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Introduction to Compressible 
Flow
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The density of a gas changes significantly along a streamline

Compressible Flow

Definition of Compressibility: the fractional change in 
volume of the fluid element per unit change in pressure 
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Compressible Flow

1. Mach Number:

2. Compressibility becomes important for High Speed 
Flows where M > 0.3
• M < 0.3 – Subsonic & incompressible
• 0.3 <M < 0.8 – Subsonic & compressible
• 0.8 <M < 1.2 – transonic flow – shock waves appear 

mixed subsonic and sonic flow regime
• 1.2 <M < 3.0  - Supersonic – shock waves are present 

but NO subsonic flow
• M > 3.0 – Hypersonic Flow, shock waves and other 

flow changes are very strong
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Compressible Flow

3. Significant changes in velocity and pressure result 
in density variations throughout a flow field

4. Large Temperature variations result in density 
variations.

As a result we now have two new variables we must solve for:
T & ρρρρ

We need 2 new equations.
We will solve: mass, linear momentum, energy and an equation of state.

Important Effects of Compressibility on Flow

1. Choked Flow – a flow rate in a duct is limited by 
the sonic condition 

2. Sound Wave/Pressure Waves – rise and fall of 
pressure during the passage of an acoustic/sound 
wave. The magnitude of the pressure change is 
very small.

3. Shock Waves – nearly discontinuous property 
changes in supersonic flow. (Explosions, high 
speed flight, gun firing, nuclear explosion)

4. A pressure ratio of 2:1 will cause sonic flow

Applications

1. Nozzles and Diffusers and converging 
diverging nozzles

2. Turbines, fans & pumps
3. Throttles – flow regulators, an obstruction 

in a duct that controls pressure drop.
4. One Dimensional Isentropic Flow –

compressible pipe flow.
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Approach

• Control volume approach
• Steady, One-dimension, Uniform Flow
• Additional Thermodynamics Concepts are 

needed
• Restrict our analysis to ideal gases

Thermodynamics

• Equation of State – Ideal Gas Law
RTp ρ=

Temperature is absolute and the specific volume is 
(volume per unit mass): 

ρ
1=v

K)J/(kg287
.97kg/kmol28

K)J/(kmol8314
air of massMolecular 
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Thermodynamics – Internal Energy & 
Enthalpy

• Internal Energy – individual particle kinetic energy. 
Summation of molecular vibrational and rotational energy.

• For an ideal gas

• Recall from our integral form of the Energy Equation for 
Enthalpy of an ideal gas:
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Thermodynamics – Internal Energy & 
Enthalpy

dTcdh p=

RdTuddh
RTuh
pvuh
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RTp =
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dTcud v=~
Substituting:
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Thermodynamics – Internal Energy & 
Enthalpy

Define the ratio of specific heats: const
c
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For Air:
cp = 1004 J/kg-K
k = 1.4

The 2nd Law of Thermodynamics & Isentropic 
Processes

Combining the 1st and 2nd Laws gives us Gibb’s Equation
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The 2nd Law of Thermodynamics & Isentropic 
Processes

For an Isentropic process: adiabatic and reversible
We get the following power law relationship 
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Control Volume Analysis of a Finite Strength 
Pressure Wave
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Moving Wave of Frontal Area A

The Speed of sound (c) is the rate of propagation of a pressure wave of infinitesimal
strength through a still fluid.
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Reference frame moving with wave
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Steady State Continuity Equation (Solve for the induced velocity ∆V):
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Control Volume Analysis of a Finite Strength 
Pressure Wave

Small Amplitude moderate frequency waves are 
isentropic and 
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Steady State Momentum Equation:
(Find ∆p and c)
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Now combine A & B and solve for the speed of sound:
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Control Volume Analysis of a Finite Strength 
Pressure Wave

Calculating the Speed of Sound for an ideal gas:

constp
k =

ρ

ρρ
pkp =

∂
∂

kRTpkc ==
ρ

kRTc = Typical Speeds of Sound
Fluid c (m/s)
Gases:
H2 1,294
Air 340

Liquids:
Water 1,490
Ethyl Alcohol 1,200

Data From White 2003
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For Air:

K)J/(kg287 ⋅=R

Example 1: Speed of sound calculation

Determine the speed of sound in Argon (Ar) at 120 oC.  MW = 40 
kg/kmol:

kRTc =

668.1≈=
v
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k

K)J/(kg9.207
0kg/kmol4

K)J/(kmol8314 ⋅=⋅==
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M
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( )( ) 1-ms8.318393J/kgK9.207668.1 == Kc

Movement of a sound source
and wave propagation

V = 0

V < c V > c
α

Source moves to the right at a speed V

Mc
V 1sin ==α

Zone of silence

V ∆t

3 c∆t

V ∆t V ∆t

Mach cone
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Example 2: a needle nose projectile traveling at a 
speed of M=3 passes 200m above an observer. Find 

the projectiles velocity and determine how far 
beyond the observer the projectile will first be heard

200 m

α

M =3

x

Example 2: a needle nose projectile traveling at a 
speed of M=3 passes 200m above an observer. Find 

the projectiles velocity and determine how far 
beyond the observer the projectile will first be heard

( )( )
( )

mmx

x
m

M

McV
kRTc

o

565
5.19tan

200

200tan

5.19
3
1sin1sin

m/s6.10412.3473
m/s2.3473002874.1
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Steady Isentropic Flow – Control Volume 
Analysis

Applications where the assumptions of steady, 
uniform, isentropic flow are reasonable:

1. Exhaust gasses passing through the blades 
of a turbine.

2. Diffuser near the front of a jet engine
3. Nozzles on a rocket engine
4. A broken natural gas line
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Steady Isentropic Flow
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Steady State Continuity Equation:

1 2

Steady Isentropic Flow

p
T

h
ρ

V

dpp
dTT
d
dhh

+
+
+
+

ρρ dVV +

dx

( )
( )( )( )

dAdVddVAddAdVAdVdAVdVAdVdAAVVA
dAAdVVdVA

AVAVdAnV
CS

ρρρρρρρρρ
ρρρ

ρρρ

+++++++=
+++=

+−=•= ∫ 222111ˆ0
r

Steady State Continuity Equation:

Only retain 1st order differential terms & divide
By ρVA

V
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ρ
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~ 0 ~ 0 ~ 0 ~ 0

Steady Isentropic Flow
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Steady State Energy Equation with 
1 inlet & 1 exit:

Neglecting potential energy and recalling: pvuh += ~
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Assuming and ideal gas: 

1 2



9

Steady Isentropic Flow
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dpp
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d
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+
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+

ρρ dVV +

dxSteady State Energy Equation with 1 inlet 
& 1 exit, neglecting potential energy & 
assuming Isentropic duct flow:
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Stagnation Conditions

Assume the area A2is so big V2 ~ 0, then

ohhVh =+= 1

2
1

2 2

1

2

Stagnation enthalpy

T
c

VT
p

o +=
2

2

1

2
1

2

2
2

22
TcVTcV

pp +=+

Similarly, as we adiabatically bring a fluid parcel to zero velocity
there is a corresponding increase in temperature

Insolated
walls

Stagnation Temperature

Stagnation Conditions – maximum velocity

T
c

VT
p

o +=
2

2

If the temperature, T is taken taken down to absolute zero, 
then (+) can be solved for the maximum velocity:

(+)

opTcV 2max =

No higher velocity is possible unless energy is added to the 
flow through heat transfer or shaft work.
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Stagnation Conditions – Mach number relations
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Recall, that the Mach number is defined as:
c
VM =

Stagnation Conditions – Isentropic pressure & 
density relationships
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Critical Values: conditions when M = 1
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Critical Values: conditions when M = 1
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In all isentropic flow, all critical values are constant.

Critical Values: conditions when M = 1

Critical Velocity: is the speed of sound c*
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Example 3: Stagnation Conditions
Air flows adiabatically through a duct. At point 1 the velocity 

is 240 m/s, with T1 = 320K and p1 = 170kPa. Compute
(a) To
(b) Po
(c) ro
(d) M
(e) Vmax
(f) V*
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Steady Isentropic Duct Flow
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ρρ dVV +
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Recall, for Steady isentropic flow Continuity:

V
dVd

A
dA ++=

ρ
ρ0

For compressible, isentropic flow the momentum equation is:

VdVdpdVdp +=+=
ρρ 2

0
2

Bernoulli’s Equation!
neglecting gravity

Substitute (†) into (*)

(†)

(*)

V
dVd

A
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ρ
ρ
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
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
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Steady Isentropic Duct Flow
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Substituting the Mach number: 
c
VM =

( )2
2 1 M

V
dp

A
dA −=

ρ

Describes how the pressure 
behaves in nozzles and diffusers 
under various flow conditions

1 2

Nozzle Flow Characteristics

1. Subsonic Flow: M < 1 and dA < 0, then dP < 0: 
indicating a decrease in pressure in a converging 
channel.

2. Supersonic Flow: M > 1 and dA < 0, then dP > 0: 
indicating an increase in pressure in a converging 
channel.

3. Subsonic Flow: M < 1 and dA > 0, then dP > 0 : 
indicating an increase in pressure in a diverging 
channel.

4. Supersonic Flow: M > 1 dA > 0, then dP < 0 : 
indicating a decrease in pressure in a diverging 
channel.

( )2
2 1 M

V
dp

A
dA −=

ρ

P P

PP

PP

P P



13

Steady Isentropic Duct Flow – Nozzles 
Diffusers and Converging Diverging Nozzles

( )2
2 1 M

V
dp

A
dA −=

ρ

Describes how the pressure 
behaves in nozzles and diffusers 
under various flow conditions

VdVdp +=
ρ

0

Recall, the momentum equation here is:

VdVdp −=
ρ

Now substitute (**) into (††) :

( )12 −= M
V
dV

A
dA

( )12 −= M
V
A

dV
dA

Or,

(††)

(**)

Nozzle Flow Characteristics

1. Subsonic Flow: M < 1 and dA < 0, then dV > 0: 
indicating an accelerating flow in a converging 
channel.

2. Supersonic Flow: M > 1 and dA < 0, then dV < 0: 
indicating an decelerating flow in a converging 
channel.

3. Subsonic Flow: M < 1 and dA > 0, then dV < 0 : 
indicating an decelerating flow in a diverging 
channel.

4. Supersonic Flow: M > 1 dA > 0, then dV > 0 : 
indicating an accelerating flow in a diverging 
channel.

( )12 −= M
V
dV

A
dA

Converging-Diverging Nozzles

Amin
Subsonic Supersonic

M = 1

Amax

Subsonic
Supersonic

M < 1
Subsonic

SupersonicM > 1

Flow can not be sonic
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Choked Flow – The maximum possible mass flow through a 
duct occurs when it’s throat is at the sonic condition

Consider a converging Nozzle:

VA
RT
pVAm == ρ&

o

o
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T
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e

e

V
p

Mass Flow Rate (ideal gas):

kRT
V

c
VM ==

MA
RT
kpAkRTM

RT
pm ==&

MA
RT
kpm =&

Choked Flow

MA
RT
kpm =&

Mass Flow Rate (ideal gas):

12 1
2

1 −






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k
k

o Mk
p
p

Recall, the stagnation pressure and Temperature ratio and substitute:
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o
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The critical area Ratio is:
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If the critical area (A*) is where M=1:


