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A B S T R A C T

Pin-on-disc (PoD) experiments are widely used to quantify and rank wear of different material couples for
prosthetic hip implant bearings. However, polyethylene wear results obtained from different PoD experiments
are sometimes difficult to compare, which potentially leaves information inaccessible. We use machine learning
methods to implement several data-driven models, and subsequently validate them by quantifying the prediction
error with respect to published experimental data. A data-driven model can supplement results from PoD wear
experiments, and enables predicting polyethylene wear of new PoD experiments based on its operating para-
meters. It also reveals the relative contribution of individual PoD operating parameters to the resulting poly-
ethylene wear, thus informing design of experiments, and potentially reducing the need for time consuming PoD
wear measurements.

1. Introduction

A prosthetic hip implant typically comprises a femoral component
that articulates with an acetabular component to replace the natural hip
function and alleviate pain and disability from degenerative joint dis-
eases such as (osteo)arthritis [1]. Metal-on-polyethylene (MoP) is the
most commonly used bearing material couple in state-of-the-art pros-
thetic hip implants used in the United States [2], typically pairing a
CoCrMo femoral head with a polyethylene acetabular liner. Many studies
document the effect of polyethylene wear on the longevity of MoP
prosthetic hip implants (see e.g. Refs. [3–5]). Polyethylene wear debris
may cause osteolysis (“weakening of the bone”) [4], which could po-
tentially lead to implant loosening and mechanical instability [5]. Re-
search to reduce polyethylene wear and increase longevity of MoP
prosthetic hip implants involves changing the implant design and im-
proving the mechanical properties of the polyethylene liner. For instance,
highly cross-linked polyethylene (HXPE) and vitamin-E infused/blended
cross-linked polyethylene (VEXPE) show significantly reduced wear
compared to conventional ultra-high molecular weight polyethylene
(UHMWPE) both in-vitro [6] and in-vivo [7]. On the other hand, using
new materials for the femoral component, such as titanium [8], zirconia
[9–11], silicon nitride [12], and tungsten [13], and manufacturing ultra-
smooth ceramic bearing surfaces [14] or microtexturing the metal
bearing surface [15–19] also reduces polyethylene wear.

Pin-on-disc (PoD) wear experiments are widely used as a screening
method to quantify, compare, and rank wear of different implant
bearing material couples as a function of operating parameters and
environmental conditions. A PoD wear measurement in the context of
MoP prosthetic hip implants typically consists of a polyethylene pin
that is loaded against a metallic disc, while relative motion between the
pin and the disc causes polyethylene wear. Many researchers have
performed PoD wear experiments attempting to obtain clinically re-
levant polyethylene wear, using a variety of configurations. Fig. 1
shows eight different PoD wear measurement configurations docu-
mented in the literature and used in the context of prosthetic hip im-
plants. ux and uy are the velocity magnitude in the x- and y-directions,
respectively, and ωz is the angular velocity about the z-direction.

Fig. 1 (a) shows a configuration in which the pin is stationary and
loaded onto a disc that performs a reciprocating motion along the x-
direction with velocity ux [20–30]. Conversely, Fig. 1 (b) depicts a pin
that performs a reciprocating motion along the x-direction with velocity
ux while loaded onto a stationary disc [31]. Fig. 1 (c) displays a sta-
tionary pin loaded onto a disc that rotates around its center axis with
angular velocity ωz [32–35], whereas Fig. 1 (d) depicts a pin loaded
onto a stationary disc while it rotates around its center axis with an-
gular velocity ωz [16,36]. The PoD wear measurement configurations of
Fig. 1 (a)-(d) all create unidirectional relative motion between the pin
and the disc. While these configurations allow ranking wear of different
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bearing material couples, the resulting polyethylene wear rate is typi-
cally one to two orders of magnitude lower than the polyethylene wear
measured in retrieved prosthetic hip implants of the same material,
because long polyethylene molecules align in the sliding direction
[37–39]. In contrast, multidirectional motion creates cross-shear, i.e.,
the relative motion between pin and disc changes direction with respect
to the surface of the pin, thereby avoiding polymer molecule alignment
and typically resulting in polyethylene wear that is similar in magni-
tude to what is observed in-vivo.

Fig. 1 (e)-(h) show PoD wear measurement configurations that
allow creating multidirectional relative motion between the pin and the
disc. Fig. 1 (e) depicts a stationary pin loaded onto a disc that re-
ciprocates with velocities ux and uy in the x- and y-directions, respec-
tively [6,37,40–62]. Furthermore, Fig. 1 (f) shows a pin reciprocating in
the y-direction with velocity uy and loaded onto a disc reciprocating in
the x-direction with velocity ux [63]. Fig. 1 (g) displays a pin that ro-
tates around its center axis with angular velocity ωz and is loaded onto a
disc that reciprocates in the x-direction with velocity ux [64–67]. Fi-
nally, Fig. 1 (h) shows a pin that is loaded onto the disc and rotates
around an axis parallel to the disc axis with eccentricity e and with
angular velocity ωz,2, while the disc rotates around its center axis with
angular velocity ωz,1 [15,68–75].

PoD wear experiments typically require defining several operating
parameters. For instance, different multidirectional wear paths have
been documented in the literature, such as rectangular
[15,40,53,57–60,68,71], elliptical [42,44,48,49,61], circular
[6,43,45,47,51,52], square [56,69,70,72–75], and random [54,55].
The circular and elliptical wear paths create cross-shear on the surface
of the pin throughout the entire wear path, whereas the rectangular and
square wear paths create cross-shear when the pin changes direction
along the wear path. Furthermore, several researchers report a strong
correlation between polyethylene wear and both contact area and
contact pressure between the pin and the disc (or the normal load ap-
plied to the pin) [51,55,69]. Polyethylene wear is also dependent on the
surface roughness of the disc surface [26,43,76,77] and on the lubricant
used during the PoD wear experiment. Although bovine serum is typi-
cally used as lubricant for PoD wear experiments in the context of

prosthetic hip implants [78], the optimal composition of bovine serum
remains subject to debate. Studies have reported that polyethylene
wear is a function of bovine serum protein concentration [52,79],
protein type [80], lipid concentration [45], dilution method [75], and
anti-bacterial and fungal additives [73,81]. Another important factor
reported in the literature is the radiation dose of HXPE [82]; increasing
the radiation dose increases polyethylene cross-linking, which in turn
increases its wear resistance. However, some reports also document
decreasing fracture resistance with increasing radiation dose [83]. Ra-
diation may also leave residual free radicals in the polyethylene that
can cause oxidation over time [84]. Re-melting [85] or adding free
radical scavenger agents such as vitamin-E to the HXPE [41,86,87] can
reduce the risk of oxidation.

A large number of polyethylene wear datasets obtained using PoD
wear experiments, conducted in the context of prosthetic hip implants,
exists in the literature. These experiments are performed by different
research groups, using different devices, configurations, and operating
conditions. Thus, results of different PoD wear experiments are some-
times difficult to compare, which potentially leaves valuable informa-
tion inaccessible. Also, several limitations exist to conducting PoD wear
experiments. The viscoelastic nature of polyethylene necessitates per-
forming PoD wear experiments at a strain rate that is identical to what
occurs in-vivo [88], resulting in a kinematic cycle of 1–2 Hz to mimic
the human gait cycle frequency [89]. Many million kinematic cycles are
needed to obtain measurable wear of the polyethylene bearing surface,
which is time consuming. In addition, manufacturing pin and disc
specimens to specific standards [90–92], and performing gravimetric
polyethylene wear measurements also requires trained personnel
[78,93].

However, in recent years, materials researchers (among others)
have used machine learning methods in combination with existing
datasets, to facilitate modeling complex relationships between material
constituents, structure, and the corresponding mechanical properties
[94]. Such data-driven models enable comparing existing datasets and
predicting new results based on the existing knowledge embedded in
the model, which are otherwise difficult or time consuming to obtain
using traditional experimental methods [95].

Fig. 1. Schematic of eight different PoD wear measurement configurations used in the context of prosthetic hip implants, showing the relative motion between the
pin and the disc. ux and uy are the velocity magnitude in the x- and y-directions, and ωz is angular velocity about the z-direction.
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Hence, the objective of this work is to aggregate published PoD
polyethylene wear datasets specifically performed in the context of
prosthetic hip implants, and use machine learning methods to imple-
ment a data-driven model that allows predicting the polyethylene wear
rate of PoD wear experiments based on its operating parameters. Such a
model potentially supplements PoD wear experiments and may reveal
hidden relationships between polyethylene wear and PoD operating
parameters. Furthermore, the model assists researchers with design of
experiments (DoE) by identifying and ranking the operating parameters
that most significantly affect polyethylene wear in PoD wear experi-
ments. This allows prioritizing operating parameters considered in fu-
ture PoD wear experiments, and ultimately reducing the number of
experiments one must conduct. Finally, a data-driven model based on
the published literature also facilitates validating new experiments and
detecting outlier results.

2. Methods

2.1. Data acquisition

We perform a literature survey to collect published polyethylene
wear data from PoD wear experiments, conducted by others in the
context of prosthetic hip implants. The entire dataset is available in the
Supplementary Material. We search the Google Scholar and PubMed
databases, using keywords including “UHMWPE”, “wear”, “hip” and
“pin-on-disc/disk”. We restrict our search to these keywords because
polyethylene wear is dependent on the operating conditions of the PoD
wear experiments, which may differ significantly depending on the
application for which they are intended; e.g. operating conditions for
knee and hip PoD wear experiments could be significantly different
[96]. We only consider studies that imposed multidirectional motion
between a polyethylene pin and a CoCr disc, with flat-on-flat geometry
to control for the effect of specimen geometry, and with bovine serum
as lubricant. Furthermore, we only retain studies with clearly defined
and reported operating parameters (which we refer to as input attri-
butes) and polyethylene wear rate results (which we refer to as the
target attribute), and we eliminate studies where this information is
either ambiguous, such as, a random wear path, or is not fully reported
(more than two attributes with missing values). All data in this work is
based on gravimetric polyethylene wear measurements only, which
avoids inaccuracies due to plastic deformation, creep, and fluid ab-
sorption (when a soak control specimen is used) [97]. We quantify
polyethylene wear using the “wear rate [mg/MC]”, which is defined as
the material loss per million cycles (MC), and prescribed in the ASTM
F732 standard. Some studies report the wear factor instead, which is
the wear volume per unit of normal load and sliding distance [39].
Since the wear factor implicitly assumes that wear is independent of
contact area [98], which may contradict in-vitro and in-vivo poly-
ethylene wear observations in prosthetic hip implants [39], we convert
the wear factor to wear rate by multiplying it by the sliding distance,
normal load, and polyethylene density. We use the polyethylene density
reported in each study; in cases of missing polyethylene density, we use
the UHMWPE density reported in the literature (0.93 mg/mm3 [43]).
For dynamic normal loading used in some PoD wear experiments, we
report the maximum value. We average a parameter's value if it is re-
ported as a range in any of the studies we consider.

Because their effect on the polyethylene wear rate is well-docu-
mented in the literature, we include the following PoD wear experiment
operating parameters (input attributes) in the data-driven model that
describes and predicts the polyethylene wear rate (target attribute) in
PoD wear experiments: normal load [N], contact area [mm2], frequency
[Hz], sliding distance per cycle [mm/C], wear path aspect ratio, lu-
bricant temperature [°C], lubricant protein concentration [mg/ml], disc
average surface roughness (Ra) [μm], polyethylene radiation dose
[kGy], and test duration [MC].

2.2. Descriptive statistics

We quantify the linear (Pearson's) correlation coefficient between
each input attribute and the target attribute, normalized by the max-
imum correlation coefficient computed between any of the input at-
tributes and the target attribute, to determine the relative contribution
of each input attribute to the target attribute. We also determine the
minimum, maximum, average, standard deviation, and stability (S) of
each input attribute to characterize the dataset. The stability S is the
ratio of the number of occurrences of the most frequent value of a
dataset and the total number of values in that dataset, which indicates
how constant an input attribute is. An input attribute with high S is
almost constant and likely does not capture the entire range of that
attribute's possible values. Thus, the data-driven model may under-
estimate the effect of that input attribute on the target attribute.

2.3. Numerical experiment

We conduct two sets of numerical experiments. First, we apply
machine learning methods to the entire polyethylene wear rate dataset
and the corresponding PoD wear experiment operating parameters, to
determine the method that represents the entire dataset with the
highest prediction accuracy. Second, we divide the polyethylene wear
rate dataset into subgroups based on the polyethylene radiation dose,
because it is well-known that polyethylene radiation dose affects
polyethylene wear and, thus, we expect these subgroups to have similar
wear rates. The three subgroups are: (1) non-irradiated, 0 kGy radiation
dose, (2) conventional with radiation dose between 20 and 55 kGy, and
(3) HXPE with radiation dose in excess of 70 kGy. We then apply ma-
chine learning methods to each subgroup and compare the prediction
accuracy of each method to the one obtained without subgroups.

2.4. Machine learning methods

We use three types of machine learning methods, which we briefly
describe in this section, and we cite references that contain details of
each method, as these are not the focus of this paper. First, we employ
interpretable model-based methods, in which the relationship between
input and target attributes is explicitly defined, including linear re-
gression [99], CART [100], M5 [101], random forest [102] and gra-
dient boosting [103]. These methods train a data-driven model on the
polyethylene wear rate dataset to predict the polyethylene wear rate of
PoD wear experiments based on the operating parameters (input attri-
butes, see last paragraph of Section 2.1). We use linear regression based
on the least-squares method to fit weighting factors to each operating
parameter and quantify its contribution to the resulting polyethylene
wear rate. This allows understanding whether the relationship between
the operating parameters and the polyethylene wear rate can be cap-
tured by a single linear model. CART builds a decision tree model,
where nodes represent decision points, and where each branch of the
tree is a separate linear regression model, i.e., different parts of the data
are modeled by distinct regression models. Thus, we use this method to
investigate the effect of modeling different segments of the poly-
ethylene wear rate dataset with various linear regression models, op-
timizing the CART tree by tuning the depth of the tree and the number
of leaves per node, and pruning. M5 is similar to CART but minimizes
the sum rather than the mean of the error of all linear regression models
that constitute the CART decision tree. We use the random forest
method to investigate whether combining multiple CART trees reduces
the prediction error of the data-driven model compared to using a
single CART tree. The random forest method predicts the polyethylene
wear rate by averaging the predicted polyethylene wear rate of multiple
CART trees. In addition to the CART parameters, we also tune the
number of trees in the random forest to minimize the prediction error.
Gradient boosting also allows combining several CART trees into one
data-driven model. While in the random forest method each tree is
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added to the forest independent of the other trees, gradient boosting
adds each new tree specifically to improve the performance of weak
trees.

Second, we use non-interpretable model-based methods including
artificial neural network (ANN) [104] and support vector machine
(SVM) [105]. These methods train a model on the dataset, without
explicitly defining the relationship between input and target attributes,
but creating a black-box model instead. ANN relates the operating
parameters to the polyethylene wear rate by means of neurons that
communicate with each other in a non-linear fashion, trained by the
polyethylene wear rate dataset. We implement ANN by tuning the
number of hidden layers, number of nodes per layer, and the learning
rate of the neural network as commonly implemented in the machine
learning literature [106]. SVM fits a hyperplane through the poly-
ethylene wear rate dataset by minimizing the error between the pre-
dicted and actual wear rate.

Third, we implement instance-based methods such as the k-nearest
neighbor (KNN) method [107], which predicts the polyethylene wear
rate based on the most similar instances in the dataset. Such methods
handle complicated datasets that cannot be captured by a single model.
Specifically, the KNN method compares unseen data against all other
instances in the dataset to find its k nearest neighbors, i.e., its k most
similar data points. Then, the unseen data is assigned a value based on
the weighted average value of its neighbors’. We tune the number of
nearest neighbors k and the weighting function in our model.

We employ tenfold cross-validation to evaluate the prediction error
of the data-driven models of the polyethylene wear rate that we im-
plement using different machine learning methods. Cross-validation
involves randomly dividing the dataset into m equal subsets (so-called
folds). Then, we use m-1 subsets to train the data-driven model and we
use one remaining subset to validate the model. We repeat this process
m times such that we validate the model on each subset exactly once.
Finally, we obtain a single prediction error for each model by averaging
the results of the m iterations. It is important to note that the model
validation process is always performed on the one subset that has not
been used to train the data-driven model, i.e., it is validated using data
not used to train the model. Thus, the advantage of cross-validation
compared to other validation methods, such as e.g. the hold out
method, is that every data point is in the validation dataset exactly
once, and is in the training dataset m-1 times [108]. In contrast, using
the hold-out method for validation requires partitioning the data in a
training and validation set and, thus, the validation may be significantly
different depending on how the partitioning is performed.

Commonly used metrics to evaluate the prediction error of a data-
driven model include the mean absolute error (MAE), root mean square
error (RMSE), and the square of the correlation coefficient (R2) [94]. A

combination of these three metrics yields a good indication of the ac-
curacy of the data-driven model [109]. The MAE is given as
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3. Results and discussion

Table 1 shows the descriptive statistics of the entire polyethylene
wear rate dataset consisting of 129 data points from 29 different studies
that we retain from published literature based on the criteria we define
in Section 2.1, and that we use to implement the different machine
learning methods of Section 2.4. The literature shows that the size of a
dataset to predict material properties is typically small compared to
other research fields [110]. Other studies use datasets ranging from just
a few data points (14 data points [111]) to tens and hundreds of data
points (82 data points [112], 121 data points [113], 157 data points
[114], and 218 data points [115]).

We report minimum and maximum values in Table 1 with the same
number of significant digits as in their respective publications. Note
that the wear path shape reports the minimum and maximum number
of occurrences, i.e., one experiment used a 10 × 20 mm rectangular
wear path, whereas 39 experiments used a d= 10 mm circular wear
path. We exclude the input attributes “lubricant protein concentration”
and “lubricant temperature” from our analysis due to a high number of
missing values, i.e., they are often not reported in their respective
publications. We replace the four missing average disc surface rough-
ness Ra value with the average value of the dataset (0.05 μm), which is a
common practice in the machine learning literature [116].

Fig. 2 shows the normalized linear correlation coefficient (see Sec-
tion 2.2) between each operating parameter (input attribute) and the
polyethylene wear rate (target attribute), quantifying the relative con-
tribution of each input attribute to the target attribute. Different pub-
lished studies evaluate the relative contribution of one or two operating
parameters to the polyethylene wear rate. In contrast, the results of

Table 1
Descriptive statistics of the polyethylene wear rate dataset, showing the same number of significant digits as in their respective publications.

Minimum Maximum Average Standard
deviation

Missing values Stability [%]

Publication year 2001 2018 2008 6 0 20.16
Normal load [N] 7 777.55 166.26 129.38 0 28.68
Contact area [mm2] 7.07 706.86 67.15 67.11 0 35.66
Frequency [Hz] 0.2 2 1.25 0.43 0 44.19
Sliding distance per cycle [mm/C] 17.76 94.25 30.47 10.08 0 30.23
Wear path shape Rectangle 10 × 20 mm (used in 1

experiment)
Circle d= 10 mm (used in 39
experiments)

– – 0 30.23

Wear path aspect ratio 1 10.98 1.79 1.58 0 49.61
Lubricant temp. [°C] 20 37 29.23 7.50 63 46.97
Lubricant protein concentration [mg/

ml]
0.69 64.8 22.28 6.35 33 36.46

Average disc surface roughness Ra
[μm]

0.001 0.50 0.05 0.10 4 19.38

Polyethylene radiation dose [kGy] 0 150 36.31 40.77 0 40.31
Test duration [MC] 0.1 3.2 2.02 0.93 0 28.68
Polyethylene wear rate [mg/MC] 0.00 34.62 5.73 6.36 0 1.55
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Fig. 2 leverage all PoD polyethylene wear rate data published in the
literature (and retained for this work) and quantify the relative con-
tribution of all operating parameters described in this work (see Section
2.1) to the resulting polyethylene wear rate. We observe that the con-
tact area between the pin and the disc is the most important factor that
affects the polyethylene wear rate, as expected, and in agreement with
clinical results. For instance, MoP prosthetic hip implants show in-
creasing wear rate with increasing femoral head size (i.e., increasing
contact area between femoral head and polyethylene liner) [39]. The
polyethylene radiation dose, which indicates the level of cross-linking,
is the second most important input attribute, followed by the normal
load, average surface roughness Ra of the disc, wear path aspect ratio
(i.e., cross-shear), test duration, and sliding distance per cycle. Ranking
of the relative contribution of operating parameters to the polyethylene
wear rate provides guidance to designing and conducting future PoD
wear experiments. Indeed, operating parameters should be included in
PoD wear experiments prioritized according to this ranking, as the ef-
fect of lower ranked operating parameters on polyethylene wear could
be within the noise level of the higher ranked ones. We note that al-
though the normalized linear correlation between the frequency and
the polyethylene wear rate is almost zero, its high stability value
(S= 44.9%) indicates that the dataset only spans a small range (1.8 Hz)
and, thus, the effect of frequency on the polyethylene wear rate might
not be evident from the aggregate dataset, because most researchers
recognize that polyethylene is viscoelastic, and therefore performed the
PoD wear experiments at a frequency that is similar to the human gait
frequency.

Table 2 shows the prediction error (MAE, RMSE, and R2) of the
different machine learning methods we implement in this work, based
on the entire polyethylene wear rate dataset. From Table 2 we observe
that KNN yields the smallest prediction error (MAE= 1.38 mg/MC) of
the polyethylene wear rate compared to all other methods, after tenfold
cross-validation. Thus, the KNN model predicts the polyethylene wear
rate within 1.38 mg/MC for any new PoD experiment with input at-
tributes that fall within the range of those of the dataset used to develop
the model. Furthermore, these results show that an instance-based
method (KNN) outperforms both interpretable and non-interpretable
model-based methods, which indicates that the relationship between
the operating parameters and the polyethylene wear rate is not easily
captured by one single model.

Fig. 3 (a) shows the experimental polyethylene PoD wear rate (red
square markers) of all published studies included in our dataset, ranked
by descending wear rate, and the corresponding wear rate predicted
using the cross-validated data-driven model based on the KNN method

(blue circle markers). In addition, Fig. 3 (b) shows the prediction error
between the KNN data-driven model and the published wear data, de-
fined for each individual study as the absolute value of the difference
between the experimental and the predicted result, divided by the ex-
perimental result (black triangle markers). From Fig. 3 (a) we observe
that when the wear rate exceeds 15 mg/MC (indicated as region (a) in
Fig. 3 (a)), the predicted polyethylene wear rate deviates from the
corresponding experimental results by 5–47%. This is due to the lack of
data to train the model in this region, as only eight out of 129 experi-
ments report a polyethylene wear rate in excess of 15 mg/MC. Since
KNN is an instance-based method, it requires more “instances” to train
itself and lower the prediction error for polyethylene wear rate higher
than 15 mg/MC.

Furthermore, Fig. 3 (a) highlights several studies using labels (b) to
(l), for which the data-driven model results in a prediction error that
exceeds 4%. The high prediction error for these specific studies is be-
cause they display a unique feature that differs significantly from the
rest of the dataset, which cannot be fully captured by the data-driven
model. Studies (b) and (d) are performed by the same research group
[69] and are the only experiments in the dataset that change the
composition of the lubricant while the experiment was ongoing; spe-
cifically, the lubricant composition changes after 0.5 MC and continues
with a different composition for 1 MC. Study (c) intentionally uses a
significantly higher lubricant protein concentration (the maximum lu-
bricant protein concentration in the dataset of 64.8 mg/ml) than what

Fig. 2. Normalized linear correlation coefficient of each input attribute with the polyethylene wear rate (target attribute).

Table 2
Prediction error of each machine learning method used in this work, based on
the entire polyethylene wear rate dataset.

Method MAE RMSE R2

Model-based (interpretable)
Linear Regression 3.44 4.72 0.71
CART 1.95 3.35 0.83
M5 3.13 4.82 0.78
Random Forest 2.87 4.04 0.75
Gradient boosting 2.69 4.03 0.72

Model-based (non-interpretable)

ANN 3.33 4.86 0.73
SVM 3.20 4.45 0.69

Instance-based

KNN 1.38 2.37 0.91
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other wear experiments typically use (approximately 20–30 mg/ml
[52]) to generate a higher polyethylene wear rate [15], which causes
the data-driven model to underestimate the polyethylene wear rate for
this specific study. On the other hand, study (g) uses a significantly
lower lubricant protein concentration (the minimum protein con-
centration in the dataset of 0.69 mg/ml) than what others commonly
use [56], which results in the data-driven model overestimating the
polyethylene wear rate for that study. Studies (e) [40] and (k) [41] used
polyethylene infused with vitamin-E antioxidant, which is not an input
attribute to the data-driven model because few published studies
document the PoD polyethylene wear rate of VEXPE. Thus, the model is
not trained to account for these parameters. Study (f) [45] is the only
study that uses a frequency (0.2 Hz) outside of the ASTM F732 standard
recommended frequency range (0.5–2.0 Hz [78]). All the other studies
employ frequencies between 1 and 2 Hz. Study (h) [57] performs heat
treatment on the polyethylene after cross-linking, which we do not
specifically consider in the data-driven model as an input attribute.
Furthermore, the polyethylene of study (h) is the only polyethylene that
is manufactured by the same research group who evaluates poly-
ethylene wear of several commercially available cross-linked poly-
ethylene materials. Hence, the prediction error of the data-driven

model also potentially identifies manufacturing defects. Study (i) and
(j) are performed by the same research group [68] who use a rectan-
gular wear path for PoD wear experiments, with the highest (1 × 9 mm)
and the second highest (2 × 8 mm) aspect ratio in the dataset, in-
dicating one direction is dominant. A unidirectional wear path is well-
known to generate a significantly lower polyethylene wear rate com-
pared to a multidirectional wear path because of cross-shear. Since the
data-driven model in this work is trained on the polyethylene wear rate
dataset obtained with multidirectional relative motion between the pin
and the disc, it significantly overestimates the polyethylene wear rate in
these two studies. Finally, study (l) uses the smallest contact area and
normal load in the dataset [47], which are well below the ASTM F732
recommended values (contact area 63.6 mm2 and normal load corre-
sponding to 2–10 MPa contact pressure [78]).

Table 2 also shows that CART is the interpretable model-based
method with the lowest mean absolute error (1.95 mg/MC). Although
the CART method shows a higher prediction error than the KNN
method for the dataset of this work, it allows creating an interpretable
model of the dataset. Fig. 4 illustrates the first seven nodes of the CART
model of the polyethylene wear rate dataset. Each node shows an op-
erating parameter and reflects a decision whether that operating

Fig. 3. Polyethylene wear rate for all experimental studies considered in our dataset ranked in descending order, (a) showing the experimental results documented in
the literature (red square markers) and the corresponding predicted results using the data-driven model based on the KNN method (blue circle markers), and (b)
showing the prediction error for the corresponding experimental study (black triangle markers). (For interpretation of the references to colour in this figure legend,
the reader is referred to the Web version of this article.)
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parameter is smaller than or equal to (≤, i.e., left branch) or larger than
(> , i.e., right branch) the specified value at the node. From Fig. 4 we
observe that “contact area” is the highest-level attribute in the CART
decision tree for predicting the polyethylene wear rate, i.e., CART
considers it to have the most significant effect on the polyethylene wear
rate of all operating parameters included in the model. Furthermore, we
observe that for a contact area larger than 113.05 mm2 the poly-
ethylene wear rate is dominated by the normal load acting on the
polyethylene pin, whereas for a contact area smaller than 113.05 mm2

the polyethylene radiation dose is the deciding attribute. Similarly, one
can interpret each level of the CART decision tree to obtain an under-
standing of how the data-driven model interprets the data and predicts
results.

We also create subgroups of polyethylene wear rate data based on

the polyethylene radiation dose, and implement the machine learning
methods for each of these subgroups. Table 3 shows the prediction error
(MAE, RMSE, R2) of the different machine learning methods we im-
plement in this study, based on each polyethylene wear rate subgroup,
as defined in Section 2.3. From Table 3 we observe that clustering the
data into subgroups based on the polyethylene radiation dose reduces
the prediction MAE for the wear rate of conventional and HXPE by 10%
and 64% respectively, whereas it increases the prediction MAE for non-
irradiated polyethylene by 57%, compared to the data-driven model
without clustering the data into subgroups (Table 2). The inter-quartile
range of the polyethylene wear rate (the difference between the third
and first quartiles of each subgroups, Q3-Q1) is 5.70 for non-irradiated
polyethylene, whereas it is 4.64 for conventional polyethylene and 1.48
for HXPE. This indicates that the machine learning methods perform

Fig. 4. First seven nodes of the CART model of the dataset considered in this work, showing how the attributes break down into a decision tree, ultimately predicting
the target attribute and providing an interpretable model that relates the attributes (input) to the target attribute (output).

Table 3
Machine learning methods prediction error based on the polyethylene wear rate data for three subgroups.

Polyethylene radiation dose [kGy] 0 (Non-irradiated) 20-55 (Conventional) > 70 (HXPE)

Method MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

Model-based (interpretable)

Linear Regression 3.54 4.84 0.81 4.51 6.19 0.62 0.67 0.85 0.78
CART 2.67 3.43 0.77 2.39 3.62 0.81 0.70 0.99 0.77
M5 3.29 4.96 0.77 4.32 6.55 0.65 0.68 0.90 0.72
Random Forest 2.76 3.54 0.09 2.58 3.93 0.77 0.70 0.92 0.82
Gradient boosting 3.16 4.45 0.68 2.84 3.91 0.68 0.81 1.03 0.79

Model-based (non-interpretable)

ANN 3.35 4.22 0.77 2.77 4.46 0.79 0.88 1.15 0.76
SVM 3.42 4.54 0.79 4.07 6.08 0.43 0.57 0.80 0.82

Instance-based

KNN 2.16 3.08 0.87 1.24 1.97 0.81 0.50 0.75 0.88
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better on the subgroups with less polyethylene wear rate variability.
The primary limitation of this study is the size of the polyethylene

wear rate dataset, which is inherently limited by what is available in the
published literature. Ultimately, increasing the size of the dataset, as
more studies are published, could increase the prediction accuracy and
reduce the sensitivity of the model to noise and outlier data, such as
unique features or operating parameters of specific experiments. More
data would also allow considering additional input attributes in the
data-driven polyethylene wear model, such as lubricant protein con-
centration, lubricant anti-bacterial and fungal additives, and lubricant
temperature, which are parameters known to have an effect on poly-
ethylene wear. The size of the dataset also directly affects the prediction
error of the data-driven model. Furthermore, the KNN method, which
results in the best prediction accuracy in our work, is limited to predict
the wear rate for input attributes that fall within the range of the input
attributes considered in the dataset. The model based on KNN predicts
results based on the weighted average value of its k nearest neighbors,
and it can only predict accurately when close neighbors exist in the
dataset to that new unseen data. Considering additional input attri-
butes, such as lubricant protein concentration, could change the
structure of the dataset and, thus, the distance between the data points
and nearest neighbors, which could change the KNN prediction accu-
racy. Another limitation of this study is that we do not distinguish
between static and dynamic loading during the PoD experiments.
Instead, we use the maximum load value in cases of dynamic loading.

4. Conclusion

We have aggregated a dataset of published PoD polyethylene wear
rate data, performed in the context of prosthetic hip implants. Using
several model-based and instance-based machine learning methods
both with and without clustering of the data, we have implemented a
data-driven model that allows predicting the PoD polyethylene wear
rate based on its operating parameters.

We find that the KNN method with clustering into subgroups based
on polyethylene radiation dose results in the lowest prediction error,
i.e., this instance-based method outperforms interpretable and non-in-
terpretable model-based methods, because the PoD polyethylene wear
rate dataset cannot easily be captured by a single model.

The data-driven model reveals the relative contribution of PoD wear
experiment operating parameters (input attributes) to the polyethylene
wear rate (target attribute). This provides guidance for designing future
PoD wear experiments. Operating parameters should be included in
these experiments prioritized according to their relative contribution to
the polyethylene wear rate, as the effect of lower ranked operating
parameters on polyethylene wear could be within the noise level of the
higher ranked ones.

Using cross-validation of the data-driven model we predict the
polyethylene wear rate of all the experimental studies in our dataset.
The data-driven model predicts results based on the subset of the da-
taset that is not used to train the model, at each iteration of the tenfold
cross-validation process. This demonstrates that the data-driven model
predicts the polyethylene wear rate for new PoD experiments with
operating parameters that fall within the ranges of those of the dataset
used to implement the model. This could potentially reduce the need for
more experimental studies or shed light on experiment design.
Furthermore, this data-driven model facilitates validating new experi-
mental results and detecting outliers, by comparing them to results in
the literature.
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