Introduction to Compressible
Flow
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The density of a gas changes significantly along a streamline

Compressible Flow

Definition of Compressibility: the fractional changein
volume of the fluid element per unit change in pressure

lP p+dp
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— \% - v—-av p+dp
p p+dp

Compressible Flow

1. Mach Number: M :\L—M

c speed of sound
2. Compressibility becomes important for High Speed
FlowswhereM > 0.3
* M <0.3-Subsonic & incompressible
e 0.3<M < 0.8-Subsonic & compressible
e 0.8<M < 1.2 -transonic flow — shock waves appear
mixed subsonic and sonic flow regime
* 1.2<M<3.0 - Supersonic— shock waves are present
but NO subsonic flow
e M > 3.0 - Hypersonic Flow, shock waves and other
flow changes are very strong




Compressible Flow

3. Significant changes in vel ocity and pressure result
in density variations throughout aflow field

4. Large Temperature variations result in density
variations.

As aresult we now have two new variables we must solve for:
T&p
We need 2 new equations.
We will solve: mass, linear momentum, energy and an equation of state.

Important Effects of Compressibility on Flow

1. Choked Flow—aflow ratein aduct islimited by
the sonic condition

2. Sound Wave/Pressure Waves —rise and fall of
pressure during the passage of an acoustic/sound
wave. The magnitude of the pressure changeis
very small.

3. Shock Waves — nearly discontinuous property
changesin supersonic flow. (Explosions, high
speed flight, gun firing, nuclear explosion)

4. A pressureratio of 2:1 will cause sonic flow

Applications

1. Nozzes and Diffusers and converging
diverging nozzles

2. Turbines, fans & pumps

3. Throttles— flow regulators, an obstruction
in a duct that controls pressure drop.

4. One Dimensional Isentropic Flow —
compressible pipe flow.




Approach

Control volume approach
Steady, One-dimension, Uniform Flow

Additional Thermodynamics Concepts are
needed

* Restrict our analysisto ideal gases

Thermodynamics

» Equation of State— Ideal Gas Law
p = pRT

R= R, _ Universa Gas Consta.nt _ 8314J(kmol [K) _ 287 3(kg (K)
M., Molecular mass of air 28.97kg/kmol

Temperature is absolute and the specific volume is
(volume per unit mass):

1
v=—
p

Thermodynamics — Internal Energy &

Enthalpy
* Internal Energy —individual particle kinetic energy.
Summation of molecular vibrational and rotational energy.
g=a(v,T)

i =( %2 ar +( %)
oT ), ov );
+ Foranided gas d=ad(T)
du =c,dT
« Recall from our integral form of the Energy Equation for
Enthalpy of an ideal gas: h=0+ pv

h=h(T)
dh =c,dT




Thermodynamics — Internal Energy &
Enthalpy
h=0+ pv
h=U0+RT
dh = dd + RdT
Substituting:
dh=c,dT du=cdT
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dh =du + RdT
c,dT =c,dT + RdT
c,=¢,+R

¢, —¢, = R=const

Thermodynamics — Internal Energy &

Enthalpy
c
Define the ratio of specific heats:  k = —* = const
CV
Then, KR
C,=——
k-1
R
c,=—
k-1
For Air:
¢, = 1004 Jkg-K
k=14

The 24 Law of Thermodynamics & |sentropic
Processes

We define entropy by:

dsz(JQj
T rev

Combining the 1% and 2" Laws gives us Gibb's Equation
Tds =dh - o

Tds = c,dT _d?p «——— dh=c,dT

2 2 4T 24 1 R
J;dS=CpJ;?—RJ;§ — a7




The 2 Law of Thermodynamics & Isentropic
Processes

T, P,
s,-s=c¢,In-2-RIn2
T )

For an Isentropic process: adiabatic and reversible
We get the following power law relationship

(32
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Control Volume Analysis of a Finite Strength
Pressure Wave

Moving Wave of Frontal Area A Stationary Wave

Reference frame moving with wave

«C
1.2
p p+A4p P 7 p*ae
P p+ip P p+bp
T T+AT T T+AT
V=0 ||« av v=c —» V=c-AvV

Steady State Continuity Equation (Solve for the induced velocity AV):

0= [ oV + ipia=-[ pcan+ [ (o + Ap)c-av YA

peA=(p+0p)c-av)A
pe=c(p+np)-0V(o+0p)
Ap

+Ap )

The Speed of sound (c) is the rate of propagation of a pressure wave of infinitesimal

strength through a still fluid.

AV =c
0

Control Volume Analysis of a Finite Strength
Pressure Wave

1 2p+Ap
p+ip
T+AT

M i—» V=c-av

Steady State Momentum Equation:
(Find 4p and c)

z F.= J.pVxéi * ﬁ)jA = m(vz _Vl)
cs
pA—(p+Ap)A= pcA(c—AV —c)
Ap = pcAV (B)
Now combine A & B and solve for the speed of sound:

szﬂqup:ﬂ[HMJ
ap p P p

czzg—z inthe limit of Ap - 0 *

p

Small Amplitude moderate frequency wavesare = const
isentropic and K

< -Hv o
"
o




Control Volume Analysis of a Finite Strength

Typical Speeds of Sound

Fluid
Gases:
HZ
Air

Pressure Wave
Calculating the Speed of Sound for an ideal gas:
ik=oonsl
Y2,
ap p
Lokt = kP = JkrT
ap p—> c kp kRT
c=vKkRT
For Air:
k=S2214
c,

R = 287 J(kg [K)

Liquids:
Water
Ethyl Alcohol

Data From White 2003

c(m/s)

1,294
340

1,490
1,200

Example 1: Speed of sound calculation

Determine the speed of sound in Argon (Ar) at 120 °C. MW =40

kg/kmol:

R:Mi:w: 207.9J/(kg [K)

. 40kg/kmol

¢ =/1.668(207.9JkgK )(393K ) = 318.8ms™

Movement of a sound source
and wave propagation

Source moves to the right at a speed V

[

N

V=0

@

Zone of silence




Example 2: aneedle nose projectile traveling at a
speed of M=3 passes 200m above an observer. Find
the projectiles velocity and determine how far
beyond the observer the projectile will first be heard

M=3

200m

Example 2: aneedle nose projectile traveling at a
speed of M=3 passes 200m above an observer. Find
the projectiles velocity and determine how far
beyond the observer the projectile will first be heard

¢ =~kRT =./1.4(287)(300) = 347.2m/s

V = Mc = 3(347.2) =1041.6m/s

a=s n'l[i] =s n'l(}j =19.5°
M 3

200m
tang =——
X

x=-200M _ se5m
tan19.5

Steady Isentropic Flow — Control Volume
Analysis

Applications where the assumptions of steady,
uniform, isentropic flow are reasonable:

1. Exhaust gasses passing through the blades
of aturbine.

Diffuser near the front of a jet engine

3. Nozzles on arocket engine

4. A broken natural gasline

N




Steady |sentropic Flow

Steady State Continuity Equation:
0= J.p(\7 ° ﬁ)jA =-pVIA + PV A,
cs

PVA =(p+dp)\V +dv )(A+dA)
PVA = pAV + pVdA +VAd p +VdpdA + pAdV + pdAdV + AdpdV + dpdAdV|

Steady Isentropic Flow

Steady State Continuity Equation:
0= J.p(\i ° ﬁ)jA =-pVIA PV A,
VA= (p+do)v +av)(a+da) o

OVA = pAV + pVdA +VAdp +\W+pAdV + W + Ad/aV + dMOV

0:d7A+d7p+d7V
A p V

Only retain 1% order differential terms & divide
By pVA

Steady Isentropic Flow

Steady State Energy Equation with
linlet & 1 exit:

Q W, V V1
m 2
Neglecting potential energy and recalling: h = + pv
Q-W, _Vv7-v?
+h, -
= 5 , —h

+ g(Zz _Z1)+('j+ pv)z _(G+ pv)l

Assuming and ideal gas:
Q W, V V7 -V?
2

r cp(Tz _T1)




Steady |sentropic Flow

Steady State Energy Equation with 1 inlet
& 1 exit, neglecting potential energy &
assuming Isentropic duct flow:

A V2
Y2 4p =ty
2 72 h
Assuming and ideal gas:
2 2
V72+CPTZ:\%+C

2 2
VL K g W, K
2 k-1 2 k-1

Tl

p

1

Insolated
walls

Stagnation Conditions 2

Assume the area Ais so big V,~ 0, then
V 2
h, = ? +h =h,—, Stagnation enthalpy

Similarly, as we adiabatically bring a fluid parcel to zero velocity
there is a corresponding increase in temperature

\% V2
V2
T, = 2. +T | ——» Stagnation Temperature
3

Stagnation Conditions — maximum velocity

2
T \Y

= +T +
"% ™

If the temperature, T is taken taken down to absolute zero,
then (+) can be solved for the maximum velocity:

Vi =4/2€,T,

No higher velocity is possible unless energy is added to the
flow through heat transfer or shaft work.




Stagnation Conditions — Mach number relations

Recall, that the Mach number isdefinedas:. M :\L
Cc
V2
T, = +T For Ideal gases:
2c,
2
L.V cpT:(k—RJT:kRTi
T Tz, k-1 k-1
—_ 2 —_ Cz
L:QVT+1:QM2+1 p
T 2 c
Lo kolyey,
T
Stagnation Conditions — |sentropic pressure &
density relationships
L}:EM2+1
T 2
s s
&:(Lo]“:(k‘lwﬂj“
p T 2
N 1
&:(T—Ojkﬂ:(EMz+l)k_l
ol T 2

Critical Values: conditionswhenM = 1
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Critical Vaues: conditionswhen M = 1

For Airk= 1.4

LI (Lj =0.8333
T, \k+1

. K
L (LJH =0.5283
p, \k+1

. 1
P _ (L)H =0.9129
Po k+1
g = (L)z =0.9129
Co k+1

In all isentropic flow, al critical values are constant.

Critical Values: conditionswhenM = 1

Critical Velocity: isthe speed of sound ¢
1
[ (L ]5
Cy k+1

1 1
V':cx:\/kRTi’:co( 2 JQ:(ZkRTDJQ

k+1 k+1

Example 3: Stagnation Conditions

Air flows adiabatically through aduct. At point 1 the velocity
is 240 m/s, with T, = 320K and p, = 170kPa. Compute

(a) To

(b) Py

©r,

(M

(8) Vinax

" v
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Steady |sentropic Duct Flow

h+dh
prdp

»V +dv
T+dT

| prdp

Recall, for Steady isentropic flow Continuity:
M) o=%,d N dA__do_av
A p VvV A oV
For compressible, isentropic flow the momentum eguation is:
2
") 0=®, NV _® vy —— Bemoulli's Equation!
2 0 neglecting gravity

Substitute () into (*)

dA_ _dp, dp _dj(i_dj]
T oV odp

A p VP op

Steady Isentropic Duct Flow

h+dh

prdp
»V +adV
T+dT

| prdp

dA_dp(1 _dp
A plVv? dp
op

Recall that the speed of sound is: ¢’ = F

dA_dp(l 1)_ dp v?
el e S e ) [
A plv? ¢2) pv? c?

Substituting the Mach number: m =¥
c

Describes how the pressure
da_ dp2 (1— M 2) — behavesin nozzles and diffusers
A pV under various flow conditions

Nozzle Flow Characteristics

=P f-m?)
A pVv
1. Subsonic Flow: M <1 and dA <0, thendP < O: —_—
indicating a decrease in pressure in a converging P P
channel. _—
2. Supersonic Flow: M > 1 and dA < 0, then dP > 0: ——
indicating an increase in pressure in a converging P
channel. —
3. Subsonic Flow: M<1anddA>0,thendP>0: _—
indicating an increase in pressure in adiverging P P
channel. —_—
4.  Supersonic Flow: M>1dA >0, thendP<0: _—
indicating a decrease in pressure in adiverging P
channel. ——

12



Steady Isentropic Duct Flow — Nozzles
Diffusers and Converging Diverging Nozzles
Describes how the pressure

(t1) La de (1— M 2) — behavesin nozzles and diffusers
A v under various flow conditions

Recall, the momentum eguation hereis:

0=Povav — . Py (%)
P P

Now substitute (**) into (11) :

d7A = dl(M 2 _1)
AV
Or,
dA 2
—=—M"-1
A Afyeo)
Nozzle Flow Characteristics
d7A = dl(M 2 —l)
AV
1. Subsonic Flow: M < 1 and dA < 0, then dV > 0: —_—
indicating an accelerating flow in a converging — —
channel. _—
2. Supersonic Flow: M>1and dA< 0, thendV < 0: _—
indicating an decelerating flow in a converging — —_*
channel. —
3. Subsonic Flow: M<1anddA> 0, thendV<0: _—
indicating an decelerating flow in a diverging — —
channel. ———
4. Supersonic Flow: M >1dA >0, thendV>0: _—
indicating an accelerating flow in adiverging 5 s
channel. ——

Converging-Diverging Nozzles

Subsonic M ! 1 Subsonic
— ! —_—
Supersonic M > 1 Supersonic

Swewe gsy  Seewies

Flow can not be sonic
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Choked Flow — The maximum possible mass flow through a
duct occurs when it’s throat is at the sonic condition
Consider a converging Nozzle:

receiver
K p
T L Pe

° —)

Po [ €
plenum

Mass Flow Rate (ideal gas):
o= __p M V__ Vv
m=pVA=——VA P =

._ P _ k
=—M+kRT A= p,/——MA
m RT P RT

M= pw/%MA

Choked Flow

Mass Flow Rate (ideal gas):

m=p %MA

Recall, the stagnation pressure and Temperature ratio and substitute:
k

Po_(KoLye ) Lo _kdyey
p L2 T 2

k+1

m=p, R'; MA(1+L;1M 2)2‘”’

If the critical area (A*) iswhere M=1:
k+1

= p,A ler (k;ljm

Thecritical areaRatio is: o
A_1(2+(k-M? D
A M k+1
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