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We use ultrasound directed self-assembly to organize particles dispersed in a fluid medium into a

three-dimensional (3D) user-specified pattern. The technique employs ultrasound transducers that

line the boundary of a fluid reservoir to create a standing ultrasound wave field. The acoustic radia-

tion force associated with the wave field drives particles dispersed in the fluid medium into orga-

nized patterns, assuming that the particles are much smaller than the wavelength and do not

interact with each other. We have theoretically derived a direct solution method to calculate the

ultrasound transducer operating parameters that are required to assemble a user-specified 3D pat-

tern of particles in a fluid reservoir of arbitrary geometry. We formulate the direct solution method

as a constrained optimization problem that reduces to eigendecomposition. We experimentally vali-

date the solution method by assembling 3D patterns of carbon nanoparticles in a water reservoir

and observe good quantitative agreement between theory and experiment. Additionally, we demon-

strate the versatility of the solution method by simulating ultrasound directed self-assembly of com-

plex 3D patterns of particles. The method works for any 3D simple, closed fluid reservoir geometry

in combination with any arrangement of ultrasound transducers and enables employing ultrasound

directed self-assembly in a myriad of engineering applications, including biomedical and materials

fabrication processes. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4973190]

I. INTRODUCTION

Ultrasound directed self-assembly (DSA) is defined as

the process by which discrete components organize through

interactions between themselves and an external ultrasound

wave field. This process is similar to other DSA techniques

driven by external fields, including electric,1 magnetic,2 or

flow fields.3 The external field acts as a tunable mask that

enables organizing particles dispersed in a fluid medium into

user-specified patterns by adjusting the operating parameters

of the transducers, such as their amplitude and phase, which

generate the external field. However, electric and magnetic

field-based DSA requires particles with specific electric and

magnetic properties, respectively, and typically demands an

ultra-high field strength, which limits dimensional scalabil-

ity.4,5 In contrast, ultrasound DSA relies on the acoustic radia-

tion force associated with a standing ultrasound wave field to

organize particles dispersed in a fluid medium into a specific

pattern, independent of their material properties. Additionally,

dimensional scalability is only limited by attenuation of the

ultrasound wave, which can be mitigated by selecting a low-

viscosity (bulk and shear) fluid medium.6 Thus, ultrasound

DSA enables organizing patterns of particles for a number of

engineering applications, including biological cell manipula-

tion,7 microbubble filtration,8 and fabrication of engineered

materials with exotic properties based on specific patterns of

particles embedded in a matrix.9–11

Employing ultrasound DSA to create user-specified pat-

terns of particles requires relating the ultrasound transducer

arrangement and operating parameters (amplitude and phase)

to the resulting pattern of particles assembled with a specific

standing ultrasound wave field. This reduces to a “forward

problem” that entails calculating the pattern of particles that

result from any user-specified ultrasound transducer arrange-

ment and operating parameters and an “inverse problem”

that involves calculating the ultrasound transducer operating

parameters required to assemble a user-specified pattern of

particles.12 The forward problem has been analyzed exten-

sively in the literature.13–15 The inverse problem has been

solved analytically to enable manipulating single particles or

a limited number of simple patterns of particles in one-

dimensional (1D),16,17 two-dimensional (2D),18,19 or three-

dimensional (3D) fluid reservoirs.20–22 However, each direct

solution technique only applies to one specific pattern, fluid

reservoir geometry, and ultrasound transducer arrangement

and, thus, limits the applicability of these existing methods.

Alternatively, solving the inverse problem using numerical

optimization techniques has enabled manipulating single

particles in 3D23 or creating user-specified patterns of par-

ticles in 2D.12 Although critical to employing ultrasound

DSA in engineering applications, no universal direct inverse

solution method exists that enables ultrasound DSA of user-

specified 3D patterns of particles in a fluid reservoir with

arbitrary geometry and ultrasound transducer arrangement.

Thus, the objective of this work is to theoretically dem-

onstrate and experimentally validate a direct and universal

solution of the inverse ultrasound DSA problem for a 3D

fluid reservoir with arbitrary geometry and ultrasound trans-

ducer arrangement. We first formulate the ultrasound

wave field within a 3D fluid reservoir as a function of thea)bart.raeymaekers@utah.edu
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ultrasound transducer operating parameters using the bound-

ary element method based on Green’s third identity.24 Then,

we apply the acoustic radiation force theory to relate the ultra-

sound wave field to a user-specified pattern of particles.13,14

Finally, we pose the inverse problem as a constrained optimi-

zation problem that reduces to eigendecomposition.12

II. METHODS

Figure 1 shows an arbitrary-shaped 3D fluid reservoir

lined with Nt ultrasound transducers of acoustic impedance

Zt(x0) around the boundary surface S, where x0 is the oper-

ating frequency of the ultrasound transducers. We have

removed an elliptical section of the boundary surface in

Fig. 1 to show the interior 3D solution domain D, which con-

tains a fluid medium of density qf and sound speed cf.

Additionally, the inset image in Fig. 1 shows a differential

element ds(q) and normal direction n(q) of the boundary sur-

face at point q on S, with reference to the fluid reservoir ori-

gin o. We compute the ultrasound wave field in the fluid

reservoir in terms of the complex scalar velocity potential u
using the following assumptions. (1) The ultrasound wave

field u satisfies the Helmholtz equation r2uþ k2
0u ¼ 0

throughout D and on S, where k0¼x0/cf is the wave number

of the ultrasound wave field in the fluid medium. (2) u satis-

fies the impedance boundary condition @u=@nþ ik0
~Zu ¼ v

at each point q on S to account for reflection and transmis-

sion of the ultrasound wave field at the ultrasound transducer

surfaces or inactive boundary surfaces (v¼ 0). Here, ~Z ¼
qf cf=Zt is the impedance ratio of the fluid and the ultrasound

transducer and v is the complex harmonic velocity amplitude

of ultrasound transducer surface as it vibrates in the normal

direction n. We have assumed smooth, inelastic ultrasound

transducers of which the impedance has no angular depen-

dence. While not strictly valid in practice, it still allows

accurately approximating the standing ultrasound wave field

within many fluid reservoirs, evidenced by good agreement

between experimental and simulated patterns of par-

ticles.12,16–19 We calculate the ultrasound wave field u at

any location x in D or on S using Green’s third identity

accounting for the impedance boundary condition as24

u xð Þ ¼ �X xð Þ
ð

S

ik0
~ZG q; xð Þ þ

@G q; xð Þ
@n qð Þ

" #
u qð Þds qð Þ

þ X xð Þ
ð

S

v qð ÞG q; xð Þds qð Þ: (1)

X(x)¼ 1 if x is in D or 2 if x is on S, i ¼
ffiffiffiffiffiffiffi
�1
p

, and G(q,x) is

the Green’s function that represents the free-field ultrasound

wave field emitted from a unit-magnitude point source at

location q on S and measured at location x in D or on S. In the

case of a 3D ultrasound wave field, we calculate G(q,x) as6

G q; xð Þ ¼
�eik0jq�xj

4pjq� xj ; (2)

where jq - xj is the Euclidean distance between points q and

x. We discretize the fluid reservoir into Nd domain points

and its boundary surface into Nb>Nt boundary elements,

and calculate the ultrasound wave field in D using the bound-

ary element method, which approximates the integral over

boundary surface S in Eq. (1) as a summation over the Nb

boundary elements representing S.24 Thus, using the bound-

ary element method, we relate the ultrasound wave field u to

the operating parameters v of each of the Nt ultrasound trans-

ducers, arranged into a single vector v ¼ ½v1; v2;…; vNt
�. We

relate the ultrasound wave field in the 3D fluid reservoir to

the resulting pattern of particles by calculating the acoustic

radiation force f acting on each particle of density qp and

sound speed cp as f ¼ �rU, where U is the acoustic radia-

tion potential. For a spherical particle in an inviscid fluid

medium, with particle radius rp � k0 and ultrasound wave-

length k0¼ 2p /k0 in the fluid medium, we calculate U as13,14

U ¼ 2pr3
pqf

8<
: 1

3
k2

0 1�
bp

bf

 !2
2
4

3
5hjuj2i

�
qp � qf

2qp þ qf

� �
hjruj2i

9=
;: (3)

Here, bp ¼ ðqpc2
pÞ
�1

and bf ¼ ðqf c
2
f Þ
�1

are the compressibil-

ity of the particle and fluid medium, respectively, and the

notation hjuj2i indicates the mean-square fluctuations in the

velocity potential u over one period T¼ 2p/x0 of the ultra-

sound wave field. We treat the particle as a fluid and, thus,

neglect the effect of shear stiffness.13,14 From Eq. (3), we

compute the acoustic radiation force f and identify the pat-

tern of particles as the stable fixed points xs where f is zero

at xs and points to xs in the surrounding region. Additionally,

the stable fixed points correspond to region(s) where U is

locally minimum with respect to the fluid reservoir coordi-

nates (x, y, z). Hence, to solve the inverse 3D ultrasound

DSA problem and organize a user-specified pattern of par-

ticles at the set of desired positions Xdes, we minimize the

average value of U over all points x � Xdes. Additionally, we

constrain the amplitude of the Nt ultrasound transducers

jvj ¼ a, where a is a real scalar value, because in practice,

they are limited to a finite input power. We use the formula-

tion of Greenhall et al. to pose the inverse problem as a

FIG. 1. Arbitrary-shaped 3D fluid reservoir lined with Nt ultrasound trans-

ducers, showing the domain D with domain points x (red dot) and boundary

surface S with differential elements ds(q) and normal directions n(q) at each

point q (black dot) on S.
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constrained optimization problem and calculate the optimal

transducer operating parameters v* that minimize the aver-

age value of U over the set of desired particle locations Xdes

for a fixed ultrasound transducer amplitude jvj ¼ a, using

eigendecomposition.12 The 3D inverse solution technique

presents a computational challenge compared to existing 2D

ultrasound DSA techniques.12,18,19,25 Modeling a 3D fluid

reservoir using the boundary element method requires

expanding the number of domain points from Nb¼O(m2)

(2D) to Nb¼O(m3) (3D), where m is the number of uni-

formly spaced domain points in the x, y, and z directions.

Additionally, the number of boundary elements increases

from Nt¼O(m) (2D) to Nt¼O(m2) (3D), which significantly

increases the processor time and memory required to solve

the inverse problem via eigendecomposition.

Figure 2 shows a schematic of the experimental set-up

we have used to validate our theoretical solution to the inverse

ultrasound DSA problem. A poly(methyl methacrylate) fluid

reservoir with interior dimensions Lx¼Ly¼Lz¼ 12.75 mm

¼ 12.75k0 contains water (qf cf¼ 1.5 MRayl) with dispersed

80 nm carbon particles. Ultrasound transducers (lead zirconate

titanate type SM111, center frequency x0/2p¼ 1.5 MHz,

acoustic impedance Zt¼ 35 MRayl25) line three vertical walls

and the floor of the fluid reservoir, creating a hard acoustic

boundary at each ultrasound transducer surface ( ~Z ¼ 0.043).

We note that such boundaries limit the patterns of particles

that can be assembled if the operating frequency is a resonant

frequency of the reservoir. However, this limitation can be

removed by impedance matching of the ultrasound trans-

ducers to the fluid medium (Zt¼ qf cf)
25 or by selecting a non-

resonant operating frequency or reservoir size.12 The ultra-

sound transducers are driven at their center frequency by a

function generator, with independent control of their operat-

ing parameters v (amplitude and phase). A glass sheet on top

of the fluid reservoir creates a reflector for the ultrasound

waves generated by the transducer on the fluid reservoir floor

and allows imaging of the patterns of particles from the top.

One fluid reservoir wall is transparent to allow imaging the

patterns of particles from the side.

III. RESULTS AND DISCUSSION

We prescribe a user-specified pattern of particles in

the domain D of the fluid reservoir and solve the inverse

problem to compute the optimal ultrasound transducer oper-

ating parameters v* required to assemble this pattern. We

then apply the optimal ultrasound transducer operating

parameters v
* to both the model and experiment to determine

the resulting pattern of particles and compare both the simu-

lated and experimentally obtained patterns to the originally

defined user-specified pattern of particles. We prescribe pat-

terns of particles assembled in vertical sheets, horizontal

columns, and 3D dot arrangements. These patterns can be

assembled in the cubic fluid reservoir of Fig. 2 by superim-

posing plane standing waves in the x, y, and z directions.

Figure 3 shows the simulated and experimental results

obtained for user-specified patterns consisting of vertical

sheets (Fig. 3(a)), horizontal columns (Fig. 3(b)), and 3D

dots (Fig. 3(c)) of 80 nm carbon particles dispersed in water

contained within the fluid reservoir shown in Fig. 2. Figures

3(a)–3(c) depict a schematic of the user-specified pattern in

the center of the figure. For each user-specified pattern, we

solve the inverse ultrasound DSA problem to calculate the

optimal ultrasound transducer operating parameters, which

we subsequently apply to the ultrasound transducers in both

simulations and experiments. Table I shows the optimal

operating parameters v1, v2, v3, and v4 of ultrasound trans-

ducers 1, 2, 3, and 4, respectively, for the vertical sheet, hori-

zontal column, and 3D dot patterns. Additionally, we note

that the optimal ultrasound transducer parameters for the ver-

tical sheets and horizontal columns are comparable to those

required to create 1D sheets in the x-direction17 and 2D dots

in the x-z plane.25

Figures 3(a)–3(c) show the simulated pattern of particles

(gray) overlaying the corresponding radiation potential U
(green) on the left and the experimentally obtained pattern of

particles (black) on the right. The simulated patterns are

computed as the regions around the stable fixed points xs,

where jfj is below ten percent of the maximum acoustic radi-

ation force amplitude to ensure that the thickness of the

experimentally obtained and simulated pattern features is

equivalent. The inset images in Figs. 3(a)–3(c) display a top

and side view of the simulated (left) and experimentally

obtained (right) patterns with the user-specified patterns

superimposed in red. We qualitatively observe good agree-

ment between the user-specified patterns and the simulated

and experimentally obtained patterns. Additionally, we com-

pute the pattern error Epat as the mean distance between the

centroids of the user-specified pattern features and the cent-

roids of the simulated and experimentally obtained pattern

features, normalized by the user-specified pattern spacing

k0/2, to quantify the differences between the user-specified

patterns and the simulated and experimentally obtained pat-

terns of particles. We compute Epat of 1.2%, 1.8%, and 5.8%

for the simulated patterns and Epat of 16.6%, 17.7%, and

17.9% for the experimentally obtained patterns, indicating

good agreement between the user-specified patterns and the

simulated and experimentally obtained patterns, respectively.

Differences between the user-specified patterns and the sim-

ulated and experimentally obtained patterns are due to

imperfect dispersion of the carbon particles in the fluid

medium in the experiments, near-field effects,6 secondary

scattering of the ultrasound wave field between neighboring

FIG. 2. Schematic of the fluid reservoir with Lx¼Ly¼Lz¼ 12.75 mm

¼ 12.75k0, containing carbon particles dispersed in water, and showing the

ultrasound transducers driven with operating parameters (amplitude and

phase) v1, v2, v3, and v4, respectively.
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particles, and acoustic streaming, which are not included in

the boundary element model of the fluid reservoir, but can dis-

rupt the experimentally obtained patterns of particles.26 The

pattern error of the experimentally obtained patterns is also

due in part to manufacturing imperfections of the cubic fluid

reservoir and imperfect alignment of the ultrasound trans-

ducers with respect to each other. Because the complexity of

aligning and independently controlling ultrasound transducers

increases drastically with increasing Nt, we limit our experi-

ments to a cubic fluid reservoir with Nt¼ 4 ultrasound trans-

ducers, which constrains the patterns of particles that can be

achieved to 3D sheets, columns, or dot patterns. We note that

sheet and column patterns have been experimentally demon-

strated in 2D, under the assumption that the patterns are uni-

form in the third dimension.12,25 However, by creating 3D

patterns of vertical sheets (Fig. 3(a)) and horizontal columns

(Fig. 3(b)), we show that the patterns are not uniform in the

third dimension due to near-field effects, reflections from the

reservoir walls, and other effects not accounted for in the 2D

model. As a result, the simple 3D patterns of vertical sheets,

horizontal columns, and dots provide proof-of-concept of the

3D inverse problem solution method by demonstrating accu-

rate replication of user-specified patterns, as indicated by

small pattern errors. We have also used simulations to demon-

strate the ability of the 3D inverse solution method to create

complex user-specified patterns within fluid reservoirs of any

geometry, lined with a large number (Nt> 4) of ultrasound

transducers in any arrangement. Figure 4 shows the results for

a user-specified pattern of particles consisting of eight hollow

spheres in a cubic fluid reservoir with Nt¼ 24 ultrasound

transducers, and Fig. 5 shows an electron dz2 orbital pattern

of particles in a spherical fluid reservoir with Nt¼ 225 ultra-

sound transducers. Figures 4 and 5 show (a) the simulated

fluid reservoir with the 3D user-specified pattern of particles

indicated in red and (b) the simulated pattern of particles in

gray obtained by solving the inverse problem for the user-

specified pattern of (a) to compute the optimal ultrasound

transducer operating parameters, which are subsequently

employed to achieve the simulated pattern of particles. The

inset images show 2D cross sections of the user-specified

(red) and simulated (gray) patterns of particles overlaying the

radiation potential (green). We observe good qualitative

agreement between the user-specified and simulated patterns

of particles. The results in Fig. 5 deviate primarily at the cen-

ter of the pattern, where it contains sharp corners. When the

density and compressibility of the particle and fluid medium

are not identical (qp 6¼qm and bp 6¼ bm), ultrasound DSA is

limited to creating pattern features with non-zero radii. For

instance, if qp>qm, bp< bm, and the standing spherical ultra-

sound wave field is expressed in terms of the Green’s function

from Eq. (2) as uðxÞ ¼ Im½Gðx0; xÞ� for an arbitrary point x0,

then the corresponding acoustic radiation force drives

FIG. 3. Simulated (left) and experimentally obtained patterns (right) imple-

mented by solving the 3D inverse problem for a user-specified pattern (cen-

ter) consisting of (a) vertical sheets, (b) horizontal columns, and (c) 3D dots

of 80 nm carbon particles dispersed in water.

TABLE I. Ultrasound transducer operating parameters.

Transducer Parameter

Vertical

sheets

Horizontal

columns

3D

dots

1 Amplitude (m/s) 0.668 0.472 0.386

Phase (deg.) 32.800 0.800 0.800

2 Amplitude (m/s) 0.008 0.016 0.577

Phase (deg.) 4.200 4.200 0.800

3 Amplitude (m/s) 0.744 0.526 0.430

Phase (deg.) 32.100 0.000 0.000

4 Amplitude (m/s) 0.007 0.707 0.577

Phase (deg.) 4.200 0.800 0.800
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particles into a pattern of concentric spheres around x0, where

the smallest sphere has radius r¼pcf/x0. Thus, the smallest

possible pattern feature radius is inversely proportional to the

operating frequency x0 but will always remain greater than

zero. Similarly, the 3D inverse solution technique is limited to

creating user-specified patterns with pattern features separated

by jDxj � k0/2 due to the minimum spacing between nodes or

antinodes of the ultrasound wave field with wavelength k0.

Thus, the 3D inverse solution technique fails to create user-

specified pattern features with sub half-wavelength spacing

(jDxj< k0/2). Additionally, the 3D inverse solution technique

may result in simulated pattern features that were not speci-

fied by the user (light gray regions in Figs. 4(b) and 5(b)) due

to inevitable interference between the ultrasound waves gen-

erated by each ultrasound transducer and reflections from the

fluid reservoir walls.12 We observe that the feasibility of

achieving a user-specified pattern is a function of the number

of ultrasound transducers and their geometric arrangement,

where the feasibility increases for an increasing number of

transducers. We have defined the range of feasible patterns

for the simple rectangular ultrasound transducer arrangement

shown in Fig. 2. However, in general, defining the relation-

ship between the range of feasible patterns and the arrange-

ment and operating frequency of ultrasound transducers

remains an open problem.

IV. CONCLUSION

In conclusion, we have theoretically derived a direct

method of solving the 3D inverse ultrasound directed self-

assembly (DSA) problem to calculate the ultrasound transducer

operating parameters required to create a 3D user-specified

pattern of particles in a fluid reservoir with arbitrary simple,

closed geometry, and ultrasound transducer arrangement.

We demonstrate good quantitative agreement between the

user-specified, simulated, and experimentally obtained pat-

terns, including sheets, columns, and 3D dots of particles.

We demonstrate with simulations that the solution method

also applies to complex user-specified patterns of particles.

This knowledge enables using 3D ultrasound directed self-

assembly in a myriad of engineering applications, including

biomedical and fabrication processes.
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