

3. Results and discussion 

3.1. Microfiber alignment probability 

Table 2 shows the mean and standard deviation of the alignment 
probability pα of all specimen replications fabricated with each wf and P 
treatment level combination for dataset 1: pα = f(wf, P). We consider 
each data point, rather than the mean of specimen replications, for 
model training and evaluation. 

Table 3 shows the evaluation metrics of the data-driven models 
derived from dataset 1 using interpretable and non-interpretable ML 
algorithms. We use multivariate regression analysis as a benchmark and 
compare models according to R2 because it is a common metric, but also 
report the RMSE and MAE. 

From Table 3 we observe that all interpretable and non-interpretable 
ML algorithms, except linear and Bayesian ridge regression, result in 
higher R2 and lower RMSE and MAE values than those obtained with 
multivariate regression, indicating that the prediction error of the 
former models is smaller than that of the latter one. Linear and Bayesian 
ridge regression algorithms result in data-driven models with a higher 
prediction error than those derived from multivariate regression anal
ysis, likely because these algorithms rely only on linear relationships 
between dependent and independent parameters, which may not cap
ture the potentially complex relationships and interactions between the 
alignment probability pα and the fabrication process parameters wf and 
P. The polynomial ML regression algorithm uses regularization to tune 

Table 2 
Descriptive statistics of dataset 1 showing mean ± standard deviation of the 
alignment probability pα of all specimen replications fabricated with each wf and 
P treatment level combination.  

pα wf [%] 

1.0 2.0 3.0 4.0 

P [-]  2.87∙∙1013 0.42 ± 0.10 0.60 ± 0.11 0.40 ± 0.12 0.46 ± 0.14  
5.11∙∙1013 0.48 ± 0.13 0.71 ± 0.09 0.58 ± 0.13 0.48 ± 0.05  
1.07∙∙1014 0.62 ± 0.06 0.68 ± 0.05 0.59 ± 0.09 0.50 ± 0.06  
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fourth order polynomial parameters, including interaction effects be
tween wf and P, such that the optimal model results in an R2 value that is 
57.8% higher than the multivariate regression benchmark. The decision 
tree algorithm yields a model with the highest R2 of all models derived 
from interpretable ML algorithms, and the R2 is 79.8% higher than that 
obtained with the multivariate regression benchmark. We use a decision 
tree with unrestricted tree depth such that each leaf predicts pα for a 
minimum of one material specimen. Similarly, the random forest model 
averages the results of several decision trees [54], and we determine that 
the random forest that minimizes the prediction error consists of ten 
individual decision trees with unrestricted tree depth. The kNN algo
rithm derives a data-driven model that estimates alignment probability 
pα by interpolating between the k most similar data points in the dataset. 
We determine that k = 9 minimizes the prediction error and results in an 
R2 value that is 31.0% higher than the corresponding result obtained 
with the multivariate regression benchmark. This optimal k results from 
our specific dataset because we fabricate a minimum of n = 10 repli
cations of each specimen for each combination of wf and P. Thus, the 
algorithm interpolates between minimum n – 1 specimen replications. 

The SVM algorithm derives a model with a prediction error similar to 
that of models derived with interpretable ML algorithms and we deter
mine that the model that minimizes the prediction error relies on a 
radial basis function kernel [58]. ANN yields the most accurate model of 
both the non-interpretable and interpretable algorithms, with an R2 that 
is 83.2% higher than the one obtained with the multivariate regression 
benchmark. We use an ANN with a hidden layer containing 50 neurons 
and optimize the model to minimize its prediction error using an LBFGS 
optimization solver [59]. 

Fig. 3 depicts the predicted microfiber alignment probability pα 
(colorbar) as a function of ultrasound transducer input power P and 

microfiber weight percent wf, resulting from the decision tree model. 
Similarly, Fig. 4 depicts pα (colorbar) as a function of P and wf, resulting 
from the ANN model. The decision tree and ANN ML algorithms corre
spond to the interpretable and non-interpretable ML algorithms that 
result in models with the highest R2 and smallest prediction error. The 
colored circular markers represent the average alignment probability pα 
of all composite material specimen replications and (a) – (f) are optical 
images (scalebar = 200 µm) of typical composite material specimens of 
different wf and P treatment level combinations, to relate the model 
prediction to the experimental data. 

Figs. 3 and 4 show that pα first increases and then decreases with 
increasing wf and that pα is maximum for wf = 2.0%. When wf < 2.0%, 
we observe that some microfibers may entangle but the acoustic radia
tion force still drives most microfibers to the nodes of the standing ul
trasound wave field. Here, increasing wf increases the number of 
microfibers that organize and align at the nodes of the standing ultra
sound wave field, which increases pα in the resulting composite material 
specimen. Figs. 3 and 4 (a) and (d) illustrate that the thickness of the 
lines of aligned microfibers increases when wf increases from 1.0% to 
2.0%, independent of P. These results quantitatively agree with those of 
Niendorf and Raeymaekers, who used multivariate regression analysis 
to show that pα of carbon microfibers aligned in photopolymer resin 
increases with increasing wf for 0.1% ≤ wf ≤ 0.5% [42]. When wf ≥

2.0%, the nodes of the standing ultrasound wave field fill with micro
fibers such that individual microfibers entangle and interlock. Here, the 
acoustic radiation force does not overcome the mechanical interlocking 
and increasing wf > 2.0% decreases pα because some microfibers remain 
dispersed between the nodes of the standing ultrasound wave field. 
Figs. 3 and 4 (d) – (f) illustrate that individual microfibers interlock 
when wf increases from 2.0% to 4.0%, which decreases pα, independent 
of P. Scholz et al. reported similar results when using ultrasound DSA to 
align glass microfibers in epoxy [60]. They qualitatively observed that 
specimens with low wf contained well-aligned microfibers whereas 
specimens with high wf contained dense lines of interlocking and 
entangled microfibers. Figs. 3 and 4 also show that pα increases with 
increasing P almost independent of wf because increasing P increases the 
magnitude of the acoustic radiation force that drives microfibers to
wards the nodes of the standing ultrasound wave field, which increases 
pα of the resulting composite material specimen. Figs. 3 and 4 (b) – (d) 
illustrate that increasing P from 5.11∙1013 to 1.07∙1014 reduces the 
thickness and increases the density of the lines of aligned microfibers, 
independent of wf, which increases pα. These results quantitatively agree 
with those documented by Chapkin et al., who used regression analysis 
to show that the alignment of CNTs in epoxy, using an electric field, 
increases with increasing electric field strength (100 – 5000 V/cm) [38]. 

Table 3 
Evaluation metrics of the data-driven models derived from dataset 1 using 
interpretable and non-interpretable ML algorithms.  

Algorithm R2 RMSE MAE 

Multivariate regression (benchmark)  0.354  0.190  0.149 
Interpretable ML algorithms    
Linear regression  0.261  0.218  0.172 
Polynomial regression  0.559  0.169  0.139 
Bayesian ridge regression  0.251  0.220  0.174 
Decision tree  0.637  0.153  0.118 
Random forest  0.562  0.168  0.137 
k-nearest neighbors (kNN)  0.464  0.178  0.138 
Non-interpretable ML algorithms   
Support vector machine (SVM)  0.608  0.159  0.134 
Artificial neural network (ANN)  0.649  0.150  0.122  

Fig. 3. Predicted microfiber alignment probability pα (colorbar) as a function of ultrasound transducer input power P and microfiber weight percent wf, resulting 
from the decision tree model. (a) – (f) display optical images (scalebar = 200 µm) of typical composite material specimens of different wf and P treatment level 
combinations. 
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Figs. 3 and 4 both show that P and wf affect pα, but the ANN model 
results in an R2 score that is 1.9% higher than that of the decision tree 
model. The fundamental differences between decision tree (interpret
able) and ANN (non-interpretable) algorithms derive data-driven 
models that predict different results for pα = f(P, wf). The contour 
lines that separate areas of discrete pα values in Fig. 3 coincide with a 
constant value of P or wf in a decision tree node, also known as a decision 
boundary, and the pα prediction corresponds to a leaf at the end of a 
branch. The decision boundaries run parallel to the P or wf axis because 
they remain constant for an entire branch and pα predictions are con
stant in the area near individual data points because the model makes a 
discrete number of pα predictions. Therefore, the number of constant pα 
prediction regions is determined by the number of leaf nodes. In 
contrast, the ANN algorithm uses P and wf to make continuous pre
dictions of pα. The models created by the decision tree and ANN algo
rithms both predict a maximum pα = 0.70, but the decision tree model 
predicts a minimum pα = 0.45 compared to 0.35 for the ANN model. 
However, qualitatively, the trend that pα first increases and then de
creases with increasing wf and increases with increasing P are consistent 
for the models derived from both ML algorithms. 

3.2. Electrical conductivity classification 

Table 4 shows the evaluation metrics of the data-driven models 
derived from dataset 2 using interpretable and non-interpretable ML 
algorithms: pconductive = f(pα, wf). We compare models according to ac
curacy score because it is a common metric and equally considers false 
positives and negatives [56], but we also report the model F1-score, 
RMSE, and MAE. We use a logistic multivariate regression analysis as a 

performance benchmark, which yields an accuracy score of 0.714. 
From Table 4 we observe that all interpretable and non-interpretable 

ML classification algorithms result in a higher accuracy score and F1- 
score and lower RMSE and MAE value than those obtained using the 
logistic multivariate regression benchmark, indicating that the predic
tion error of the former models is smaller than that of the latter one. We 
optimize the ML logistic regression algorithm using L2 regularization, 
which creates a data-driven model with an accuracy score that is 4.5% 
higher than the logistic multivariate regression benchmark. The 
Gaussian Naïve Bayes algorithm derives a data-driven model with a 
lower accuracy score than the logistic multivariate regression bench
mark, likely because it only relies on a linear relationship between the 
electrical conductivity pconductive and the ultrasound DSA fabrication 
process parameters pα and wf. The decision tree algorithm establishes a 
data-driven model with an accuracy score 4.5% higher than the logistic 
multivariate regression benchmark. A decision tree with unrestricted 
depth and a minimum of two samples per split minimizes the prediction 
error. The model derived from the random forest algorithm shows the 
highest accuracy score of the interpretable ML algorithms and is 9.1% 
higher than that of the logistic multivariate regression benchmark. The 
random forest that maximizes the accuracy score contains 50 individual 
trees with unrestricted depth and a minimum of two samples per split, 
like the optimal decision tree model. The kNN algorithm derives a data- 
driven model that predicts pconductive by comparing the k most similar 
data points in terms of pα and wf. When k = 4, the kNN algorithm results 
in a model with the same accuracy score as the logistic multivariate 
regression benchmark. This algorithm creates an accurate data-driven 
model when specimens fabricated with the same fabrication process 
parameter treatment levels are either all electrically conductive or 
insulating. 

The SVM algorithm derives a model with an accuracy score similar to 
that of the model derived from the random forest algorithm, and we 
determine that the model that maximizes the accuracy score relies on a 
sigmoid kernel [61] and an L2 regularization penalty. The ANN algo
rithm yields the model with the highest accuracy score of all the non- 
interpretable and interpretable algorithms, which is 13.7% higher 
than the logistic multivariate regression benchmark. We use an ANN 
with a hidden layer containing 10 neurons and optimize the model to 
minimize its prediction error using an LBFGS optimization algorithm 
[59]. 

Fig. 5 shows the probability that a specimen is electrically conduc
tive pconductive (colorbar) as a function of microfiber alignment proba
bility pα and microfiber weight percent wf, resulting from the data- 
driven model derived from the random forest ML algorithm. Similarly, 
Fig. 6 depicts pconductive (colorbar) as a function of pα and wf, resulting 
from the data-driven model derived with the ANN ML algorithm. The 

Fig. 4. Predicted microfiber alignment probability pα (colorbar) as a function of ultrasound transducer input power P and microfiber weight percent wf, resulting 
from the ANN model. (a) – (f) display optical images (scalebar = 200 µm) of typical composite material specimens of different wf and P treatment level combinations. 

Table 4 
Evaluation metrics of the data-driven classification models derived using 
interpretable and non-interpretable ML algorithms, trained using dataset 2: 
pconductive = f(pα, wf).  

Model Accuracy 
score 

F1- 
score 

RMSE MAE 

Logistic multivariate regression 
(benchmark)  

0.786  0.700  0.463  0.214 

Interpretable ML algorithms    
Logistic regression  0.821  0.828  0.423  0.179 
Gaussian Naïve Bayes  0.750  0.800  0.500  0.250 
Decision tree  0.821  0.848  0.423  0.179 
Random forest  0.857  0.857  0.378  0.143 
k-nearest neighbors (kNN)  0.786  0.824  0.463  0.214 
Non-interpretable ML algorithms 
Support vector machine (SVM)  0.857  0.882  0.378  0.143 
Artificial neural network (ANN)  0.893  0.909  0.327  0.107  
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random forest and ANN data-driven models have the highest accuracy 
scores of models derived with interpretable and non-interpretable ML 
algorithms, respectively. The square and circular markers represent 
electrically insulating (pconductive = 0.0) and conductive (pconductive = 1.0) 
material specimens, respectively, solid markers indicate model training 
data, and dotted markers indicate validation data. Figs. 5 and 6(a) – (d) 
show typical composite material specimens (scalebar = 200 µm) with 
different pα and wf, illustrating the effect of the ultrasound DSA fabri
cation process parameters on the arrangement of and interaction be
tween individual microfibers. 

A composite material specimen is electrically conductive when a 
long-range percolated network of interconnected conductive micro
fibers exists. Figs. 5 and 6 show that the probability that a specimen 
forms a percolated microfiber network pconductive increases with 
increasing pα and wf. The density of microfibers organized and aligned at 
the nodes of the standing ultrasound wave field increases with increases 
pα, which increases the probability that individual microfibers make 

contact and establish a long-range percolated network, independent of 
wf. Figs. 5 and 6 (b) and (c) illustrate that when pα increases from 0.22 
(Figs. 5 and 6(c)) to 0.77 (Figs. 5 and 6 (b)) with wf = 3.0%, pconductive 
increases from 0.6 to 1.0 (random forest model – Fig. 5) and from 0.5 to 
0.9 (ANN model – Fig. 6). Thus, increasing pα with constant wf reduces 
the percolation threshold by increasing the microfiber density at the 
nodes of the standing ultrasound wave field and, therefore, contact be
tween microfibers. Similarly, increasing wf increases the number of 
microfibers within a composite material specimen, which increases the 
probability that microfibers contact and form an electrically conductive 
network, independent of pα. Figs. 5 and 6 (a) and (d) illustrate specimens 
with poorly aligned microfibers, i.e., pα = 0.26 and 0.17, respectively. 
When increasing wf from 1.0% (Figs. 5 and 6 (a)) to 4.0% (Figs. 5 and 6 
(d)), pconductive increases from 0.0 to 0.6 (random forest model – Fig. 5) 
and from 0.1 to 0.55 (ANN model – Fig. 6). These results agree with Ma 
et al. who reported that electrical conductivity increases with increasing 
CNT wf (0.5% ≤ wf ≤ 5%) in epoxy composite materials with 

Fig. 5. Predicted probability that a composite material specimen is electrically conductive pconductive as a function of microfiber alignment probability pα and mi
crofiber weight percent wf, resulting from the random forest model (interpretable ML algorithm with highest accuracy score). (a) – (d) display optical images 
(scalebar = 200 µm) of typical composite material specimens with different wf and pα combinations. 

Fig. 6. Predicted probability that a composite material specimen is electrically conductive pconductive as a function of microfiber alignment probability pα and mi
crofiber weight percent wf, resulting from the ANN model (non-interpretable ML algorithm with highest accuracy score). (a) – (d) display optical images (scalebar =
200 µm) of typical composite material specimens with different wf and pα combinations. 
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magnetically aligned CNTs [37]. They also reported that electrical 
conductivity approaches an asymptote when wf > 3.0%, which is similar 
to the predictions of our random forest model, which indicates that 
pconductive is constant when wf > 2.5% for a specific pα. Similarly, Yunus 
et al. found that electrical conductivity increases with increasing wf in 
photopolymer composite materials with ultrasonically aligned or 
randomly oriented filler material (0.5% ≤ wf ≤ 9.0%) [7]. This suggests 
that increasing either pα or wf increases the probability of forming a 
percolated microfiber network, which is consistent with our results. 

We observe from Fig. 5 that the random forest model predicts four 
distinct regions of pconductive, with a small gradient along the pα axis. 
These regions of constant pconductive correspond to the averages of 
discrete predictions of individual decision trees in the random forest. 
The boundaries separating those regions are parallel to the pα or wf axis 
because the individual decision trees that make up the random forest 
assign predictions based on constant parameter value boundaries (e.g., 
wf = 2.5%). We observe from Fig. 6 that the ANN model predicts pcon

ductive to follow smooth nonlinear curves that result in an accuracy score 
4.2% higher than the random forest model. This is because the ANN 
model makes continuous predictions that consider non-linear relation
ships between all training data rather than splitting data according to 
proximity. 

4. Conclusions 

We implement interpretable and non-interpretable machine learning 
algorithms to derive data-driven models that characterize microfiber 
alignment probability pα as a function of the ultrasound DSA fabrication 
process parameters wf and P. The most accurate models derive from 
decision tree and artificial neural network algorithms, which result in R2 

scores that are 79.8% and 83.2% higher than the multivariate regression 
analysis benchmark, respectively. pα increases with increasing ultra
sound transducer input power P because increasing P increases the 
strength of the acoustic radiation force that drives microfibers to the 
nodes of the standing ultrasound wave field, which is consistent with our 
previous findings obtained using multivariate regression analysis [42]. 
We also find that pα increases and then decreases with increasing mi
crofiber weight percent wf. When wf < 2.0%, increasing wf increases the 
number of microfibers at the nodes of the standing ultrasound wave 
field, which renders the lines of aligned microfibers thicker and darker. 
When wf ≥ 2.0%, the nodes of the standing ultrasound wave field fill 
with microfibers, causing individual microfibers to interlock, which 
prevents additional microfibers from aligning. 

Data-driven models derived from random forest and ANN algorithms 
are 9.1% and 13.7% more accurate, respectively, at predicting the 
probability that a composite material specimen is electrically conductive 
pconductive, as a function of pα and wf, compared to the logistic multivariate 
regression benchmark. pconductive increases with increasing pα and wf, 
which is consistent with results from our previous work [30]. Increasing 
either pα or wf increases the number of microfibers at the nodes of the 
standing ultrasound wave field, which increases the interaction between 
individual microfibers and, therefore, the probability of establishing a 
long-range percolated microfiber network. We also determine that 
increasing pα reduces the percolation threshold by increasing the local 
wf, and therefore the interaction between microfibers, at the nodes of the 
standing ultrasound wave field. 

Using data-driven models derived from machine learning algorithms 
to predict microfiber alignment and electrical conductivity classification 
as a function of ultrasound DSA fabrication process parameters is an 
important step towards using ultrasound DSA to manufacture engi
neered composite materials with embedded electrical wiring and 
anisotropic electrical properties, for use in applications such as wearable 
robotics or stretchable strain sensors. 
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