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1. Introduction

A major challenge of the existing industrial base is its limited abil-
ity to quickly respond to abrupt changes in critical product demand
or to disruptions in manufacturing and supply-chain capacity, fol-
lowing a local or national crisis, such as a natural disaster, a major
infrastructure failure, or a pandemic. For example, during the
COVID-19 pandemic,[1–3] manufacturing of medical supplies,

personal protective equipment, and other
critical, high-demand products ramped up
slowly because the industrial base required
time to adjust its production and distribu-
tion to meet the unexpected surge in
demand.[4–7] In contrast, grass-roots, do-it-
yourself (DIY) efforts that used consumer-
type 3D printers successfully manufactured
small quantities of basic parts and supplies,
including medical devices (e.g., ventilator
valves and nasal swabs) and personal protec-
tive equipment (e.g., face masks and door
openers).[8–11] While the 3D-printed parts
were not identical to their commercial equiv-
alents, they were economic and functional
substitutes. Similarly, one can imagine 3D
printing basic parts that address immediate
needs during other crisis situations, such as
water barriers during flooding, plumbing
parts to fix leaks, or even water filters.[12]

This observation raises the following
questions: could coordinating and scaling
individual efforts through a distributed net-
work of 3D printers effectively address
unexpected disruptions in the industrial
supply-chain and absorb surges in product

demand? In addition, could the network be autonomously recon-
figured based on real-time information about current events to
make it resilient and “crisis-proof”? Finally, what are the techni-
cal hurdles that prevent implementing such a network?

In a context beyond crisis relief, distributed networks of
consumer-type 3D printers (or metal 3D printers once they become
abundantly available) have broad relevance in solving supply-chain
disruption and manufacturing capacity problems in different
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Local or national crises, such as natural disasters, major infrastructure failures,
and pandemics, pose dire threats to manufacturing. The concept of a rideshare-
like distributed network of consumer-type 3D printers is proposed to address the
limited ability of the industrial base to quickly respond to abrupt changes in
critical product demand or to disruptions in manufacturing and supply-chain
capacity. The technical challenges that prevent the implementation of such a
network are discussed, including 1) remote qualification of 3D printers,
2) dynamic routing algorithms with reactive and predictive components, which
take advantage of real-time information about current events that may affect the
network, and 3) performance evaluation of the network. Furthermore, a cyber-
infrastructure that enables autonomous operation and reconfiguration of the
network to render it “crisis-proof” by minimizing human involvement is intro-
duced. The concept of a distributed network of consumer-type 3D printers allows
anyone with a 3D printer and access to the internet to manufacture critical
supplies, triggered by actual and predicted customer demand. Beyond crisis
relief, distributed networks of manufacturing assets have broad relevance, and
they can establish a virtual marketplace to exchange manufacturing capacity.
Thus, this future manufacturing platform has the potential to transform how to
manufacture for the masses.
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industries. Such networks could establish a virtual marketplace to
allow individuals and businesses to exchange manufacturing
capacity. For instance, businesses can buy or sell manufacturing
capacity in the spot market or even engage in forward contracts
to manage capital investment or hedge business risk, whereas
individuals gain instantaneous access to almost unlimited
manufacturing resources. Thus, this future manufacturing
platform has the potential to transform how products for the
masses are manufactured.

2. A “Rideshare-Like” Distributed Manufacturing
Network Concept

We propose the concept of a “rideshare-like” distributed network
of consumer-type 3D printers in homes and businesses across
the country that autonomously reconfigures through monitoring
real-time information about current events, and is supported by a
cloud-based cyber-infrastructure that minimizes human involve-
ment in managing demand and supply of manufacturing resour-
ces. The network can provide crisis relief, when it configures to
prioritize reliability and speed. Alternatively, it can operate as a
virtual manufacturing capacity marketplace under normal eco-
nomic conditions, with focus on price and customer service.
Transition between different operating priorities would be seam-
less and based on market needs. We define and analyze the key
challenges of this concept and propose feasible solutions for its
practical implementation, to promote research and spark interest
at the intersection of manufacturing and intelligent systems.

Figure 1 shows the concept and the key functionalities of such a
future manufacturing platform. Anyone with a 3D printer and

access to the internet (gray dots) can join the network to help man-
ufacture products for the masses, triggered by customer demand
(blue dots), and incentivized through payment, charity, or status
within the network. The cloud-based cyber-infrastructure intelli-
gently routes manufacturing orders placed by individuals, busi-
nesses, or government organizations using a smartphone
application (“app”) to the available 3D printers in the network,
matching their availability, production capacity, quality specifica-
tion, and shipping time requirement. Physical delivery of the parts
or products via traditional (e.g., user drop-off, rideshare-like deliv-
ery, and couriers) or futuristic approaches (e.g., delivery drones
when they become available) fulfills the manufacturing orders
(red arrows).[13] Crucially, the network autonomously reconfig-
ures, informed by real-time information about current events,
obtained through a combination of web-scraping and analysis
of local news websites and social media content, to optimally
match demand and supply and avoid scenarios wheremanufactur-
ing orders remain unfulfilled due to potential fallout from crises,
such as flooded and blocked roads, or electricity outages. For
instance, real-time information about a crisis that develops in
space and time, such as a tornado or hurricane, informs the net-
work to not route manufacturing orders to 3D printers in the path
of the storm, as they may go offline due to an electricity outage, or
infrastructure may be damaged, preventing delivery to the cus-
tomer. Based on real-time information about the path of the storm,
the network can also avoid routing manufacturing orders to 3D
printers near the path of the storm to preserve local manufacturing
capacity in anticipation of near-future orders to help with disaster
relief once the storm has passed.

Furthermore, leveraging real-time information about current
events, the distributed network can also include a predictive
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Figure 1. Concept of a distributed additive manufacturing network to manufacture critical supplies during a crisis. It leverages consumer-type 3D printers
in homes and small businesses (gray dots) and matches demand (blue dots) and supply (red), driven by an artificial intelligence, cloud-based infra-
structure. The network autonomously reconfigures based on monitoring constantly evolving current events in real time, to handle potential disruptions.
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component together with its reactive component. Figure 2 concep-
tually illustrates the difference between the reactive and predictive
component of the manufacturing platform. The predictive compo-
nent bases customer demand on both need (customers submitting
manufacturing orders) and knowledge about where near-future
need may exist (e.g., a storm is about to make landfall), whereas
the traditional reactive component bases customer demand only
on need. In this vein, the network could predict demand for parts
based on historical information about disaster relief, geographical
information, and county tax assessor data about the type of houses
in the path of the storm, and autonomously submit manufacturing
orders based on that predicted demand.

3. Major Roadblocks

Three major roadblocks must be addressed to implement the
rideshare-like distributed network of consumer-type 3D printers:
1) ensuring consistent part-to-part quality despite printer-to-
printer variability across a network of different consumer-type
3D printers without central quality control and subject to variable
user-skill and printer maintenance; 2) dynamic routing of
manufacturing orders during a crisis that evolves in both space
and time while taking advantage of real-time information about
infrastructure damage brought about by that crisis (such as,
floods, road blocks, and rolling blackouts); and 3) measuring
and evaluating the performance of the platform to inform
dynamic routing.

These challenges are specific to the concept of a distributed
network of consumer-type 3D printers, and contrast those of cen-
tralized manufacturing systems where, for instance, trained per-
sonnel uses quality control methods to assess part-to-part quality
in a controlled environment of a single or small number of
manufacturing facilities. In fact, a recent article also notes that
ensuring consistent part-to-part quality is one of the challenges
that prevents the implementation of a distributed network of
manufacturing machines,[14] and other articles report progress

in self-calibrating 3D printers[15] and systems with automated
mechanical testing.[16] It is evident that the success of such a net-
work hinges on the ability to produce identical parts in different
locations, potentially using different machines and feedstock, yet
ultimately meeting a single set of design specifications and qual-
ity standards with regard to dimensional accuracy, surface qual-
ity, and bulk properties, among other properties, defined by the
customer. This requirement contrasts rideshare networks that try
to ensure consistent (or minimum) driver and rider quality
through peer-evaluation scores after the transaction (postper-
formance), instead of before the transaction (preperformance).

Participants who join the manufacturing platform and net-
work (see Figure 1) must first remotely qualify their 3D printers
through, for example, a DIY smartphone-based process that
exploits the embedded sensors and actuators in the phone,
and links to a cloud-based data-driven qualification model.
Remote qualification is crucial because no central ownership
or quality control exists in the network. Furthermore, it is the
key to enabling scalability, as any user can perform the qualifi-
cation themselves, independent of their skill, assisted by a smart-
phone app.

Second, manufacturing orders are optimally routed to match
supply in reaction to demand, and the network autonomously
reconfigures based on real-time information about current
events that might affect the fulfillment of manufacturing orders
(see Figure 2). Contrary to traditional network optimization prob-
lems, routing in crisis situations relies on evolving information.
For instance, while rideshare network algorithms use a fixed con-
nectivity map, crisis algorithms must continuously update their
connectivity maps to reflect 3D printers that have become
unavailable, or to account for impediments to part delivery
because of the unfolding crisis. To increase resilience of the
dynamic routing algorithm, one can supplement reactive routing
with predictive routing, which uses artificial intelligence (AI) to
project future demand and manage supply, based on real-time
information about current events and about the status and capac-
ity of each 3D printer in the network. The combination of reactive
and predictive routing of manufacturing orders is paramount to
quickly respond to abrupt demand surges, or to disruptions in
manufacturing and supply-chain capacity.

4. Pathway to Implementation

4.1. DIY Qualification

A DIY framework for remote qualification of 3D-printed parts
and printers by the 3D printer owner can be leveraged. This pro-
cess requires the evaluation of different characteristics of a 3D-
printed part, namely, 1) geometry and dimensions, 2) surface
topography or surface quality, and 3) bulk properties. To accom-
plish this, one possible approach involves instructing the 3D
printer owner through a smartphone app to 3D print a specific
test specimen using the printer they seek to qualify. Then, the
embedded sensors and actuators of the smartphone can be used
to measure the characteristics of the 3D-printed part. A data-
driven qualification model[17] qualifies the test specimen, by
benchmarking the measurements against model predictions that
account for the process parameters used to 3D print the test
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Figure 2. Reactive versus predictive routing of manufacturing orders,
showing customer demand, 3D printer supply, and local delivery. The rout-
ing algorithm leverages real-time information. Reactive routing is based on
customer demand informed by need, whereas predictive routing is based
on both need and predicted need depending on real-time information
about current events.
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specimen. The data-driven qualification model captures the rela-
tionship between the 3D printing process parameters and the
different qualification metrics, and it is trained using machine
learning (ML) algorithms and large datasets of 3D-printed test
specimens. The magnitude of the deviation between the meas-
urements resulting from the 3D-printed test specimen and those
predicted by the data-driven qualification model allows categoriz-
ing 3D printers in terms of the accuracy and quality of the parts
they produce. The dynamic routing algorithm that assigns
manufacturing orders to different 3D printers in the network
can use this information to improve its decision-making.

Figure 3 shows different possible concepts to use smartphone
sensors and actuators to measure dimensions, surface topogra-
phy, and bulk properties such as stiffness, damping, and energy
storage of a 3D-printed test specimen.

First, the dimensions of the 3D-printed test specimen can be
measured using a smartphone’s camera, inertia measurement
unit (IMU) sensor, and a low-cost laser line generator, in addition
to a printed calibration pattern, as illustrated in the 3D recon-
struction and height estimation concept of Figure 3a.
Specifically, the smartphone is oriented at a known pose inferred
from its IMU sensor, in a fixture that is part of the 3D-printed test
specimen, and rests on the printed calibration pattern. The cali-
bration pattern allows to determine intrinsic and extrinsic param-
eters, as well as distortion coefficients, of the camera using
computer vision and triangulation, such that the height informa-
tion can be calculated for image pixels in the projected laser line.
In the absence of an object, the laser line is straight and does not
distort. The presence of an object distorts the laser line, which is
detected by the camera, and the image pixel information in con-
junction with the camera’s pose enables estimation of height h.
Comparing similar triangles ΔAPB and ΔLPC in Figure 2a, the
height can be calculated as h¼ (Dβ)/α, assuming that D>> h,
which can be controlled through the design of the 3D-printed
test specimen and test fixture, respectively. Using this approach,
a 3Dmodel of the part can be reconstructed along with its dimen-
sions, by scanning the phone and laser line projector around the
part, while keeping track of the pose of the phone. Subsequently,
the volume can be determined from the 3D model reconstruc-
tion, and the density from the weight of the test specimen.

Second, the surface topography of the 3D-printed test speci-
men can be estimated by using the ambient light sensor of

the phone, in combination with its on-board LED light source
and its camera. The surface topography affects the reflectivity
of the surface. Thus, extracting information from the phone’s
ambient light sensor under a known pose (through a 3D-printed
smartphone stand with preset stand angles) that captures the
light reflecting off the test specimen’s surface, illuminated by
the phone’s light source (or additional integrated light source),
yields information about the surface topography (Figure 3b).
Comparing those results with images of the specimen under
multiple angles further enhances the information that can be
extracted from the surface. ML algorithms can establish a
data-driven model that relates reflectivity and image pixel inten-
sity to known surface topography benchmarks. Similar to surface
topography, in-fill pattern consistency can be measured by ana-
lyzing photographs under different angles and exposure settings,
in combination with ML algorithms that relate the observations
to known in-fill patterns.

Finally, by leveraging the smartphone’s camera to capture a
video of the 3D-printed test specimen’s transient response,
driven by the phone’s vibration actuator, the bulk properties
of the test specimen, including stiffness and damping, can be
measured. Figure 3c shows this process, for example, 3D-printed
nasal swab, while capturing a video with pixel tracking to record
the transient response. ML in combination with a Gaussian pro-
cess can enable modeling the dynamics of the test specimen.
Furthermore, combining the 3D CAD model (or its reconstruc-
tion) and finite element analysis can determine the frequency
response function of the test specimen and compare it with a
benchmark. Similarly, it is conceivable to measure energy stor-
age of the test specimen by performing simple drop tests
(Figure 3c). The phone and test specimen are affixed to each
other and dropped from a short height (a few inches) while mea-
suring the acceleration during impact using the phone’s IMU
sensor. The energy absorption of the specimen relates to the
acceleration during and after impact. State-of-the-art smart-
phones can tolerate drops up to 6 ft.[18]

4.2. Dynamic Routing of Manufacturing Orders, Accounting for
Real-Time Information

Contrary to classical optimization problems, routing in crisis sit-
uations relies on dynamic information. Thus, timely access to
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Figure 3. Schematic of potential concepts to remotely qualify a 3D-printed test specimen through a smartphone with embedded sensors/actuators
combined with ML algorithms: a) vision and IMU-based dimensional characterization, b) camera and light-intensity-based surface topography charac-
terization, and c) vision-based dynamic response characterization and IMU-based energy storage and structural testing.
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information, such as through web-scraping, is important to opti-
mally route manufacturing orders to different 3D printers.
Relying on individual information channels may not provide
thorough and timely access to information. News outlets and
government reports are typically reliable but often broadcast with
a delay. In contrast, social media updates from individuals are
swiftly available, but they are not indexed and well organized,
and they could be prone to individual misinterpretations.
Thus, it is necessary to integrate information from
both official and unofficial sources to provide reliable and
information-rich, real-time input for the routing algorithm.[19,20]

The theory of temporal networks[21–23] constitutes a powerful
lens through which one can analyze the problem of routing dur-
ing crises. Figure 4 shows a bivariate network in which demand
(manufacturing orders submitted by customers) and supply (3D
printers in the network) represent two distinct sets of nodes.
Demand nodes encode the manufacturing order that must be
fulfilled and a geographical destination where the parts are
needed. Similarly, supply nodes are characterized by their pro-
duction capacity, production efficiency, and the quality of the
parts they produce, which is known from the smartphone-based
remote qualification. The demand and supply network could vary
in time due to the concurrent evolution of a crisis. For instance,
in the case of an electricity outage, a portion of the supply nodes
may become unavailable and road closures may prohibit connec-
tions between demand and supply even though they are geo-
graphically proximal. Along with temporal patterning, spatial
heterogeneities exist, whereby quality of the printed parts, pro-
duction capacity, and geographical location of supply nodes
jointly vary with respect to demand nodes. Indeed, a specific
demand node may be geographically close to several supply
nodes, but none of them prints parts with the desired quality
or provides the required production capacity.

Spatiotemporal features of the demand and supply network
contribute to the complexity of the routing that must be under-
taken in real time with granular feedback about the topology of
the network and the attributes of its nodes. As spatial and tem-
poral scales of the demand and supply network are on the same
order as those of the unfolding crisis, the solution of the routing
problem at the time a manufacturing order is placed should
leverage predictive tools to forecast potential disruptions that
may occur during 3D printing and delivery. In addition, digital
media may add predictive power to the algorithm in forecasting
the true demand for the product requested and the geographic
distribution of that demand. As such, the algorithm could stra-
tegically withhold tasks from certain supply nodes in anticipation
of a large volume of near-future tasks.

4.3. Network Performance

The physical structure of a traditional supply-chain, together with
managerial decision making, determines its performance.
As opposed to traditional centralized supply-chain networks,
the distributed network of 3D printers is dynamic, and its struc-
ture autonomously reconfigures based on demand and supply, as
well as real-time information about current events. Furthermore,
the effect of information sharing within the network is of critical
importance for the predictive routing algorithm. A set of perfor-
mance metrics is needed that captures the specifics of this type of
network, which is unlike traditional, centralized networks, or
even static distributed networks. Using such metrics, analysis
and evaluation can be performed on distributed 3D printer net-
works under distinct operating conditions (such as normal, dis-
tressed, demand surges, excess supply) and specific possible
configurations (including single product versus multiple product
mix, and centralized decision-making versus decentralized
decision-making). Ultimately, this information can further
enhance the dynamic routing algorithm.

5. What Are the Benefits?

Implementing distributed networks of 3D printers has been
attempted before[24] in the forms of cloud-based manufacturing
of dental parts[25] and a marketplace to sell and buy excess
manufacturing capacity to mitigate production risk,[26] among
other examples.[27] A recent perspective[14] also put forward the
idea of massively distributedmanufacturing, which combines geo-
graphically distributing and democratizing manufacturing.
Therefore, this perspective shares some of these high-level
ideas,[14] but specifically focuses on identifying the key challenges
that must be solved to implement such a network and, addition-
ally, proposes feasible solutions that are specific to crisis relief, as
discussed in Section 4.

Companies such as 3DHUB and GEOMIQ offer manufactur-
ing services, including additive manufacturing services, through
a distributed network of contract manufacturers, and they have
implemented the idea of a cyber-like manufacturing marketplace
with fixed nodes. However, these implementations do not con-
sider dynamic routing, do not operate autonomously, and are dif-
ficult to scale because they rely on professional-type contractors
in the network. They also do not reconfigure, in part, because the
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Figure 4. Schematic of the demand and supply network optimization
algorithm. Demand and supply nodes with individual orders and produc-
tion capacities represent the input of the predictive model, along with
spatial datasets and information about the crisis evolution. The predic-
tive model informs the routing algorithm that assigns tasks to supply
nodes and distribution to demand nodes. Web-scraping informs the
parameters of the predictive model and routing algorithm from real-time
information.
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network does not have a sufficiently large number of nodes.
Thus, a distributed manufacturing network that allows consum-
ers and small businesses to contribute their own 3D printing
resources, such as the rideshare model for transportation (such
as Uber and Lyft), has not been implemented before. The idea of
remote 3D printer qualification allows quality control across the
network and optimally routing manufacturing orders
minimizes logistical expense, thus powering a virtual market-
place for trading manufacturing capacity.

6. Conclusion

Coordinating and scaling local or regional efforts through a dis-
tributed network of 3D printers presents a promising route to
absorb surges in product demand and address unexpected dis-
ruptions in the industrial supply-chain. The key technical hurdle
that prevents implementing such a network is the ability to reli-
ably and repeatably perform remote qualification of 3D-printed
parts and printers. In addition, taking advantage of real-time
information about current events could enable the network to
reconfigure, and effectively route manufacturing orders both
in crisis (prioritize speed and reliability) and normal operating
conditions (prioritize price and customer service). It could even
enable predictive routing of manufacturing orders based on
anticipated demand. Beyond crisis relief, distributed networks
of manufacturing assets could establish a virtual marketplace
to exchange manufacturing capacity. Thus, this future
manufacturing platform has the potential to transform how to
manufacture for the masses.
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