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Abstract The friction coefficient between a magnetic
tape and a guide in a tape path can be minimized by cre-
ating micro dimples on the guide surface with laser surface
texturing. The dimples enhance the formation of an air
bearing and reduce the friction coefficient between the tape
and the guide due to the increased spacing. A model is
presented to optimize the geometry of the surface texturing
parameters to maximize the average air bearing pressure
and minimize the tape/guide friction coefficient.

Keywords Magnetic tape tribology - Friction modeling -
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Nomenclature
c Minimum tape/guide spacing
HX.Y) Dimensionless spacing, H = hic

H*(X*,Y*) Dimensionless spacing in local coordinates,
H =hle ‘

h(x,y) Tape/guide spacing in global coordinates

h'(x",y")  Tape/guide spacing in local coordinates

h, Depth of dimple

N Number of dimples in a column

PX,Y) Dimensionless pressure, P = p/p,
p(x,y) Air bearing pressure

Pa Atmospheric pressure

Pavg Average air bearing pressure

r Imaginary cell half length
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Dimple radius

Guide radius

Dimple area density

Tape tension per unit tape width

Width of the tape

Dimensionless coordinate, X = x/r,, Y = y/r,

, Y Dimensionless local coordinate, X = x*/rp,
Y = y*/rp

X,y Global coordinate

. Local coordinate

Dimensionless minimum tape/guide spacing,

d = cf2r,

Dimple aspect ratio, € = hy/2r,

Over-relaxation parameter

Flow parameter, A = 3y, U/2r, p,

as Standard deviation of asperity summit heights

o R R
)~<

=2

Introduction

Lateral tape motion (LTM) is defined as the time-
dependent motion of magnetic tape perpendicular to the
tape transport direction, and is one of the critical
parameters in the design of magnetic tape drives. LTM is
a friction related problem that can cause track misregis-
tration and that limits the achievable track density on a
tape [1]. LTM is influenced by friction between tape and
guide surfaces and by the dynamics of the tape and the
guides. It was shown in [2-4] that friction attenuates
LTM. On the other hand, tape drives with low-friction
pressurized air bearing guides yield a significantly lower
LTM than tape drives with rotating guides [5]. The main
disadvantage of pressurized air bearing guides is that they
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require an external compressor which is undesirable from
a reliability point of view. '

To achieve low friction between a tape and a guide
without external pressurization, the use of a self acting air
bearing between the tape and guide is desirable. This
would eliminate the need for an external compressor, while
still benefiting from the low friction of an air bearing. In
studying the friction of the tape/guide interface, it was
observed [6] that the tape speed at which the transition
from boundary lubrication to hydrodynamic lubrication
occurs, is strongly influenced by the surface roughness of
the guides. In [7] laser surface textured guides were used
and it was found that laser texturing reduces the friction
coefficient between tape and guide significantly, especially
in the low tape speed range. In this article, we study the
effect of laser surface texturing (LST) on the tribological
performance of the magnetic tape/guide interface and the
transition from boundary lubrication to hydrodynamic
lubrication with the intent to reduce friction and minimize
the tape speed at which the transition occurs.

Laser surface texturing is a well established technique to
create micro dimples on the surface of tribological com-
ponents [8-11]. These dimples are generally arranged in
columns and act as micro-hydrodynamic bearings, i.e., they
create a local pressure increase between two surfaces in
relative motion. Hence, the fluid film thickness for such
bearings is increased. Figure 1 shows a tape moving at a
speed U over a laser surface textured guide. The size of the
dimples is exaggerated for the purpose of clarity.

Fig. 1 Tape moving over a laser surface textured guide
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Theoretical Model

To better understand the effect of a textured guide surface
on the tribological performance of the tape/guide interface,
we have simulated the pressure distribution between the
tape and the guide surface for a column of ten dimples. We
made the following assumptions:

1. The tape is considered rigid. Local elastic deforma-
tions of the tape are neglected. This assumption im-
plies that no elasto-hydrodynamic effects are taken
into account.

2. The tape is assumed to be conformal to the guide [12].
This case is identical to a parallel slider bearing. One-
dimensional foil bearing simulations [13] show that the
tape is indeed conformal to a smooth guide over 95%
of the interface length.

3. The shape of all dimples is identical and spherical.
The dimples are uniformly distributed over the guide
surface.

4, The gas in the air bearing is compressible and has a
constant viscosity. '

5. The air bearing is assumed to be infinitely wide, i.e.,
side flow effects are neglected. Hence, one column of
dimples is representative of the whole air bearing
surface, when a periodic boundary condition is applied
in the direction perpendicular to the flow.

6. The model is only valid for the hydrodynamic lubri-
cation regime. No asperity contact is allowed.

According to assumption 1, the guide and magnetic tape
are separated by a uniform air film of thickness c. It should
be noted that in reality the tape is flexible, i.e., simultaneous
solution of the Reynolds equation along with the tape elas-
ticity equation is required. However, the assumption of a
rigid tape allows a first order approximation of the physical
situation without the need for extended numerical solutions.

The effects of the curvature of the cylindrical surface
can be neglected in the model, since the minimum tape/
guide spacing ¢ is much smaller than the guide radius.
Additionally, we assume full fluid film lubrication and
therefore require ¢ = 30, [14].

The spherical dimples are uniformly distributed over the
guide surface and each dimple is contained within an
imaginary square cell of length 2ry. Figure 2 shows one
dimple with radius r,, positioned at the center of the imag-
inary cell. We have defined a local Cartesian coordinate
system x"y" with origin at the center of the imaginary cell.

The cell length r; can be expressed as a function of the
dimple area density S, and the dimple radius 7, as

"p ko
r = — /=
2 Vs,
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2r,

Fig. 2 Single spherical dimple within its imaginary cell (local

coordinates)

Figure 3a shows the distribution of the dimples on the
guide surface in a global Cartesian xy coordinate system.
Each column of dimples is parallel to the x-axis and can be
modeled as shown in Fig. 3b.

Figure 4 presents a cross section through the center of
the dimples. Here, r,, denotes the radius of the dimple, #,
denotes the depth of the dimple, ¢ is the tape/guide mini-
mum spacing and h(x,y) is the clearance between the guide
surface and the magnetic tape.
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Fig. 3 (a) Dimple distribution and (b) a single column of dimples
(global coordinates)

The two dimensional, steady-state compressible Rey-
nolds equation, which relates the pressure distribution to
the spacing at the tape/guide interface [15], is given by

8 ( 30\ 0/ 0 a(ph)
SN 4 2 (2 = 6 v 222 2
Ox (ph ax> + )" (p dy 61U ax @)

where x and y represent coordinates in a global Cartesian
coordinate system, p(x,y) is the air bearing pressure, u, is
the dynamic viscosity of air and h(x,y) is the local clear-
ance between tape and guide. Since the tape/guide spacing
is much larger than the mean free path of air, rarefaction
effects are neglected.

For the analysis of the textured surface, it is convenient
to introduce the following non-dimensional expressions:

X y plx,y R{x,y
X:——,Yz—,P(X,Y)z——(i—l, H(X,Y) = ( ),
Fp p Pa C

(3)

where X and Y denote the non-dimensional (global)
coordinates, and P and H denote the non-dimensional
pressure and spacing, respectively. The normalizing
pressure p, is the atmospheric pressure. The
dimensionless local spacing H™ as a function of the
dimensionless local coordinates X*,¥" for one cell, shown
in Fig. 4, is given by [16]:

HY (X', Y)=1, forX?+7?>1

& 1\?* 1
* 7y *y = = (Y2 2
H*(X*,7*) 1+\/(25+355) (X242 )

1 & *2 *2
[ *L
(886 26)’ for X+ Y 1

where € = hy/2r, is the aspect ratio of the dimple and
& = cf2ry is the dimensionless tape/guide minimum spac-
ing.

To create a column of dimples of identical shape (see
Fig. 3b), we expand the dimensionless height distribution
for a single cell, H*(X*,Yk), to a column of N = 10 cells by
repeating the height distribution for a single cell for each
cell in the column. The dimensionless Reynolds equation in
the global coordinate system can then be expressed as

d ,0P\ @ ;0P\ _ A 0(PH)
¢ _(PH ax) "oy (PH ay> S8 X ©)

where A = 3u, Ul2r, p, and & = c/2r,,.

The following boundary conditions are assumed. The
pressure is atmospheric at the ‘inlet and outlet of the tape/
guide interface. In addition, the pressure is periodic in the
direction perpendicular to the air flow (Y-direction). This
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Fig. 4 Geometry of the dimples

assumption implies that side-flow effects are neglected.
Multiple columns of dimples next to one another will yield
a periodic pressure distribution. The period is defined by
the size of the imaginary cell (2r;). The boundary condi-
tions can be expressed as '

PX=0,Y)=1
= 211 =
Plx=nNx) =1 (6)

— ) T
(0r==) -h(xr ) o

where N is the number of cells in a column (see Fig. 3b).
Equation (5) can be solved for the pressure distribution if
the dimensionless spacing H(X,Y) and the dimensionless
parameters A, 0 and ¢ are specified. A “staggered grid”
finite difference approach [17] was used to solve Eq. (5)
with the boundary conditions specified in Eq. (6) for a non-
dimensional local spacing distribution given by Eq. (4). A
grid of 200 by 200 nodes per cell was chosen based on
convergence requirements. Due to the symmetry with re-
spect to the X-axis, it is only necessary to solve for half the
imaginary cell. An over-relaxation factor of y = 1.4 was
used to obtain a faster convergence of the pressure distri-
bution.

Resuits
Air Bearing Pressure

Figure 5a depicts the cross section of the column of dim-
ples along the X-axis (see Fig. 3b), normalized by ry,. The
horizontal and vertical scales in Fig. 3a are uneven,
resulting in the distorted appearance of the dimple shape.
Figure 5b shows the dimensionless pressure distribution
along the X-axis, for a column of N = 10 cells and values
of 1 =214F-5, § =0.002, € =0.01 and S, = 0.15. Fig-
ure 5¢ shows the two dimensional pressure distribution
across a single dimple in a column (imaginary cell).

The direction of the flow (tape speed U) has been
indicated in Fig. 5. From Fig. 5b we observe that the
pressure at the inlet of a dimple (with reference to the
direction of the flow) becomes sub-ambient, because the

@ Springer

Fig. 5 (a) Cross-sectional view of the column of dimples, (b)
Dimensionless pressure distribution along the X-axis for a column of
N = 10 dimples and (c) pressure distribution across a single dimple
(imaginary cell). Dimple density S, = 0.15

local spacing between the tape and guide increases. When
the flow passes the midpoint of the dimple, the spacing
decreases and thus, the pressure increases. The pressure
distribution is non-symmetric over the dimple region, i.e.,
the net effect of the dimples is an increased average air
bearing pressure pqy,, Which is greater than the atmospheric
Pressure pa, i.e., Pave/pp > 1. Without dimples, the dimen-
sionless pressure pa../p. = 1. equivalent to the parallel
slider case. The increased pressure p,., will increase the
load bearing capacity and spacing between the tape and the
guide for a fixed tape tension and speed. In other words, for
a dimpled guide surface, the transition from boundary
lubrication to hydrodynamic lubrication occurs at a lower
tape speed than in the case of a smooth guide. We point out
that a single column of five to ten consecutive dimples is
representative of the entire dimpled surface. As observed in
Fig. 5, the pressure profile becomes identical for each
dimple, except for the first two dimples at the inlet and
outlet of the column. Therefore, the simulation of just one
column of ten dimples is a valid representation for the
effects of a complete textured surface.

Optimization of Dimple Geometry

The dimensionless parameters Sp, €, 0, and A define the
dimple area density, dimple aspect ratio, the dimensionless
minimum spacing between tape and gunide and the flow
parameter, respectively. Table | shows a typical reference
case along with the range of variation of the dimple depth
and tape/guide spacing as well as the corresponding
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Table 1 Range of the dimensional and dimensionless parameters

Parameter Minimum Reference Maximum
iy (Um) 0.3 1 5
¢ (nm) 100 200 400
0.003 0.01 0.05
8 0.001 0.002 0.004
A SE-06 2E-05 3E-05

dimensionless parameters. The atmospheric pressure p,
was taken to be 0.1 MPa and the viscosity of air -
Uy = 1.81E-5 Pas. The typical standard deviation of
asperity summit heights in commercial tape/guide contacts
is on the order of ¢, =30 nm [7]. This number is the
equivalent roughness of the mating tape and guide surfaces,
see McCool {18]. The assumption of full fluid film lubri-
cation, ¢ 2 30, [14], requires the minimum tape/guide
spacing ¢ to be larger than 100 nm. The dimple radius was
selected to be 7, = 50 um for ease of manufacturing.

In the following, we use our model to numerically

investigate how these parameters can be chosen to yield the
highest possible average air bearing pressure between the
conformal tape and the guide. A maximized average air
bearing pressure will yield the highest load carrying
capacity and herce, the highest tape/guide spacing for a
given tape tension. '

Figure 6 shows the dimensionless average air bearing
Pressure paye/pa versus the dimple density S, for different
values of the dimple aspect ratio € and for the reference
values 6 = 0.002 and A = 2E-5.

Since the guide surface is smooth (parallel slider bear-
ing) for both of the extreme dimple densities S, = 0 and
Sp =1, an optimum density must exist which yields the
highest average air bearing pressure p,,./p.. From Fig. 6
we observe that the optimum §, occurs for values from
0.10 to 0.30 depending on the dimple aspect ratio €. We
note that the optimum dimple density shifts towards lower

: A=2E-5
: 0,002

avg T a

1.06 pf----- : ;

Dimensionless pressure p_ /p

0 0.2 04 0.6 0.8 1
Dimple density Sp

Fig. 6 Dimensionless average air bearing pressure, payg/p, versus
dimple density S,

values for an increasing dimple aspect ratio €. Hence, when
the dimple aspect ratio is increased, fewer dimples per unit
surface area are needed to obtain the maximum dimen-
sionless air bearing pressure for that specific dimple aspect
ratio. We also found that the dimensionless tape/guide
minimum spacing ¢ does not affect the optimum dimple
density. Additionally, it is clear from Fig. 6 that an opti-
mum dimple aspect ratio exists in the range 0.003 < ¢ <
0.05.

Figure 7a shows the dimensionless pressure versus the
dimple aspect ratio for different values of the dimension-
less spacing & and for A =2 x 107 and a dimple density
Sp = 0.15. Figure 7b shows the dimensionless pressure
versus the dimple aspect ratio for different values of the
parameter A and for & = 0.002. For a given & and for a
constant atmospheric pressure p,, dimple radius 7, and air
viscosity p,, the flow parameter A depends only on the tape
speed U.

From both Fig. 7a and b we observe that the optimum
value for the dimple aspect ratio £ is approximately 0.006
regardless of & or A. For instance, if the dimple radius
rp = 50 um, we observe that the optimal value of the
dimple depth #, = 0.6 pm. From Fig. 7a and b we also
note that the dimensionless average air bearing pressure
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Fig. 7 Dimensionless average air bearing pressurc versus dimple

aspect ratio for (a) different dimensionless spacing values and (b)
different values of A
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Fig. 8 Dimensionless average air bearing pressure versus dimen-
sionless spacing for different dimple aspect ratios

increases for decreasing ¢ and for increasing tape speed U
(increasing A), as would be expected.

Figure 8 shows the dimensionless average pressure p,y,/
p. versus the dimensionless spacing d = ¢/2r, for different
values of the dimple aspect ratio € and for §, = 0.15 and
A =2E-5.

The results are shown for 6 2 0.001 only, corresponding
to full fluid lubrication. We observe a sharp increase in the
dimensionless pressure for.decreasing values of 6, which
corresponds to decreasing tape/guide spacing.

Finally, Fig. 9 shows the optimum combination of
dimple density and dimple aspect ratio, for different values
of the dimensionless tape/guide minimum spacing and for
A =2E-5.

We observe that for the optimum dimple aspect ratio
€ = 0.006 and the optimum dimple density S, = 0.15, the
dimensionless pressure reaches a maximum value of
approximately 1.09 for J =0.002 and A = 2E-5. This
number represents the maximum dimensionless average
pressure that can be obtained, according to our simplified
model.
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Fig. 9 Dimensionless average air bearing pressure versus dimple
density S,,, for the optimum dimple aspect ratio
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Friction

When neglecting the tape bending stiffness, the equilibrium
between the tape tension per unit tape width, 7, and the air
bearing pressure requires that [19]

Pavg — Pa = T/R, (7)

for a guide with radius R. Non-dimensionalizing Eq. (7)
with the atmospheric pressure p, yields

Pavg/Pa -1= T/(paR) . (8)

Figure 10 shows the dimensionless tape/guide spacing é
versus the dimple aspect ratio ¢ for different values of the
dimensionless tape tension 7/(p, R) (dimple density
Sy, = 0.15 and flow parameter A = 2E-5). The results shown
in Fig. 10 were obtained from paye/p, = ) curves as
shown in Fig. 8. The intersection of these curves with
horizontal lines for p.e/pa = constant yields values of 6 for
each e-curve, The dimensionless average air bearing
pressure was then converted to a dimensionless tape ten-
sion by eq. (8). To obtain Fig. 10, we considered more
values of than displayed in Fig. 8.

Since we assumed that the tape and guide are conformal,
Fig. 10 shows the dimensionless tape/guide spacing which
is only due to the pressure generated by the presence of
dimples in the tape/guide interface. The results presented in
Fig. 10 were obtained for > 0.001 to comply with the
assumption of full fluid film lubrication. We observe that
the optimum dimple aspect ratio &€ = 0.006 maximizes the
tape/guide spacing regardless of the tape tension, since this
optimum aspect ratio always yields the highest average
pressure. For any given € value, the dimensionless tape/
guide spacing decreases when the dimensionless tape ten-
sion is increased, as would be expected. We observe that

T
. A=2E-5
3.5 - /0: 00T T/p R=6:01 -

Dimensionless spacing§
n
(4]
:
H
:
‘
i

1.5 fiFp--- -

0.003 0.01 0.02 0.03 0.04 0.05
Dimple aspect ratioe

Fig. 10 Dimensionless tape/guide spacing & versus the dimple aspect
ratio & for different values of the dimensionless tape tension
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the dimensionless spacing & is very sensitive to the dimple
aspect ratio when g < 0.006. This is further amplified when
the dimensionless tape tension is increased.

The average shear stress in the air bearing, which is a
measure of the air friction, can be expressed as

T = U/ ce ©)

where 7 is the shear stress, u, is the air viscosity and U is
the tape speed. The spacing c.q is an equivalent tape/guide
spacing that takes into account the dimple depth [15] and
can be determined as

(10)

In Eq. (10), heq can be obtained by dividing the volume of
a dimple by the surface area of its imaginary square cell.
Hence,

Ceq = C + hgg

hPSP 2 2
heq = F <hp + 3i’p)
p

(11)

Non-dimensionalizing Eq. (11) with 2r, yields

C2 3
beq =0+ Egsp(az +2) (12)

which, for € £ 0.05, can be approximated by

(13)

If T = f{é) and 6 = fle) are known (see Eqs. (9)—(13) and
Fig. 10), one can determine the relationship between the
shear stress 7 and the dimple aspect ratio €. Equation (9)
can be re-written in terms of ey as

Jeq = 0 + 85,/2

Ha U

= 14
t 2rpdeq (14)

The dimensionless shear stress, or equivalently, the
friction coefficient, can be obtained as

T _ U
Pavg = Pa 2rp65q (pavg - pa)

(15)

Using the non-dimensional flow parameter A = 3y, U/2r,
p, and substituting Eq. (7) in Eq. (15), we obtain:

T _ A PR (16)
Pavg —Pa 30q T

Equation (16) represents the friction coefficient t/(payg—pa)
of the air bearing, generated by presence of the dimples.
Figure 11 shows the friction coefficient ©/(p.ye—pa) versus
the dimple aspect ratio & for different values of the

0.256

avg-pa)
(=]
= =
o N

o
=

005

Friction coefficient t/(p

0.01 0.02 0.03 0.04 0.05
Dimple aspect ratioe

Fig. 11 Dimensionless shear stress versus the dimple aspect ratio €
for different dimensionless values of the tape tension

dimensionless tape tension with a dimple density S, = 0.15
and a flow parameter 1 = 2E-5.

From Fig. 11 we observe that for a dimensionless tape
tension below 0.02, the dimensionless shear stress de-
creases monotonically as the dimple aspect ratio increases.
For a dimensionless tape tension above 0.02 the dimen-
sionless shear stress initially decreases with increasing
dimple aspect ratio, but then levels off for aspect ratios
above 0.01. This behavior can be understood from the re-
sults in Fig. 10 and from Eqgs. (13) and (16). As can be seen
from Fig. 10 for € < 0.006, a small increase in € results in a
large increase in ¢ and hence, from Egs. (13) and (16), a
large increase in .y and a large decrease in the friction
coefficient, respectively. On the other hand at £ > 0.01 (see
Fig. 10) an increase in € may be compensated by a de-
crease in ¢ when calculating d.q, thereby leaving the fric-
tion coefficient unchanged. This is not the case for a low
tape tension where an increase in € above 0.01 results in a
relatively small decrease in  (see Fig. 10) causing deq to
increase and the friction coefficient to decrease. As a result,
the optimum dimple aspect ratio &€ = 0.006 which yields
maximum load bearing capacity does not provide a mini-
mum for the friction coefficient.

Finally, we observe from Fig. 11 that the friction coef-
ficient decreases for increasing non-dimensional tape ten-
sion T/(p, R), regardless of the dimple aspect ratio € in
accordance with Eq. (16).

Numerical Example

In this section we have compared the predictions of our
simplified numerical model with experimental results. We
have used the experimental set-up and procedure outlined
in [6] and [7] to measure the friction coefficient between a
tape and a guide at tape speeds between 4 and 7 m/s, to
maKe sure the tape operates under full fluid lubrication
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Fig. 12 Friction coefficient versus tape speed for an LST guide of
radius 15 mm, S, = 0.15 and & = 0.02

conditions. Figure 12 shows a comparison between the
theoretical predictions and experimental results for a tex-
tured guide with a radius R of 15 mm, dimple density
Sp = 0.15, and dimple aspect ratio &€ = 0.02. The tape was a
commercial MP tape of width w = 0.0127 m. The tape
tension was 1 N and the atmospheric pressure
Pa= 0.1 MPq, i.e., T/(p, R) = 0.05.

The theoretical model is in good agreement with
experimental measurements. In the full fluid lubrication
regime, the friction coefficient increases slightly for
increasing tape speed as predicted qualitatively by the
Stribeck curve. The experimental results show that the
friction coefficients predicted by the model are of the same
order as the experimental results. We note that the values
for the theoretical results are higher than those for the
experimental results. This is likely due to the simplifying
assumption of a conformal and “rigid” tape. A converging
channel at the leading edge would create a higher average
pressure and thus a higher load bearing capacity. This
would result in lower friction coefficients, which would
improve the agreement between the theoretical model and
experimentally obtained friction coefficients.

Transition Speed Estimation

In the design of tape drives, it is important to minimize the
speed at which the transition from boundary lubrication to
hydrodynamic lubrication occurs. For a typical smooth
guide with o, = 30 nm, hydrodynamic lubrication occurs
for a tape/guide spacing of approximately ¢ = 100 nm [14].
Figure 13 shows the minimum tape/guide spacing ¢ versus
the tape speed for a dimensionless tape tension T/(p,
R) = 0.1, for a smooth and a textured guide.

The results in Fig. 13 were obtained by superimposing
the spacing due to the presence of dimples in the tape/guide
interface, calculated with our model, on the spacing cal-
culated for a smooth guide with [13].. This approach

@ Springer

Speed [m/s]

Fig. 13 Minimum spacing ¢ versus tape speed for a dimensionless
tape tension of T/(p, R) = 0.1

neglects non-linear effects of the compressible air bearing.
However, since compressibility effects are small at low
velocity, it can be justified that the total tape guide/spacing
for a dimpled guide is, to a first order, the sum of the
spacing of a smooth guide and the extra spacing created by
the presence of dimples in the tape/guide interface.

In Fig. 13, a horizontal line for ¢ = 30, yields the
transition speed between boundary and hydrodynamic
lubrication for both the smooth and the textured guide [14].
For a 30,-value of 100 nm, we observe from Fig. 13 that in
the case of a textured guide (dashed line) the transition
speed is 0.4 m/s, while in the case of a smooth guide the
transition speed is 1.35 m/s. Similarly, for a 3g;-value of
130 nm, the transition speed for a textured guide would be
0.55 and 2 m/s in the case of a smooth guide.

Discussion

Our model predicts that dimpled guides feature a signifi-
cantly lower transition speed between boundary lubrication
and hydrodynamic lubrication than smooth guides. Using
dimpled guides (stationary) in commercial tape drives in-
stead of the currently used smooth rollers (rotating), would
potentially yield improvements in terms of tape transport
and L'TM, Furthermore, tape wear, which is a problem of
considerable interest in tape drives with smooth stationary
guides, will also be reduced due to the lower transition
speed.

Additionally, dimpled guides would potentially enable
the wide-spread introduction of metal evaporated (ME)
tape. ME tape is desirable from a magnetics point of view,
since the cobalt magnetic layer has a higher coercivity than
the currently used metal particulate (MP) tape. Hence, ME
tape would allow an increase in storage density, compared
to MP tape. The tribological performance of ME tape,
however, is problematic compared to MP tape, especially
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at low-tape speeds, where surface contact occurs between
the tape and the guide surface [6, 20, 21]. Dimpled guide
surfaces create a higher air bearing pressure compared to
smooth guides and thus, increase the flying height at low
speeds. This would improve the tribological performance
of ME tape.

Our model neglects elasto-hydrodynamic effects. How-
ever, for low tape speeds corresponding to the transition
from boundary to hydrodynamic lubrication, the bearing
number is small and thus the compressibility effects of the
air bearing are less prominent, i.e., it is justifiable to

approximate the compressible air bearing by an incom- .

pressible one.

Including elasto-hydrodynamic effects in the model
would yield a more accurate solution than our current
model, but would require a substantially larger numerical
effort. For a full-size simulation of the complete tape/
dimpled guide interface we calculate the following sce-
nario. Assuming a guide with a radius of 10 mm, a dimple
density of 0.2 and a dimple radius of 50 pm, in combina-
tion with a 12.7 mm wide tape and a wrap angle of 90
degrees, we calculate that the tape/guide interface contains
approximately 20,000 dimples. To fully capture the pres-
sure gradient created over a dimple, a grid of 200 by 200
nodes per dimple (imaginary cell) is needed. Hence,
800 million nodes would be required to simulate the
complete tape/guide interface. A numerical problem of this
size poses a challenge to present day computer hardware
and requires long simulation times, if at all it is solvable.

Conclusion

e The optimum dimple density was found to be between
0.1 and 0.3, depending on the dimple aspect ratio. A
greater dimple aspect ratio will reduce the optimum
dimple density. The tape/guide minimum spacing does
not affect the optimum dimple density.

¢ The optimum dimple aspect ratio for maximum average
air bearing pressure was found to be 0.006, almost
independent of the dimensionless tape/guide spacing &
and the flow factor A.

o The friction coefficient decreases monotonically with
increasing dimple aspect ratio. Qur simplified model
shows good qualitative agreement with experimental
results.

¢ The transition speed between boundary and hydrody-
namic lubrication is reduced for a dimpled guide
compared to a smooth guide.

¢ Improvements to the present model can be obtained by
including elasto-hydrodynamic effects.
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