
 

 

 

 

 

 

 

INSTRUMENTATION AND ALGORITHMS FOR POSTURE ESTIMATION IN 

COMPLIANT FRAMED MODULAR MOBILE ROBOTIC SYSTEMS 

 

 

 

 

 

by 

 

Clinton Leroy Merrell 

 

 

 

 

 

 

A thesis submitted to the faculty of 

The University of Utah 

in partial fulfillment of the requirements for the degree of 

 

 

 

 

 

Master of Science 

 

 

 

 

 

Department of Mechanical Engineering 

 

The University of Utah 

 

December 2005 



 

 

 

Copyright  Clinton Leroy Merrell 2005 

 

All Rights Reserved 



 

 

THE UNIVERSITY OF UTAH GRADUATE SCHOOL 

 

 

SUPERVISORY COMMITTEE APPROVAL 
 

 

 

 

of a thesis submitted by 

 

 

 

 

Clinton Leroy Merrell 

 

 

 

 

This thesis has been read by each member of the supervisory committee and by majority 

vote has been found to be satisfactory. 

 

 

   

  Chair: Mark A. Minor 

   Sanford G. Meek 

   Daniel O. Adams 

 



 

 

THE UNIVERSITY OF UTAH GRADUATE SCHOOL 

 

 

FINAL READING APPROVAL 
 

 

 

To the Graduate Council of the University of Utah: 

 

 

I have read the thesis of  Roy Merrell  in its final form and have 

found that (1) its format, citations, and bibliographic style are consistent and acceptable; 

(2) its illustrative materials including figures, tables, and charts are in place; and (3) the 

final manuscript is satisfactory to the supervisory committee and is ready for submission 

to The Graduate School. 

 

 

    

Date Mark A. Minor 

 Chair: Supervisory Committee 

 

 

 

Approved for the Major Department 

 

 

 

____________________________________ 

Kent S. Udell 

Chair/Dean 

 

 

 

Approved for the Graduate Council 

 

 

 

____________________________________ 

David S. Chapman 

Dean of The Graduate School 

 



 

ABSTRACT 

Posture sensing techniques for Compliant Framed Modular Mobile Robots 

(CFMMR) are presented in this paper using a new Relative Posture Sensor (RPS) 

combined with standard sensors in a tiered fusion algorithm.  The fusion algorithm uses 

traditional Kalman filters and rigid axle kinematic models to predict the global posture of 

each axle.  A Covariance Intersection filter then fuses disparate axle data using the RPS.  

The RPS consists of a compliant frame member instrumented with strain gauges and 

associated algorithms. Modeling and instrumentation of the RPS for large deflections is 

the remaining focus.  While the RPS can predict relative posture, force, and moment, only 

posture estimates are used here.  Experimental results are derived from over 60 trials 

operating the robot on high traction carpet, low traction sand, and sand with rugged rocky 

terrain.  Results comparing the RPS combined with a variety of standard sensor 

configurations on varied terrain demonstrate that the derived posture sensing techniques 

yield accurate relative posture estimates and posture regulation even on rugged terrain, 

which is a vast improvement over previous results. 
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1. INTRODUCTION 

A new breed of wheeled mobile robotic systems is the subject this research:  

Compliant Framed Modular Mobile Robots (CFMMR), Figure 1.  This concept is unique 

in several ways.  First, it uses a novel yet simple structure to provide suspension and 

highly controllable steering capability to mobile robots without adding any additional 

hardware to the system.  This is accomplished by using flexible frame elements to couple 

 

Figure 1.  Compliant framed modular mobile robot. 
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rigid differentially steered axles.  In this study, the frame element provides compliant roll 

and yaw between the axles.  Roll provides suspension capability to the system by 

allowing the axles to deflect in order to accommodate uneven terrain, and yaw allows the 

axles to independently change heading for advanced steering capability.  Steering and 

maneuvering of the system are thus accomplished via coordinated control of the axles to 

achieve a desired mobility task, such as path following or stabilization about a point.  

Since each axle can be steered independently, the system provides enhanced 

maneuverability in confined environments as well as the capability to control the shape of 

the frame. 

A second and very unique aspect of the CFMMR is its predisposition for modular 

robotics.  Reconfigurable modular robotic systems have been of great interest to 

researchers during the last decade due to their improved ability to overcome obstacles and 

perform a variety of tasks using a single hardware platform.  To achieve this goal, 

numerous researchers have devoted their efforts to investigating minimalist homogenous 

robotic modules that can be assembled in various formats to create sophisticated robotic 

systems that are highly capable of adapting to uncertainty in their environment.  These 

systems have examined reconfigurable manipulation [1], mobility [2-4], or a combination 

therein [5, 6].  Module homogeneity is advantageous for a number of reasons.  With 

homogeneous modules system complexity is reduced.  Manufacturing is also simplified.  

When a small set of modules can be reconfigured to address a specific functionality the 

amount of custom design and manufacturing required to address a new functionality is 

greatly reduced.  This simplification of the manufacturing process will also bring with it 

the added benefit of cost reduction.  An additional benefit can be found in the fact that a 
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fleet of CFMMR’s regardless of configuration will have a part type count similar to a 

single CFMMR.  This has the potential to drastically reduce the parts inventory required 

by a fleet maintenance program.  A similar advantage is realized in the reduction of the 

amount of training and expertise required on the part of the maintenance staff for a fleet 

of CFMMR’s versus a fleet of more traditional robots that are custom built to a perform 

various tasks.  The modular nature of the system also increases the robustness of the fleet 

by providing redundancy.  The homogeneous nature of the modules provides compact and 

ordered storage.  The improved storage capability also means that more modules can be 

transported at the same time, reducing logistical constraints to a large deployment.  The 

redundancy and homogeneity also lend themselves to increased adaptability of the 

systems [7, 8].  If the operating requirements in the field change the robots can easily be 

reconfigured and optimized for the task at hand.  The compliant frame allows this concept 

to be extended to wheeled mobile robots by allowing a number of different vehicle 

configurations to be formed from a set of uniform frame and axle modules.   

Another unique aspect of this research is the Relative Position Sensor (RPS), used 

to improve the positional tracking between the front and rear axles.  In navigating from 

point to point, the independent axles and flexible frame allow the robot to control its 

shape offering an improvement over more traditional rigid vehicles to move over or 

around many obstacles.  Vital to this advanced control is the accurate knowledge of the 

relative position and orientation of the axles.  Even the simplest of navigational 

maneuvers will result in antagonistic forces exerted between the axles, if the error in 

relative position and orientation between the axles is too large.  Therefore, it is of 

paramount importance that the posture estimation drift between the two axles be 
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eliminated.  The RPS accomplishes this feat with a package small and light enough to sit 

on the robot without limiting its full range of motion or impeding its travel in any way.  In 

addition to relative posture estimation, another unique aspect of this sensor is its ability to 

estimate the forces and moments acting on the beam.   

In addition to its utility in this application the RPS has potential for extensibility to 

structural failure analysis.  Any homogeneous beam like structure can be instrumented in 

an RPS-like fashion.  Analysis of the RPS output will provide estimates of beam 

deflection, forces, and moments at any point along the length of the beam.  This 

technique could be used to improve understanding of typical structural beam member 

failure modes.  A RPS type system could also improve understanding of high velocity 

impact studies such as automotive crash testing.  The vehicle’s internal structural 

members could be instrumented with strain gauges and the RPS algorithm would provide 

researchers with greater insight into the forces and deflections as the collision occurs. 

Another unique aspect of this research is the combination of data fusion methods 

used to incorporate the data from the RPS, and other sensors that the robot may use.  The 

modular nature of the CFMMR and the novel nature of the RPS result in challenging data 

fusion problems.  This research uses an Extended Kalman Filter (EKF) to fuse data 

sources on an individual axle module, such as wheel encoders, axle gyroscopes, 

accelerometers, GPS, etc.  Because an individual axle unit has the capability to act 

autonomously the data fusion system must have a self contained axle level module.  The 

literature is replete with examples of this type of EKF implementation.  When multiple 

axle modules are joined with RPS equipped flexible frame members, a second tier of data 

fusion is necessary to facilitate data transfer from the RPS to the adjoining axle modules 
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and between the joined axle modules themselves.  The Covariance Intersection (CI) filter 

strategy is used for the second tier data fusion module.  The unknown correlation between 

data sources as relative posture information is passed back and forth between axle 

modules and the RPS makes this module of the data fusion algorithm particularly 

challenging.  In order for the EKF to be consistent in its state estimation it is necessary 

that the correlation between data sources be known.  The CI filter assumes complete 

correlation and is therefore consistent in its estimation in the face of uncertain 

correlations [9].  All of this must be accomplished in real time without impeding the 

robot’s motion controller [10-12].  A third component of the data fusion structure is the 

incorporation of Borenstein’s Internal Posture Error Correction (IPEC) algorithm [13].  

The IPEC algorithm has been incorporated into the CI filter.  This hybrid fusion approach 

provides the odometry error correction ability of the IPEC algorithm while maintaining 

the covariance propagation of the CI filter.  This combination of data fusion techniques is 

a new approach that is required by the modular nature of the robot and the unique sensing 

capability of the RPS.   

The tiered data fusion system described here may also have extensibility to 

cooperative and distributed robotics applications.  Any system that requires the 

cooperation of multiple independent systems to accomplish a task can benefit from this 

data fusion architecture.  Examples include cooperative robotic manipulators, cooperative 

mobile robots, distributed sensor networks, etc.   

Chapter 2 contains background information about this robot configuration and how 

it relates to other relevant research.  Chapter 3 discusses the theoretical basis for the RPS 

and the problems that were overcome in its implementation.  Chapter 4 discusses the axle 
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level Extended Kalman Filter, (EKF), used to fuse the data from all of the axle level 

sensors.  Chapter 5 is a description of the higher level Covariance Intersection (CI) data 

fusion algorithm that uses the RPS to propagate posture data between axles connected by 

the RPS and to detect and correct for inaccuracies in an axles posture estimate.  Chapter 6 

presents the experimental data gathered from the static tests of the RPS.  Chapter 7 

presents the results of the system integration testing using the complete robotic system.  

Chapter 8 contains concluding remarks. 

 



 

 

2. BACKGROUND 

A limited number of compliant vehicles can be found in the literature, and none 

possess a similar highly compliant frame whose deflection is controlled by coordinated 

actuation of the wheels.  The earliest found reference to compliant vehicles in the 

literature is a system proposed for planetary exploration that uses compliant members to 

provide roll and pitch degrees of freedom for suspension capability between the axles 

[14].  This concept was later extended [15] in a design where the frame of a vehicle was 

composed of at least one helical spring, but hydraulic cylinders were then to be used to 

control the deflection.  In each of these cases, compliance was introduced for 

accommodating terrain.  More recent research, by Borenstein [16], has introduced 

compliance for accommodating measurement error and resulting wheel slip occurring 

between independently controlled axle units on a service robot.  This robot is similar in 

spirit to the compliant framed system in that it allows relative rotation between the axles, 

but this is provided by rotary joints connected to the ends of a frame with limited 

prismatic compliance.  The system is intended for operation on flat surfaces in industrial 

service settings.  As the author states, the system provides high levels of mobility, but 

since the axle units are coupled by a relatively nonconforming rigid frame, its ability to 

maneuver in confined environments is limited [17].  In comparison to the system 

proposed here, the Borenstein system [16] is likewise not intended for operating on 
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uneven terrain, but in smoother and flatter manufacturing environments.  Other flexible 

robots use actuated articulated joints to provide similar relative motion between axles; 

examples include the Marsokhod rover [18] and other six wheeled research rovers with 

high relative DOF provided between axle modules [19].  The compliant frame mobile 

robot system proposed here allows independent steering control of the axles with minimal 

slip but unlike the aforementioned designs does not require any additional hardware or 

actuators.  It does, however, present unique sensing challenges for localizing the relative 

position of the axles that the aforementioned robots with fixed joint structures do not 

experience. 

Position localization begins with the most basic unit of this system, the single axle.  

Numerous examples can be found in the literature that use a Kalman type filter to fuse 

sensor data from a mobile robot.  The typical approach is to use incremental encoder 

readings as the input to the mobile robot kinematic equations. This odometry model is 

then fused with another independent sensor, such as a gyroscope, inertial sensors, GPS, 

vision systems, some type of reflective sensor (laser, sonar, ir), or some combination of 

the above.  The goal is to limit the impact of nonsystematic odometry errors [16] and 

achieve the best possible posture evaluation with a method that eliminates, or at least 

limits, the drift inherent in the sensors commonly used on mobile robots.  This robot 

platform is no exception.  Each axle has a 1024 count per revolution quadrature encoder 

attached directly to each wheel.  In addition, each axle is equipped with a MEMS rate 

gyroscope that outputs a voltage proportional to the angular rate of rotation in the yaw 

direction.  This gyroscope utilizes a micro machined vibrating quartz tuning fork element 

to detect the coriolis force.  Each axle is also equipped with two accelerometers.  These 
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accelerometers are oriented to be sensitive to the axle x and y coordinates respectively.  

See Table 1 for a description of each sensor.  For a more detailed description of the axle 

Inertial Motion Unit (IMU) module see [20].  Even though each axle was equipped with 

each of these sensors, the front axle gyroscope and the accelerometers were not actually 

used in any of the experiments in this thesis. 

Cooperating axle units are connected with a flexible frame element.  When this 

frame element is instrumented to return relative position information about the axles 

connected it is referred to as a RPS.  The closest found example to the RPS is that 

described by Piedbeouf [21] for the purpose of predicting the endpoint position of a 

flexible linkage.  While the curvature-based sensor model found there is similar to that 

presented in this paper, the fundamental constraints on the sensor as well as the beam are 

different.  In Piedbeouf’s case the instrumented linkage is a link in a fixed robotic 

manipulator that ideally should be stiff, but fails the stiffness assumption due to its long 

and slender geometry.  For this application Peidbeouf required only endpoint position 

relative to the root of the linkage for small deflections.  The CFMMR is more demanding 

in that it requires posture estimates in a system that will greatly exceed the common small 

deflection assumptions, on a regular basis.  In addition, the relative position data returned 

Table 1 

Sensor manufacturers and part numbers. 

Sensor Sensitive Axis Manufacturer Part No. 

Gyroscope Yaw BEI HZI-90-100A 

Accelerometer X Honeywell ASA7002 

Accelerometer Y Honeywell ASA7002 
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must be used to improve the global posture estimate of both of the robots axles, not 

merely endpoint position relative to root.  This global axle posture estimation is further 

complicated by the kinematic and nonholonomic constraints of the axle motion. 

The closest found example to the current research in mobile robotics is 

Borenstein’s OMNImate [16] where the Internal Position Error Correction (IPEC) 

algorithm is proposed.  This algorithm works by detecting which axle has the least 

trustworthy posture estimate based on odometry and replacing that axle’s posture estimate 

with the sum of the other axles posture estimate plus the relative posture between the two 

axles calculated from the linkage potentiometers.  This seems to be quite good at limiting 

the effect of odometry errors, but, no attempt is made to maintain variance information 

about each axle’s posture.  Variance information can be vital to a path-planning algorithm 

in deciding whether the robot posture is known with sufficient accuracy to permit close 

quarters maneuvering around objects.  One of the unique contributions of the data fusion 

architecture presented here is that it allows the propagation of variance information.  The 

first layer of data fusion consists of the axle level EKF combining all of the sensor data 

from a single axle.  The second layer uses a CI filter to combine the data from the EKF 

update with pose data from adjacent axles and data from the RPS. 

The CI filter was proposed by Uhlman and Julier [9].  This filter technique 

maintains consistent estimates without regard to the correlation between data sources.  

This is important because the correlation between data sources is often difficult or 

impossible to calculate.  Because of this property the CI filter has been used in attempts to 

solve the Simultaneous Localization and Mapping, or SLAM problem [22].  In this 

application, a mobile robot uses its sensory input to create a map of its environment and 
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then uses the map to localize itself.  The sensor data are therefore correlated with the 

robots internally generated map but it is very difficult to determine the degree of 

correlation.  Recently, Arambel, Rago, and Mehra [23] proposed a CI filter for use in 

coordinating the motion of a constellation of deep space imaging satellites for the purpose 

of increasing the sensitivity of a space based sensor over what a single satellite can 

accomplish.  The sensor fusion architecture used in this application is similar to that of 

this thesis.  Both employ an EKF to calculate the states of each axle/satellite individually.  

Both systems also use a relative position sensor and data from this RPS is fused via a CI 

filter because of the difficulty in determining the correlation between data source.  This 

application is unique in that it incorporates the Borenstein IPEC algorithm that acts as a 

gatekeeper and allows only the more trustworthy of the two axles connected by the RPS 

to propagate it’s posture data through the RPS.  In addition, in the case of [23], the RPS is 

not defined; it is merely assumed to exist and all data presented is from simulation.  

Whereas, in this thesis, the RPS is a real piece of hardware that has been developed solely 

for this application and results are based on the actual physical system in motion. 

 



 

 

3. THE RELATIVE POSITION SENSOR 

It is desired to instrument the frame module in such a way that the relative position 

and orientation of one axle with respect to the other can be detected by sensor data from 

the flexible frame that is not dependent on the axle sensors in any way.  Such information 

is critical for dynamic stabilization of the robot and for implementing motion planning 

algorithms.  It will also be helpful if the beam sensors relate information about the forces 

and moments applied by the beam on the axles.  To this end the flexible frame is 

instrumented with strain gauges at regular intervals along its length.  In order to extract 

the required information from these strain gauges it is necessary to derive a basic 

theoretical foundation showing how a polynomial interpolation of the curvature of the 

beam can be obtained from the strain gauges as in [21].  With the curvature based model 

in hand the needed posture and force/moment information can be estimated.  The 

theoretical frame work will then be followed by a discussion of the implementation of the 

strain gauges. 

Beam Model 

The following assumptions are used in defining the theoretical basis for the RPS.  

1) The beam will be subjected to extreme bending conditions.  In the course of 

maneuvering the end point of the beam will regularly be bent by greater than 
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40° relative to its root.  Therefore, small angle approximations cannot be 

used. 

2) For this research the robot will operate in a planar space.  This means that 

the RPS will only need to detect the relative x, y, and φ of one axle to the 

other.  Along with this assumption is the caveat that the ultimate goal is a 

robot that can operate in rough terrain and the groundwork should be laid to 

be able to allow expansion of the role of the RPS to detect the relative roll 

angle between axles as well. 

3) The robot controller used will attempt to maneuver the robot such that the 

beam maintains a state of pure bending. 

4) The sensor will consist of a series of strain bridges placed at known locations 

along the length of the beam.  This means that the strain at discrete locations 

along the beam will be known. 

The starting point for the derivation of the RPS algorithm is the strain at discrete 

locations along the beam, ε1, ε2, …, εn.  With the strain known accurately at discrete 

locations the next step is to derive a smooth function based upon the strain gauge data 

that will interpolate the strain along the length of the beam.  Choices for this interpolation 

include cubic spline, polynomial or a rational function.  Due to its relative ease of 

calculation, the polynomial interpolation was chosen.  For this interpolation it is 

necessary to determine the coefficients of a polynomial that relates strain (ε) to location 

along the beam (x) where the polynomial exactly intersects the strain reported by each 

strain gauge.  This polynomial will have the form of equation (1), where n is equal to the 

number of discrete locations along the beam at which the strain is known. 
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The coefficients in equation (1) can be determined by solving the system of linear 

equations in (2) where l1, … ln are the discrete locations along the beam at which the 

strain is known. 
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The next step is to determine how to use this strain polynomial to calculate the 

posture of one axle relative to the other without using any small angle approximations.  

The starting point is the relationship between strain and curvature (κ) and the radius of 

curvature (ρ) shown in equation , where y is the inflection point for the strain internal to 

the beam. 

 

 
( )

( ) ( )
( )

1 x
x

x y x

ε
= κ =

ρ
 (3) 

Examination of a small segment of the beam (dL), as seen in Figure 2, will show how the 

relationship in equation (3) can be exploited.  First, it must be noted, that in order for (3) 

to be generally valid, the segment dL must be chosen sufficiently small so that the change 
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in curvature over its length is negligible.  When this assumption is met, the segment dL 

inscribes a circular arc of radius ρ which allows dφ to be calculated in radians from the 

arc length equation as in (4). 

 

 
d

d
L

φ =
ρ

 (4) 

Once dφ is known, trigonometry gives the relationships for dx and dy as shown in 

equations (5) and (6). 

 

 ( )d sin dx = ρ φ  (5) 

 

Figure 2.  Curvature integration diagram. 



 

 

16 

 ( )( )d 1 cos dy = ρ − φ  (6) 

Equations  thru (6) are now used in a piecewise integration over the length of the beam to 

determine the posture (x, y, and φ) of the end point of the beam with respect to its root.  

The beam is broken into segments small enough that the radius of curvature can be 

considered constant over each segment.  At the midpoint of each segment the radius of 

curvature is determined using equation  and then assumed to be constant over the length 

of each segment.  Then equations (4) thru (6) are applied to determine dx, dy, and dφ for 

the each segment.  Once this is done, the dφ from each segment is summed to calculate 

the total angular difference between the endpoint and root of the beam.  The application 

of equations (4) thru (6) assumes that each segment of the beam starts at an angular 

orientation of 0°.  In reality, each segment starts with an angular orientation equal to the 

sum of dφ’s from all previous segments.  In order to calculate the endpoint x and y 

relative to the beams root, each vector (dx, dy) from each segment must be rotated into 

alignment with the previous segment.  Equation (7) shows how this is accomplished 

where the vector (dxr, dyr) is the rotated position vector and φp is the sum of each dφ from 

all of the previous segments. 

 

 
( ) ( )
( ) ( )

p pr

r p p

cos - sin -d d

d dsin - cos -

x x

y y

 φ φ    =    − φ φ     
 (7) 

After this rotation, the dxr and dyr from each segment can be summed to calculate the total 

change in x and y over the length of the beam. 
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Because the beam is necessarily clamped to an axle at both of its endpoints it has a 

small rigid section at each end that needs to be summed in as well.  Both of these rigid 

sections can be handled in a similar manner as the segments from the flexible portion of 

the beam.  The only difference being that, because these segments are rigid dφ is always 

zero.  After this process of piecewise integration is completed, the result is the calculation 

of the relative pose (x, y, and φ) of the center point of one axle with respect to the other. 

The strain polynomial generated by the RPS in calculating the relative posture can 

also be used to calculate end point forces and moments applied by the axles to the beam.  

While this information is secondary in importance and not currently used by the robot 

controller, it is presented here because it could be useful in the future.  For this analysis 

the robot is assumed to be slow enough in its motion that a quasi static analysis of the 

beam can be made. 

The moment at any point x along the beam is directly proportional to the strain at 

that point in the beam according to the relationship in (8). 

 

 ( )
( )x IE

M x
y

ε
=  (8) 

By this relationship the moment at any point along the beam can be easily calculated as a 

constant multiple of the strain polynomial in (1).  The moments at the extreme ends of the 

beam can also be extrapolated in the same fashion. 



 

 

18 

The free body diagram shown in Figure 3 a, defines the boundary conditions and 

coordinate frame imposed on the beam.  Using the free body diagram shown in Figure 3 

b, the following static equations of equilibrium can be determined. 

 

 A B A B0,x x x x x xF F F F F F= − = ⇒ = =∑  (9) 

 A B A B0,y y y y y yF F F F F F= − = ⇒ = =∑  (10) 

 A A B 0yM M M F L= − + − =∑  (11) 

In equation (11), L is the foreshortened total length of the beam.  By solving for Fy 

in (11), it can be shown that the y component of the boundary condition force is: 

 

 A B

y

M M
F

L

− +
=  (12) 

Fy can now be determined by calculating the moments at the endpoints of the beam using 

the relationship in (8) and substituting them into equation (12). 

Finding a relationship for Fx will be only slightly more difficult.  Making a cut in 

the frame and drawing a new free body diagram, as in Figure 3 c, we can evaluate the 

following relationships about the forces and moments internal to the frame. 

 

 A 0,x x xF F P P F= − = ⇒ =∑  (13) 
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 0,y y yF F V V F= − = ⇒ =∑  (14) 

 A A 0M M M Vx P= − + − − υ =∑  (15) 

Using the relationships for P and V from equations (13) and (14) in equation (15) 

and solving for Fx yields the x component of the boundary condition force. 

 

 
( )

( )
A y

x

M x M F x
F

x

− −
=

υ
 (16) 

 

Figure 3.  Beam free body diagrams. 
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The deflection of the beam, υ(x), in (16) can be found by applying the beam 

integration equations, (4) thru (6), along a subset of the length of the beam x.  The result 

of which will be a relative position vector from one end of the flexible portion of the 

beam to the arbitrarily chosen midpoint location along the beam.  This relative position 

vector is not expressed in the coordinate frame shown in Figure 3.  The relative position 

vector is expressed in the local frame of the rear axle.  In this frame the x-axis is in the 

direction of the axle’s heading which coincides with the beam at its point of attachment to 

the rear axle.  In order to determine the deflection, an appropriate rotation matrix is 

applied such that the y component of the relative position vector is perpendicular to the 

line between the attachment points of the beam at either end.  After this rotation of the 

relative position vector the y component will equal the displacement of the beam υ(x).  

Once υ(x) is known, M(x) and MA can be calculated from (8) and Fy from (12) which 

allows Fx to be found from (16).   

The ability of the RPS to return endpoint forces and moments is important because 

the torque required for holding the beam in bending must be provided by wheel traction.  

The implication of this is that when the robot bends the beam in the course of 

maneuvering, the traction force available to the wheels is reduced in proportion to the 

torque required to hold the beam in the bent position.  Thus, knowing the forces and 

moments exerted by the beam on the axles could be important in predicting wheel slip 

and determining how tight of a turning radius can be afforded over a given terrain.  It 

should also be noted that the ability to estimate these forces and moments is a unique 

contribution of this research. 
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Implementation 

The implementation of the RPS involved both hardware and software 

considerations.  The electrical requirements include signal amplification, signal 

conditioning, noise reduction, and signal loss over long transmission wires.  The software 

considerations include: integration step size, and processor time requirements. 

The voltage output from the strain bridges is on the order of up to 20mV.  This 

small signal needs to be amplified to take advantage of the Analog to Digital Converter’s 

(ADC) input range of ±10V and thereby limit the measurement error due to the ADC’s 

resolution.  The first step in finding a strain bridge amplifier was to check the commercial 

market to find a suitable unit.  The amplifier needed to be small and portable so that it 

could be placed on the robot and amplify the signal as close to the strain bridges as 

possible in order to decrease the significance of transmission loss over the 25 foot 

umbilical cable connecting the robot to the controller.  The amplifier also must provide an 

analog output in the range of the ADC.  No commercial package was found that satisfied 

all of the requirements.  Therefore, the decision was made to design and build a custom 

amplification circuit.  A photograph of the amplifying circuit is shown in Figure 4.   

The design of strain amplification circuitry begins with the design of a power 

supply.  The robot’s motor amplifiers provide a 10V regulated supply but the current is 

limited to 3mA, which is nowhere near adequate to supply five bridges.  The robot also 

has a 40V high current power supply to the motors.  However, no discrete component 

linear regulator was found that had a maximum input voltage greater than 28V.  It is also 

a concern that the power source used for the Pulse Width Modulation (PWM) amplifiers 
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and motors might contain RF noise that would be detrimental to the operation of the 

sensitive strain bridge sensors.   

The solution was to provide the robot with two 7.2V battery packs, of the type used 

in radio controlled cars, in series to provide a 14.4V clean master power source that is 

easily regulated to the required 10V and 5V with linear regulators.  Both of these batteries 

were mounted on the rear axle of the robot along with the strain amplification circuitry. 

 

Figure 4.  Photograph of the strain bridge amplifying circuit.  The small circuit board at 

the upper right contains the +5V and +10V linear regulators.  The top row of 

potentiometers is used to adjust the reference voltage.  The row of integrated circuits is 

the 5 AD623 differential amplifiers.  The bottom row of potentiometers is used to adjust 

the amplifier gain. 
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In designing the circuit it was desirable to have an amplifier with a variable gain 

and the ability to offset the reference voltage in order to zero the bridge.  In addition the 

circuit must be a high quality amplifier with good common mode error rejection qualities.  

The AD623 instrumentation amplifier was chosen as the centerpiece of the amplification 

circuit because it provided all of these capabilities in an easy to prototype 8 pin DIP form 

factor. 

In designing the gain required for the amplifying circuit the simplest approach is to 

set the gain for all five of the amplifying circuits to the same constant value.  This 

approach would provide satisfactory performance if the beam was always bent in a mode 

that is close to pure bending and all of the bridges report similar strain reading.  However, 

it was desirable to test the RPS in all three bending modes [24] shown in Figure 5.  In 

these more complex bending modes the strain along the length of the beam is not 

constant.  The gain was set so that each bridges amplifier could be tuned to provide an 

output swing of no more than ±4.5V at the worst case scenarios of each of the three 

primary bending modes.  In addition to gain requirements it was necessary to use the 

smallest potentiometer possible that would provide the desired gain range.  This was 

needed in order to reduce the sensitivity of the gain adjustment potentiometer thereby 

making it easier to dial in the appropriate gain and also reduce the systems sensitivity to 

potentiometer jostling that could change the gain of the system and disturb the calibration 

of the strain bridge.  To this end, the fixed resistor R1 was used in series with the 25 turn 

trimming potentiometer R2 as shown in Figure 6.  This arrangement provides a gain 

range of 144 to 501 
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Figure 5.  The bending modes of the Flexible Frame. 
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If a ground reference is sent to the AD623 the post amplification signal of ±4.5V 

will run below the negative input of the 0V to 10V chip supply.  Therefore an offsetting 

reference of ~5V is required.  By adding the multiturn potentiometer R4, this reference 

can also provide the strain bridge zeroing voltage.  The reference voltage divider needs to 

give a large enough voltage swing such that the strain bridge can be zeroed, but, also be 

as insensitive as possible to provide precise calibration and limit the damage done by 

unintentional turning of the potentiometer.  The sum value of all resistors in the voltage  

divider should be large to limit current drain on the batteries.  The resistors should not be 

so large as to introduce unnecessary noise into the reference signal.  The final design uses 

the 25 turn 500Ω potentiometer R4 with the center pick as the reference voltage in 

between R3 and R5 of 1K each.  This design produces a reference voltage that can be 

varied between 4V and 6V. 

 

Figure 6.  Schematic of a single strain bridge amplifier. 



 

 

26 

The strain bridges are located on the beam near the four motors used to drive the 

robot.  This presents a challenge since the sensitive strain sensors are located in a very 

electrically noisy environment.  While the motor noise could not be entirely eliminated, it 

was reduced significantly by using shielded cabling and locating the strain amplifier as 

close to the sensors as possible given the space constraints on the robot. 

In addition to the electrical design, the software algorithms presented their own set 

of challenges.  The RPS algorithm involves a piecewise integration along the length of 

the beam that requires the beam to be split into n segments.  The number of steps n used 

in the RPS algorithm must be large enough to provide an accurate integration.  On the 

other hand, a given robot controller must operate at some minimum speed for optimal 

stability and a large n could adversely affect the time step of the system.  In order to 

achieve the best possible trade off between accuracy and system speed, experiments were 

conducted to determine the minimum required step size in the path wise integration of 

equations (4) thru (6) and to develop a relationship between the value of the number of 

integration steps n and the processor time required to implement the RPS algorithm at the 

chosen number of steps.  It should be noted that algorithm speed experiments are 

processor specific, and the results should not be used if the robot is controlled by a 

processor other than the dSpace 1103 real time processor used in all of the experiments in 

this thesis. 

For experiments involving the RPS, a test stand similar in dimension to the RPS 

frame module was constructed, see Figure 7.  It consists of a pinned connection at each 

end of the beam, with a linear bearing at one end to allow changes in separation distance 
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between the pivots.  The angular and prismatic deflection of the endpoints was 

instrumented via a 16bit data acquisition system and highly linear potentiometers.   

The first experiment was to determine the effect of changing the number of 

integration steps, n, on the accuracy of the RPS algorithm.  With the beam deflected, 10 

seconds of calibrated strain data along with the corresponding relative position output 

from the fixture potentiometers was recorded.  This strain data was then used in the RPS 

algorithm with the resulting relative pose estimate being subtracted from the relative pose 

measurement returned by the fixture potentiometers to arrive at the error in the RPS 

algorithm pose estimate.  This process was repeated a number of times with n being set to 

the values on the interval of 1 thru 20, 100, 1000, and 10,000.  This process was then 

repeated for each bending mode.  Figure 8, Figure 9, and Figure 10  show the results.   

In each of the charts in Figure 8 thru Figure 10 mode 1 refers to the case where the 

beam was deflected in pure bending to the extreme positions allowed by the beam where 

the A end was pinned at 22.5° and the B end at -22.5°.  For mode 2 the boundary 

conditions were A at 0° and B at 22.5°.  For mode 3 A and B were pinned to 22.5°.  See 

 

 

Figure 7.  The FFMMR showing the strain gauges of the RPS. 
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Figure 8.  Error in the x component of the RPS integration algorithm as the number of 

integration steps is increased from 1 to 10000 

 

Figure 9.  Error in the y component of the RPS integration algorithm as the number of 

integration steps is increased from 1 to 10000 
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 for a schematic of the fixture showing the location and orientation of the A and B ends of 

the beam.  All of the n versus error plots follow a similar pattern with a very rapid drop 

off in error for n = 1 to 5 followed by a very slow decrease in error thereafter.  Based on 

this information a minimum n of 5 should be used. 

The second experiment involved increasing the number of integration steps n for a 

given time step until the algorithm can no longer be run in real time.  This process is 

repeated at several time steps to determine the relationship between n and the processor 

time required by the RPS.  The results of this test are shown in Figure 12.  The solid line 

intersecting the data points is a linear curve fit.  The equation corresponding to the curve 

fit is shown in equation (17). 

 

 time (ms) 0.0025 0.018n= +  (17) 

 

Figure 10.  Error in the φ component of the RPS integration algorithm as the number of 

integration steps is increased from 1 to 10000 
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In Figure 12 the 1ms mark represents the desired time step for the robot controller.  

If the processing time required by the robot controller, the axle EKF’s, and the CI filter is 

known then the upper bound of n can be estimated with the graphic in Figure 12. 

 

Figure 11.  RPS test fixture schematic (top view) 
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Figure 12.  The RPS processing time required as n is varied. 



 

 

4. AXLE LEVEL DATA FUSION 

In the algorithm proposed here, each axle module fuses the data from its wheel 

encoders and gyroscope, using a kinematic model based Extended Kalman Filter[25].  A 

Kalman filter is an algorithm that produces optimal estimates of a linear system’s states 

with access only to current and past measurements.  This estimate is optimal in the least 

squares sense.  The Extended Kalman Filter is an extension of the Kalman filter to a 

nonlinear system and provides sub optimal state estimation.  The purpose of the Extended 

Kalman Filter, in this application, is to fuse the data from the axle level position sensors 

with the state predictions of the system model in order to provide, as near as possible with 

a nonlinear system, optimal estimation of the true system states.   

The EKF propagates two vital pieces of information; the system states x and the 

covariance matrix P.  The systems states are the important parameters of the system, such 

as positions, velocities, and accelerations.  The covariance matrix represents the 

uncertainty associated with the EKF estimates of the system states as well as the 

correlations between the states.  The EKF has two primary components, the time update 

and the measurement update.  In general terms the time update is a prediction step.  The 

state estimate from the previous time step is used to predict the state and covariance 

values at the current time step.  The measurement update, again in very general terms, 

involves 3 steps.  The first step uses the previously computed prediction of the covariance 
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to calculate a Kalman gain equation K.  The gain matrix is used with the state prediction 

and the current measurements to calculate the final state estimate for the time step.  Lastly 

the gain matrix and the predicted covariance are used to calculate the final covariance 

estimate for the time step.  The Kalman filter requires a state model, which includes the 

uncertainties inherent to the model.  The general form of this model is shown in (18).   

 

 ( ) ( )1 1 1 1 1, , ,  where 0,k k k k k kx a x u w T w N q− − − − −= ∼  (18) 

The filter also requires a measurement model including the noise inherent to the sensors.   

The general form of this model is shown in (19). 

 

 ( ) ( ), ,  where: 0,k k k k kz h x v T v N r= ∼  (19) 

In (18) u is the input to the system.  In (18) and (19) x is the system states, w and v 

are process noise variables, and the ( ),N i j  notation means that u and v are normal 

distributions with a mean of i and a variance of j.  The Kalman filter also works under the 

assumption that u and v are uncorrelated.  

The time update and measurement update of the EKF implementation and their 

corresponding matrix equations are embodied in (20) thru (24).  In the following 

paragraphs each of the five EKF equations and their associated parameters will be 

explained in detail. 
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The time update equations. 

 

 ( )1
ˆ ˆ ,0,0,k kx a x T−

−=  (20) 

 

 1

T

k kP AP A Q−
−= +  (21) 

The measurement update equations. 

 

 ( ) 1
T T

k k kK P H HP H R
−− −= +  (22) 

 ( )ˆ ˆ ˆ
k k k k kx x K z Hx− −= + −  (23) 

 ( )k k kP I K H P−= −  (24) 

In equation (20) x is the states of the system.  The “^” means that it is an estimate of 

the true states.   The “
–
“ indicates that it is a prediction of the states at the current time 

step.  The subscript k indicates the current time step and k-1 indicates the previous time 

step.  The function a, is the nonlinear model of the system.  T is the time step used.  

During the time update the EKF output states from the previous time step are used in the 

nonlinear state equations to predict the current value of the system states.  This can be 

thought of as a system observer or a virtual sensor that predicts the value of each state at 
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the start of the filter cycle.  In this implementation the 7 axle states shown in equation 

(25) are maintained by the EKF.  

 

 
T

x x y V V = φ φ φ 
� ���  (25) 

In (25) x, y, and φ are the axle’s global position and orientation.  V and φ�  are the 

translational and rotational velocity of the axle.  The two remaining states are the 

translational and rotational acceleration of the axle.  See Figure 13 for a schematic of the 

axle states. 

 

Figure 13.  The seven single axle EKF states. 
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The nonlinear system of equations used to model the system is shown in (26). 
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(26) 

This model is similar to the kinematic model found in [25], the difference being 

that (26) employs constant acceleration states instead of constant velocities.  The two 

velocity terms in (26) are simply acceleration X time applied to both the translational and 

rotational velocity terms.  A figure will help with the derivation of the posture states x, y 

and φ.  Figure 14 shows the path traveled by a single axle over one time step.  The length 

of the path and the change in the axle’s orientation over a time step is greatly exaggerated 

for increased clarity in deriving the kinematic model in (26).  The primary assumption 

employed in the derivation is that the time step is chosen short enough relative to the 

working velocities of the axle that the difference in length between the straight line vector 

δs’ and the path the axle actually traveled δs is negligible.  Given this assumption the 

length of δs '  can be calculated from (27).   
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The change in orientation of the axle can be predicted from the angular velocity and 

acceleration terms calculated by the EKF in the previous time step as in (28). 
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2
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T
T −

−
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δφ = φ +

��
�  (28) 

If the assumption that δs is a circular arc holds then the angle between the global x 

axis and the line δs’ can be calculated by (29). 
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Figure 14.  The kinematics of axle motion over a single time step. 
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δx and δy can now be predicted as the x and y components of the change in position 

vector δs’ (30). 
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The system of equations in (26) makes some assumptions.  The primary assumption 

is that there is no wheel slip.  For this research no attempt has been made to model wheel 

slip directly at this level.  The RPS is the primary wheel slip detector and corrector.  

Another assumption is that the time step T, is sufficiently small that any changes in the 

states during a single time step can be neglected.  This is required so that the velocities 

and accelerations used to calculate the position and velocity states in (26) can be 

considered the average over the interval T.  Another item of interest that merits 

explanation is the constant acceleration component of (26).  The acceleration is a function 

of the motor inputs and the dynamics of the system.  For the purposes of this EKF this 

part of the system was deemed too complex to model.  Practically speaking the robot is 

slow and the system velocities are directly measured by the wheel encoders and 

gyroscope.  These facts make the acceleration terms less critical.  The important point is 

that much of the model error will come from the combination of two sources.  First, the 

unmodeled wheel slip, and second, the constant acceleration terms in the model. 
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Model error is important in the implementation of equation (21).  The purpose of 

this equation is to predict the covariance matrix, P
-
, associated with the states of the 

system.  The superscript “
–
“ denotes this as a prediction and not the final output of the 

filter.  A represents the linearized system of equations.   

 

 

ˆ , 0k k k
k x x w

a
A

x
= =

∂
=
∂

 (31) 

Q is the covariance associated with the uncertainties in the state model a.  Getting 

back to the wheel slip discussion in the previous paragraph; the unmodeled wheel slip is 

not directly dealt with in this research, but, the constant acceleration terms in (26) can be 

used to advantage by proper tuning of the Q matrix.  The idea is that when the robot 

encounters a slick spot and one of the wheels suddenly slips, the affected wheel will often 

experience a dramatic acceleration.  If this acceleration can be shown to be significantly 

greater than the normal system accelerations then it can be attenuated to some degree by 

the constant acceleration model in (26).  This is done by adjusting the two acceleration 

components of the Q matrix so that the speed with which a change in acceleration is 

incorporated into the system states is fast enough not to affect the normal system 

accelerations but slow enough to dampen the quick accelerations characteristic of a 

slipping wheel.  The Q matrix actually used is shown in (32). 

 

 [ ]diagonal 0.001 0.001 0.001 0.1 0.1 10 10Q =  (32) 
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The P matrix is initially set to a diagonal matrix where all of the diagonal terms are 

0.001.  This initial matrix then quickly converges to the actual variances of the system.  

This matrix is updated at the end of both the time and measurement updates.  Although 

not currently implemented, the P matrix could be used as a guide for how close the robot 

can get to obstacles in its path without running the risk of actually hitting them. 

Following the Time Update is the Measurement Update.  The Measurement Update 

consists of equations (22) thru (24).  The purpose of (22) is to calculate the Kalman gain 

matrix K.  The K matrix is an m X n matrix where the number of columns is equal to the 

number of sensor inputs and the number of rows is equal to the number of states.  The K 

matrix is a measure of the relative difference in trust between the time update state 

prediction and the measurements.  It also allows a mapping of the measurements to each 

of the system states.  It is by the K matrix in equation (23) that the EKF can estimate the 

acceleration states, even though the model assumes constant acceleration and the 

acceleration states are not directly measured.  The H matrix is a mapping of the states to 

the measurements and Rk is the covariance matrix associated with the measurements zk.  

H can be found by taking the Jacobian of the measurement model h as in (33).   

 

 

ˆ , 0k k k
k x x v

h
H

x
= =

∂
=
∂

 (33) 

The measurements include the left and right encoder counts, and the gyroscope 

voltage.  The H matrices used for the front and rear axles respectively are shown in (34) 

and (35) 



 

 

41 

 

0 0 0 0 0
2 2

0 0 0 0 0
2 2

E E

E E

C T C BT

r r
H

C T C BT

r r

 
 π π=  

− 
 π π 

 (34) 

 

0 0 0 0 0
2 2

0 0 0 0 0
2 2

0 0 0 0 0 0

E E

E E

G

C T C BT

r r

C T C BT
H

r r

C

 
 π π 

− =  π π
 
 

 (35) 

CE is the number of quadrature encoder counts in a single revolution of a wheel, r is 

the radius of the tire, B is the robot’s wheel base, and CG is the inverse gyroscope output 

to rotational velocity calibration coefficient.  Table 2 contains the actual values used in 

the H matrix. 

In this implementation the measurements are assumed to be independent and as 

such R is a diagonal matrix with the variance of each sensor along the diagonal as in (36). 

 

 ( )diagonal 0.005,0.005,0.005R =  (36) 

Table 2  

Parameter values used in the H matrix 

Variable CE T r B CG 

Value 1024 counts 0.01 s 0.073 m 0.343 m 1.39 rad/s/V 
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The purpose of (23) is to calculate the final state estimate for the current time step.  

The ˆ
kHx−  term is a mapping of the states to the measurements and amounts to a prediction 

of the measurements based on the state prediction calculated in (20).  The term in 

parenthesis, ( )ˆ
k kz Hx−−  is known as the residual and is the difference between the 

predicted and actual measurements.  The change in states for the time step is calculated 

by multiplying the residual by the Kalman gain K. 

The purpose of the final EKF equation (24) is to calculate the final value of the 

state covariance matrix P.  This is a function of K, H and P
-
.   

 



 

 

5. CI UPDATE 

The axle level EKF’s do not consider any data from the RPS.  In order to bring 

together all of the data sources on the robot, a 2nd tier of data fusion is needed, see Figure 

15.  Bringing the RPS into the data fusion equation is complicated by the fact that the 

RPS has no new information in terms of the global coordinate frame; it is merely an 

observation of the relative pose (x, y, and φ) of the two axles.  As such, if the beam data is 

fused with the axle data in such a way as to decrease the variance of the axle pose, as in a 

traditional Kalman filter, then such an estimate is nonconservative.  In other words it 

purports to improve the estimate of the axle posture – because it decreases the variance 

associated with it – but, in fact, it cannot do this because the beam merely observes the 

relative position and orientation of the two axles and knows nothing about the absolute 

posture of either axle in the global coordinate frame.   

The solution to this problem can be found in the Covariance Intersection filter 

strategy.  This filter does not produce nonconservative estimates from data with unknown 

correlations [9].  Simulations were conducted to verify the superiority of the CI filter 

when compared to a Kalman filter.  The simulation consisted of two axles connected by 

an RPS.  The axles used an EKF to estimate the axle states with the covariance matrix 

initialized to a diagonal matrix with the value 0.01 at each diagonal element.  The axles 

were configured with wheel encoders only, no gyroscopes.  All states for both axles were  
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Figure 15.  The tiered data fusion structure 
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initialized to zero.  The simulated sensors, (wheel encoders, and RPS strain bridges), 

were all set to report zero with the addition of a small amount of zero mean normally 

distributed noise.  The contradictory state of both axles initially being at the origin should 

be corrected by the top tier data fusion algorithm.  Two simulations were conducted.  The 

first used a CI filter as the top tier data fusion device and the second used a Kalman filter. 

Figure 16 is a simulation of the robot in which a CI filter is used as the top tier data 

fusion method.  Even though both axles are initialized to zero, the CI filter quickly 

converges and adjusts the x position of both axles such that they are separated by the 

distance of the beam apart.  The lines above and below the front and rear axle positions 

are the x location plus and minus a standard deviation that has been calculated from the 

covariance matrix.  The standard deviations never drop below their initial values, but 

 

Figure 16.  Using CI as the top tier data fusion method. 
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steadily increase, as is expected in the absence of a direct and independent measurement 

of the x position state.   

In contrast, Figure 17 shows the first six hundredths of a second of a simulation 

using the same initial conditions with a Kalman filter as the top tier data fusion method.  

As can be seen the initial covariances are very small.  In addition, Figure 18 shows the 

covariances remain so small that they are indistinguishable from the mean axle position 

for the duration of the simulation.   Because the Kalman filter believes the RPS and 

encoder measurements to be independent measurements with respect to the global 

coordinate frame the covariances are slashed with each measurement update, causing the 

filter to ignore new measurement input at the axle level.  This behavior results in the 

 

Figure 17.  Detail of using a Kalman filter as the top tier data fusion method. 
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rapid divergence of the filter shown in Figure 18.  This is clearly undesirable and 

conclusively shows the superiority of the CI filter for this application.  

The Covariance Intersection (CI) algorithm is stated as, 

 

 

( )( )

( )( )

1
1 1

1 1

1

1

C wA w B

c C wA a w B b

−− −

− −

= + −

= + −

 (37) 

where {a, A} and {b, B} represent the {mean, variance} associated with datasets, and {c, 

C} likewise represents the fusion of  {a, A} and {b, B}.  The weighting factor, w is 

chosen to minimize a parameter of the resulting covariance matrix such as the 

 

Figure 18.  Using a Kalman Filter as the top tier data fusion method. 
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determinant or the trace.  In this application w is chosen to minimize the trace.  Thus the 

CI filter provides us with the ability to use the frame module to reduce odometric error 

and maintain consistent covariance estimates. 

In calculating the w parameter for the CI filter both accuracy and system limitations 

had to be taken into account.  It was desired to limit the number of calculations so as not 

to impact system performance.  Experimentation revealed that for this system w often 

changes very rapidly.  To accommodate this fact a three part hybrid approach is used to 

estimate w.  In this approach C is calculated a maximum of 10 times for each time step, 

with the value of w that minimizes the trace of C being used as the final result.  The first 

six calculations are a brute force approach in which C is calculated at w values of 0, 0.2, 

0.4 0.6, 0.8, and 1.  This is followed by a more dynamic approach in which C is 

calculated at the w used in the previous time step and at two additional points a small ±δw 

on either side of the w used in the previous time step.  The final calculation is made by 

constructing a polynomial from three of the previously calculated values of w that meet 

the criteria of being adjacent, and producing the smallest values of the trace of C 

(assuming that they bracket the minimum trace).  By taking the derivative of the resulting 

polynomial and setting it equal to zero, the w that minimizes the polynomial can be 

found.  The w that is finally used in the output of the CI filter is the w from the previous 

ten calculations that produces the smallest value of the trace of C. 

The state vector used in the CI filter structure was composed of a single axle’s 

position and orientation states (x, y, and φ), since these are the only states that the RPS 

has the capacity to distinguish. 
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Immediately after the axle level EKF, the posture of the front axle relative to the 

rear axle is calculated from the strain gauge outputs on the RPS.  This vector can then be 

added to the pose vector of the rear axle that was just returned by the Kalman filter to 

produce an estimate of the front axle.  Likewise, a pose estimate of the rear axle can be 

obtained by subtracting the relative position vector of the beam from the front axle.  

These two new position estimates can then be fused with the pose estimates generated by 

the Kalman filter using the CI fusion algorithm.  In order to more accurately correct for 

odometry errors, an adaptation of Borenstein’s IPEC algorithm is also used to limit the CI 

update to correct only the axle that has the least accurate odometry. 

This fusion scheme is readily expandable to robot configurations that have multiple 

axles and beam elements.  In this situation, every axle would estimate its pose using a 

Kalman filter and the sensors it has on board.  Then, the IPEC algorithm is used to 

determine if any of the RPS outputs from neighboring axles is considered trustworthy.  If 

so, then any number of trustworthy pose estimates extrapolated from adjoining axles can 

be fused together with the pose estimate from the axle’s native sensor suite.  This has the 

advantage that different axles can carry different sensors, yet all of the axles can benefit 

from the pose information provided.  For example, if only one axle in a chain is equipped 

with a GPS, every axle will benefit from the absolute pose information returned by the 

GPS as the sensor data is propagated from one axle to the next via the integrated RPS 

sensors linking each axle. 

After application of the CI filter, the relative error in position between one axle and 

its neighbors is limited to the resolution of the beam as a sensor.  This is true regardless 

of the amount of drift associated with the sensors on each individual axle.  This property 
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is essential if the robot is to carry out any but the briefest laboratory maneuvers.  Without 

the RPS in the loop, the relative error between the axles would drift apart until the motion 

controller could no longer function. 

 



 

 

6. STATIC TESTING OF THE RPS 

The static testing of the beam was conducted on the fixture described in the 

implementation sub section of Chapter 3, ‘The Flexible Frame Module as a Sensor’.  For 

the static testing, the flexible portion of the beam itself was 0.3464 m in length with strain 

gauges mounted at (0.0090, 0.1736, 0.3380) m along the beam.  At each end, the beam 

was cantilevered to the pivots to emulate the actual axles of the robot.  A string was 

attached to the side of the fixture that allows prismatic motion.  This string was stretched 

across the work bench and over a pulley.  By hanging weights on the string a force could 

be applied to the beam along the line between the center point of both axles, in order to 

emulate the situation of nonzero Fx.  See Figure 19 for a schematic of the test setup.  The 

endpoints of the beam were then deflected -22.5°, -11°, 0°, 11°, and 22.5°.  At each of 

 

Figure 19.  RPS test fixture schematic (side view) 
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these deflections, longitudinal loads of 0 N, 1.0 N, 2.0 N, and 3.9 N were applied to 

determine the effects of Fx.  Due to the small amount of friction in the joints of the beam 

fixture, the beam comes to rest at a slightly different location if released slowly from 

tension than when released from compression.  For this reason, for each data point of this 

experiment, the RPS output was recorded after releasing the beam from both tension and 

compression and then averaged.  The resulting calculations of the relative x, y, and φ 

describe the point B in the coordinate frame of A as shown in Figure 20.  For each test the 

potentiometers on the frame were used to calculate the true relative pose of the beam.  

The RPS algorithm output was then subtracted to calculate the error of each test.  In 

addition a mean normalized error was calculated.  The mean error of all tests at a given 

angular deflection was normalized to provide a nondimensional error reference.  The x 

component error was normalized to the absolute value of the true error in y.  The y 

component error was normalized to the value of the y component of the RPS output.  

Finally the φ error was normalized to the true angular deflection of the beam. 

 

Figure 20.  The pose of B in the coordinate frame of A. 
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Results and Discussion 

Figure 21, Figure 22, and Figure 23 show the error associated with the x, y, and φ 

components of the relative position vector returned by the RPS algorithm.  In the plots 

that follow, the absolute error is displayed as vertical bars.  Above the bars for each non 

zero deflection angle is a percentage that represents the normalized mean error at that 

deflection.   

Several observations can be made that apply to all three plots.  In spite of the 

difficulty in predicting the endpoint of a beam that is capable of deflections in excess of 

45°, the RPS sensor performs quite well.  Applying a force along a line between the 

attachment points of the beam does not seem to be detrimental to the accuracy of the RPS  

 

Figure 21.  The x component of the RPS error.  The percent values are the mean error 

normalized to the absolute value of the true value of the RPS deflection in y. 
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Figure 22.  The y component of the RPS error.  The percent values are the mean error 

normalized to the absolute value of the true value of the RPS deflection in y. 

 

Figure 23.  The φ component of the RPS error.  The percent values are the mean error 

normalized to the absolute value of the true value of the RPS deflection in φ. 
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algorithm.  It is clear from Figure 21 thru Figure 22 that a small, up to 4 N, force acting to 

separate the axles does not significantly degrade the ability of the RPS to determine the 

relative posture of the two axles.  Small relative position errors between the two axles 

will have the effect of generating antagonistic forces between the axles.  It is good to 

know that the RPS is robust to this type of disturbance, as it will likely be common in 

practical application.   

The RPS error increases with larger deflections and is somewhat symmetric with 

respect to the zero deflection angle point.  This suggests that perhaps a better calibration 

method could be developed.  The current calibration method relies on an individual 

calibration of each strain gauge that is applied to the raw voltage that is measured across a 

particular strain gage.  Perhaps an algorithmic level calibration could be applied in 

addition.  Such a calibration would be applied to the output of the RPS algorithm.  In 

addition, the normalized data shows that the relative position errors are likely to be 

linearly proportional to the beam deflection.  This suggests that it may also be 

advantageous to make the calibration dynamically proportional to the estimated beam 

deflection.  Even if an algorithmic calibration proved useful when the beam is primarily 

in operating in a mode 1 pure bending regime, this second level of calibration may have 

deleterious effects on RPS accuracy when the beam is operating in bending modes 2 or 3 

(see Figure 5).  Whether an algorithmic level RPS calibration would prove to increase 

accuracy has not been investigated and is left to future work.   

The symmetry of the error about the zero angular deflection point is broken by the 

measured RPS error when the beam was deflected to -45°.  The RPS error at a -45° 

deflection is approximately half what it should be for the symmetry found in the error at 
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the remainder of the deflection angles to hold at -45°.  It is possible that the spring steel 

has a permanent strain that causes this aberration.  One indication of this is the fact that 

when the beam is placed on a flat surface it does not sit flat.  Instead, the beam has a 

slight twist to it and one of the corners sits several millimeters off of the surface.  It is 

also possible that this effect could be due to errors in the calibration process or errors in 

measuring the location of the strain bridges.  In any case, the precise reason for this 

anomaly is unknown and left for future work.   

The biggest question found in the results of static RPS testing is whether the up to 

5% error is acceptable.  Without the beam, the relative error between front and rear axles 

is likely to grow without bound.  In practical application on a mobile robot without the 

RPS algorithm small navigation errors will accumulate without bound until the robot can 

no longer function.  In comparison, with the RPS in place the relative error between axles 

will be limited to the error of the RPS.  With this in mind an error bounded by 5% of the 

relative deflection in y seems to be a bargain in comparison to an unbounded error 

without the RPS, as long as the robot motion controller can tolerate the 5%. 

Figure 24 shows the RPS prediction error in calculating the value of a tension force 

applied on a line between the attachment points of the beam at each end as the angular 

deflection changes.  The errors in the force prediction are large.  Each test at 45 and -22 

resulted in a negative error, while 3 out of 4 of the force tests at a deflection of 22 and -45 

produced positive errors.  All of the tests using a 4N force produced negative errors. 

Figure 25 shows the same force data that has been normalized to the actual force 

applied to the beam.  The normalized data shows 80% errors when attempting to measure 

a 1N force.  The errors decrease some but are still large at 2N and 4N. 
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Figure 24.  Absolute errors in longitudinal force. 

 

Figure 25.  Percent errors in longitudinal force. 
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The RPS predicted force averages close to -10% overall with a very wide standard 

deviation.  It is unclear why the performance is so poor.  Because force estimation is of 

secondary importance no attempt has been made to optimize it.  The normalized plot 

shows a slight improvement in performance as the force increases.  It may be possible 

that the force estimation capabilities of the RPS can be realized only at high relative 

forces.  This effect has not been investigated and is left to future work.  Why the force 

errors for deflections of -22° and 45° are negative and the errors for the remaining 

deflections are positive is unknown.  It is possible that there may have been some form of 

operator error when conducting the tests.  For instance, the small amount of friction in the 

beam fixture causes the beam to come to rest at a slightly different position when released 

from tension rather than compression.  If the operator was not careful about averaging 

measurements after releasing slowly from both tension and compression this type of one 

sided error would be the result.  Because there are no current plans to use force data on 

the robot this phenomenon has not been fully investigated.  If force data is to be applied 

in some meaningful way to aid in robot navigation, more work will need to be done to 

refine the force output to achieve a more accurate result. 

 



 

 

7. TESTING OF THE RPS AND DATA FUSION ON THE 

ROBOT 

The robot was tested on three surfaces of increasing difficulty.  The first surface 

was a tightly knit closed loop carpet that provided excellent traction and very little 

slipping.  This surface was used as the benchmark.  The second surface consisted of sand 

at a uniform thickness of 10 mm spread on top of a plastic sheet.  This surface resulted in 

a large amount of wheel slip.  The final surface consisted of the sand from the previous 

testing with the addition of 10 mm to 20 mm thick rocks scattered in the path of the robot 

at approximately 70 mm intervals.  These rocks are sand stone in origin with a rough 

surface to provide the robot with traction as it climbs over them.  The size of the rocks 

was chosen to provide a significant obstacle when compared to the diameter of the wheels 

but not be so large as to be a barrier. 

In the tests the robot motion controller provided point stabilization [24].  The robot 

was started at a distance of -1m in y and -1.55m in x from the origin.  The controller 

caused the robot to travel an s-shaped path making first a left then a right turn as it tried 

to converge to the origin.  Tests were done on each surface using four different sensor 

configurations.  The sensor configurations were odometry only, odometry in conjunction 

with a gyroscope on the rear axle only, and the previous two configurations with the 

addition of the RPS and the added CI data fusion layer. 
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At the end of each run the position and orientation of each axle was measured using 

a tape measure and a grid system of strings stretched just above the height of the robot.  

The actual final pose of the robot could then be compared to the pose as reported by the 

robot. 

It is desired to show the improvement in relative off tracking afforded by the RPS.  

Therefore, the difference between the measured and sensed ending relative pose of each 

axle is reported.  Specifically the x, y, and φ pose of the front axle in the reference frame 

of the rear axle as shown in Figure 20.  The 95% confidence interval, based on at least 

five trials per test is also reported along with the mean.  The confidence interval is 

included because in some of the trials the differences among trials, although large, is 

centered close to zero.  It is also desired to show an improvement in the final global pose 

estimate of the robot.  To show the improvement in final global pose estimation e is 

reported, which is the distance from the origin to the mid point between both axles.  The 

variable γ is the orientation of a line drawn between the center points of both axles.  See 

Figure 26 for a schematic of e and γ. 

It should be noted that the rear axle housed two 7.2 Volt NiCad batteries that are 

the source of power for the on-board strain gauge amplification circuitry required by the 

strain gauges on the beam.  This extra weight significantly increased the normal force of 

the tires against the driving surface with a corresponding increase in traction. 
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Results and Discussion 

Table 3 summarizes the results for all tests.  In each data field the top number 

is the mean of all trials and the bottom number is the 95% confidence interval.  The 

data from Table 3 are also represented graphically over the next five pages as a bar 

chart for each column of Table 3.  The bars represent the error between robot 

ground truth and the pose information generated from the sensors on the robot.  The 

error bars represent a 95% confidence interval. 

 

 

Figure 26.  The global pose variables e and γ. 
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Figure 27 shows the error in the relative x distance between the axles for all trials.  

Note the large decrease in both the mean and confidence interval of the error in the tests 

that used the RPS when compared with those that did not.  The addition of the gyroscope 

without the RPS increased the error in this metric on the high traction surface while 

decreasing the error on the low traction surfaces.  The effect is very likely due to the fact 

that for this experiment the gyro bias, or gyroscope output offset, was assumed to be 

constant when in reality it is generally modeled as a first order Markov process.  This 

phenomenon is also commonly referred to as gyroscope drift.  The gyroscope data sheet 

states that the gyro bias stability over operating environments is <4.5 º/s.  The implication 

is that for a high traction surface the odometry estimate of axle rotation rate is better than 

the gyroscope estimation due to the statistical variation in gyro bias with the result that 

 

Figure 27.  x error in relative axle pose 
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the gyroscope degrades performance on the carpet surface.  On the other hand, when 

maneuvering on a low traction surface such as sand the gyroscope rotation rate estimate is 

superior to the rotation rate estimate from odometry, even with the gyro bias effects, and 

therefore improves the robot performance on the sand surfaces. 

Figure 28 shows the error in the relative y distance between the axles for all trials.  

Note the reduction in error, with the addition of the RPS, for all of the surfaces.  Also, the 

addition of the rear axle gyroscope seems detrimental to this metric, especially in the tests 

on sand and sand with rocks without the RPS.  In order to understand why this metric is 

degraded by the gyroscope it is important to consider how this metric is formed.  The 

relative position metrics are all based on the posture of the front axle in the coordinate 

frame of the rear axle (see Figure 20).  Because of this the relative y metric is highly 

 

Figure 28.  y error in relative axle pose 
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sensitive to perturbations in the orientation of the rear axle.  Any effect that the gyroscope 

has on the orientation of the rear axle will be amplified by this metric’s sensitivity to 

perturbations in the orientation of the rear axle. 

Figure 29 shows the error in the relative orientation between the axles for all trials.  

For this metric, robot performance on carpet and sand was similar.  This makes sense 

because the robot’s motion controller is trying to control both axles in a bending mode 1 

configuration.  At the same time, wheel slippage will have a tendency to move the robot 

closer to mode 1 bending, because this bending mode requires smaller traction forces to 

maintain its shape.  For this reason the relative orientation metric is less sensitive to low 

traction surfaces than the previous metrics.  There is a striking difference in the 

orientation error with and without the RPS on the sand with rocks surface.  This can be 

 

Figure 29.  phi error in relative axle pose 
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attributed to the large disruption created by the rocks, in some cases the rear axle came to 

a complete stop on a rock.  It can also be seen than even with the gyro bias problem the 

gyroscope significantly improved the performance of the robot on the sand with rocks 

surface. 

Figure 30 shows the error in e for all trials (see Figure 20).  This metric is degraded 

slightly by the addition of the RPS on carpet.  This is most likely due to the approximate 

5% error in the RPS estimates.  If the distance traveled on carpet were to be increased it is 

likely that the error in this metric, for odometry only, would increase proportionally while 

the error with the RPS would remain bounded.  The error in e is also improved 

significantly by the RPS on both sand and carpet.  Again, the addition of the gyroscope is 

 

Figure 30.  Error in e, the distance from the origin to the midpoint of a line connecting the 

midpoint of both axles. 
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inconclusive. 

Figure 31 shows the error in γ for all trials (see Figure 20).  This metric was 

improved by the addition of the RPS for all surfaces.  The general trend for the addition 

of the gyroscope to increase the error in this metric is likely due to the gyro bias. 

In addition to the table and charts of the various error metrics, video footage was 

taken of the majority of the tests.  Still frames from video at 3, 8, 21 and 45 seconds from 

representative tests of each surface and sensor configuration were assembled.  These still 

frames are overlaid with the estimate of the robots path as recorded by the sensors and 

data fusion architecture.  A dashed line was used to represents the estimated path 

followed by the rear axle and a solid line was used to illustrates the estimated path 

followed by the front axle.  Barely visible in the frames are two white lines.  One runs 

horizontally across the top of the frames and the other runs vertically down the right side.  

 

Figure 31.  Error in γ, the global orientation of a line between the midpoint of both axles. 
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The intersection of these lines represents the location that the point stabilization 

controller is trying to drive the center point of the rear axle.  Simultaneously the controller 

is trying to drive the front axle to a point on the horizontal line to the right of the line 

intersection in the frames. 

Figure 32 shows still frames from testing on carpet with the RPS with and without 

the gyroscope on the rear axle.  No video was taken of the carpet testing without the RPS.  

Because all of the tests on carpet were nearly identical regardless of sensor configuration 

the lack of video footage is not detrimental to the overall analysis of robot performance.   

Note the difference in orientation of a line drawn through the center point of each 

axle in the 45 s frames in Figure 32.  The large change in this orientation agrees with the 

data shown in Table 3 and Figure 31.   

Figure 33 shows progressive still frames from representative tests of all four sensor 

variations on the sand surface.  The first two rows of still frames show the robot’s 

progression with odometry only and odometry with rear axle gyroscope.  In these two 

sensor configurations the navigation pose of both axles, but more particularly the front 

axle quickly drifts away from the ground truth pose.  This divergence is caused by the 

large amount of wheel slip due to the low traction sand surface.  The rear axle does not 

drift as much because of the increased traction force due to the weight of the batteries and 

RPS support electronics carried by that axle.  Because the front axle drifts at a greater rate 

than the rear the relative pose between the two axles suffers greatly.  The degradation of 

the relative pose initiates antagonistic forces between the two axles as the robot motion 

controller delivers control commands to axles that have a relative ground truth pose that 

is very different from the navigation pose. Further more, the antagonistic forces between  
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the axles increases the rate of navigation pose drift compounding the problem.  

Finally,with the loss of fidelity between the axles the motion controller losses its ability to 

drive the navigation states to the origin.  The result being that control authority is very 

rapidly lost, as can be seen in the figure. 

The third and fourth rows of still frames show the results with the addition of the 

RPS algorithm to the sensor suite.   In these two series the front and rear axles track each 

other very accurately.  Because the RPS algorithm continually corrects the relative pose 

between the axles a high degree of fidelity is maintained between the front and rear axles.  

This allows the robot motion controller to maintain effective control authority regardless 

of the fact that the navigation states of the robot are still drifting away from the ground 

truth.  This fidelity between the front and rear axle is required by the motion controller for 

stability, and is the primary benefit of the RPS and associated algorithms. 

Figure 34 shows progressive still frames from representative tests of all four sensor 

variations on the sand and rocks surface.  Note the more jagged appearance of all the 

navigation state lines due to the rocks.  In the first three rows of still frames the rear axle 

got stuck on a rock and came to a complete stop.  The front axle in these frames continues 

to spin its wheels in the sand but never manages to proceed any further.  In the first two 

rows of still frames, without the RPS, the trace of where the front axle thinks it is 

continues to progress even though the axle is actually stuck in place.  This is a more 

extreme case of the potential difference in drift rates between front and rear axles than 

was seen in Figure 33.  In the third row of frames, with the RPS in use, the front axle 

trace stops in place at the same time that the rear axle gets stuck.  This occurs even 

though the front axle was spinning its wheels for the entire time it was stuck in place.   
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This is a very effective demonstration of the ability of the RPS to maintain fidelity 

between the front and rear axles.  This type of performance can be extrapolated to many 

extreme circumstances.  For example, if one of the axles were to be kicked out of place in 

mid maneuver the RPS would detect the radical change in posture and correct the 

odometry allowing the motion controller to maintain control authority.  This behavior 

makes the robot very robust to not only surface conditions but also to much of the chaos 

in a dynamic environment.  In the fourth row of still frames the robot performance on 

rocks is very similar to its performance on carpet, except that the axle traces are less 

smooth due to the rocky surface.  The high degree of congruency between the front and 

rear axles seen in the final set of still frames in Figure 34 can be achieved only through 

the use of the RPS and associated data fusion algorithms. 

In summary, odometry works well for short runs on high traction surfaces.  

However, it is probable that for longer tests and certain that on lower traction surfaces the 

performance of odometry degrades substantially.  For this reason it is recommended the 

odometry be augmented with an additionally posture sensing mechanism.   

The addition of the gyroscope to odometry is conflicting in its contribution.  It 

improved some metrics on some surfaces while degrading others.  It seems clear that the 

gyro bias was a significant factor in the performance of this sensor.  Improvements must 

be made in the implementation of the gyroscope before it can make a positive 

contribution to estimating the posture of the robot.  The most obvious improvement 

would be to use a better gyroscope.  The gyro bias stability parameter of this gyroscope is 

several orders of magnitude larger than the best gyroscopes in current use today.  Another 

possibility would be to compensate for the gyro bias in some manner.  One common 
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compensation method is to include the gyro bias stability as a state in the Kalman filter 

and attempt to estimate its current value online.  Other possibilities include schemes to 

weight the gyroscope information more when the robot is maneuvering quickly and 

therefore more likely to be suffering from wheel slip with the corresponding reduction in 

the accuracy of odometry.  Another option would be an algorithm to calculate real time 

wheel traction force requirements in order to detect when the wheels are more likely to 

slip due to increased traction requirements.  This information could be used to increase 

the relative weighting of the gyroscope when the wheels are more likely to be slipping 

due to insufficient traction force.  In any case, more work needs to be done before the 

inclusion of the gyroscope as a permanent addition to the sensor suite can be justified. 

The RPS improved performance in nearly all cases.  This sensor proved to be 

robust to seemingly catastrophic environmental conditions, such as a stalled axle on rocky 

terrain.  It also appears to have the ability to place an upper bound on the relative position 

error between the two axles.  This property is an essential ingredient in providing the 

robot the ability to maintain fidelity between the axles during long term maneuvers.  The 

ability of the RPS seems to be only slightly effected by the addition of the gyroscope.  It 

seems that the RPS corrections overwhelm most of the detrimental effects of the gyro 

bias.  It is recommended that any implementation of this robot configuration include the 

RPS with its associated data fusion algorithms. 

 



 

 

8. CONCLUSION 

A sensor fusion strategy for compliant framed modular mobile robots based upon 

traditional Kalman Filtering and Covariance Intersection filtering is presented.  Key to the 

later is the modeling and instrumentation of the frame module as an internal sensor for 

determining relative axle module posture.  Experimental results have been presented that 

demonstrate the effect on posture estimation afforded by the four sensor suites tested.  

Results show that odometry alone, while accurate on high traction surfaces for short 

distances cannot be relied upon to maintain fidelity between the axles on low traction 

surfaces.  Improvements need to be made in the implementation of the gyroscope before 

it can be relied upon to any degree.  The RPS sensor was shown to effectively bound the 

error in relative posture between the axles to the error inherent to the sensor.  This ability 

was proven even in the face of seemingly catastrophic events such when one axle gets 

grounded on an obstacle and the other axles wheels spin out of control.  This property of 

the sensor makes it a critical addition to the robots sensor suite. 

Future work should include long distance testing to be certain that the error 

bounding characteristics of the RPS sensor continue to hold under the duress of a long 

term maneuver.  In addition to improving the gyroscope implementation it may be 

worthwhile to investigate a two degree of freedom IMU by mounting accelerometers 

sensitive to both the axles’ x and y coordinates.  This proposal could also be extended to 
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a full six degree of freedom IMU on each axle to aid in navigation of three dimensional 

rough terrain.  Another obvious sensor addition would be a GPS receiver on one of the 

axles.  It would be interesting to determine to what degree the RPS could propagate a 

GPS update from one axle to the other.  The RPS itself could also be extended to detect 

rotations in roll between the two axles.  This information could prove useful when 

navigating rough terrain.  It may also prove useful to gain better insight into the beam 

force estimation capabilities of the RPS and investigate its use in improving robot motion 

planning. 

In conclusion the beam sensor in combination with the IPEC algorithm and the CI 

filter does perform well.  In fact, the RPS system essentially makes the robot robust to 

surface conditions. 

 



 

 

APPENDIX 

S-FUNCTION USED IN THE RPS IMPLEMENTATION 

/*  File    : csfunc.c 
 *  Abstract: 
 * 
 *      Example C-file S-function for defining a continuous system.   
 * 
 *      x' = Ax + Bu 
 *      y  = Cx + Du 
 * 
 *      For more details about S-functions, see 
simulink/src/sfuntmpl_doc.c. 
 *  
 *  Copyright 1990-2001 The MathWorks, Inc. 
 *  $Revision: 1.8 $ 
 */ 
 
#define S_FUNCTION_NAME sfunRelPose5g4ord2 
#define S_FUNCTION_LEVEL 2 
 
#include "simstruc.h" 
#include "math.h" 
 
 
#define U(element) (*uPtrs[element])  /* Pointer to Input Port0 */ 
 
static real_T thick   = 3.4000e-004; /* nominal point of internal shear 
inflection */ 
static real_T Lrigid0 = 0.022225;  /* rigid section from center of rear 
axle to start of flexible beam */ 
static real_T LrigidF = 0.022225;  /* rigid section from start of 
flexible beam to center of front axle */ 
 
// flexible portion of beam endpoints and strain gauge locations 
//   starting at rear axle, sg1,sg2, ... , front axle 
static real_T Lvect[7]={ 0.0, 0.0054, 0.0913, 0.1749, 0.2538, 0.3451, 
0.35 }; 
    real_T cVect[7]; 
     
static real_T polyFind[5][5]={ {  1.138379743695124e+000, -
2.793030781484927e-001,  2.269282559937683e-001, -1.023402723908596e-
001,  1.633535085046015e-002 } , 
                               { -2.676134582013608e+001,  
5.522954686050930e+001, -4.606096900088158e+001,  
2.095451375523562e+001, -3.361745794727260e+000 } , 
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                               {  2.140503309026899e+002, -
6.635074116337664e+002,  7.672194129509087e+002, -
3.822065763333901e+002,  6.444424411355794e+001 } , 
                               { -7.041356083435730e+002,  
2.630901081793879e+003, -3.655502071904744e+003,  
2.120904975172102e+003, -3.921683767176635e+002 } , 
                               {  8.139355084309009e+002, -
3.376413092651278e+003,  5.255178366740569e+003, -
3.439119466794389e+003,  7.464186842741965e+002 } , 
                             }; 
                           
/*====================* 
 * S-function methods * 
 *====================*/ 
 
/* Function: mdlInitializeSizes 
=============================================== 
 * Abstract: 
 *    The sizes information is used by Simulink to determine the S-
function 
 *    block's characteristics (number of inputs, outputs, states, etc.). 
 */ 
static void mdlInitializeSizes(SimStruct *S) 
{ 
    ssSetNumSFcnParams(S, 0);  /* Number of expected parameters */ 
    if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) { 
        return; /* Parameter mismatch will be reported by Simulink */ 
    } 
 
    ssSetNumContStates(S, 0); 
    ssSetNumDiscStates(S, 0); 
 
    if (!ssSetNumInputPorts(S, 1)) return; 
    ssSetInputPortWidth(S, 0, 5); 
    ssSetInputPortDirectFeedThrough(S, 0, 1); 
 
    if (!ssSetNumOutputPorts(S, 1)) return; 
    ssSetOutputPortWidth(S, 0, 3); 
 
    ssSetNumSampleTimes(S, 1); 
    ssSetNumRWork(S, 0); 
    ssSetNumIWork(S, 0); 
    ssSetNumPWork(S, 0); 
    ssSetNumModes(S, 0); 
    ssSetNumNonsampledZCs(S, 0); 
 
    /* Take care when specifying exception free code - see 
sfuntmpl_doc.c */ 
    ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE); 
} 
 
 
 
/* Function: mdlInitializeSampleTimes 
========================================= 
 * Abstract: 
 *    Specifiy that we have a continuous sample time. 
 */ 
static void mdlInitializeSampleTimes(SimStruct *S) 
{ 
    ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME); 
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    ssSetOffsetTime(S, 0, 0.0); 
} 
 
 
 
#define MDL_INITIALIZE_CONDITIONS 
/* Function: mdlInitializeConditions 
======================================== 
 * Abstract: 
 *    Initialize both continuous states to zero. 
 */ 
static void mdlInitializeConditions(SimStruct *S) 
{ 
 
} 
 
 
 
/* Function: mdlOutputs 
======================================================= 
 * Abstract: 
 *      y = Cx + Du  
 */ 
static void mdlOutputs(SimStruct *S, int_T tid) 
{ 
 real_T            *y    = ssGetOutputPortRealSignal(S,0); 
 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0); 
 real_T            a=0, b=0, c=0, d=0, e=0; /* curvature polynomial 
coefficients */ 
 real_T            accum = 0.0; 
 int_T             i=0, j=0, n=0; 
 real_T            dx=0, dy=0, dPsi=0; 
 real_T            L=0, dL=0.00035, dLprev=0, dLmin=0.0007002, 
dLmax=0.03501; 
 real_T            Dcl=0; // change in curvature over the prev time 
step 
 real_T            DclMax=15300, DclMM=0; // max change in curv per unit 
length 
 real_T            curv=0, curvPrev=0; 
 real_T            xx=0, yy=0, psi=0, psiP=0; 
 
 UNUSED_ARG(tid); /* not used in single tasking mode */ 
 
 for (i = 1; i < 6; i++) 
 { 
  cVect[i] = U(i-1)/thick; 
 } 
 
 for (i = 1; i < 6; i++) 
 { 
  accum += polyFind[0][i-1]*cVect[i]; 
 } 
 a = accum; 
 accum = 0.0; 
 for (i = 1; i < 6; i++) 
 { 
  accum += polyFind[1][i-1]*cVect[i]; 
 } 
 b = accum; 
 accum = 0.0; 
 for (i = 1; i < 6; i++) 
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 { 
  accum += polyFind[2][i-1]*cVect[i]; 
 } 
 c = accum; 
 accum = 0.0; 
 for (i = 1; i < 6; i++) 
 { 
  accum += polyFind[3][i-1]*cVect[i]; 
 } 
 d = accum; 
 accum = 0.0; 
 for (i = 1; i < 6; i++) 
 { 
  accum += polyFind[4][i-1]*cVect[i]; 
 } 
 e = accum;  
  
 cVect[0] = a; 
 cVect[6] = 
(a+b*Lvect[6]+c*Lvect[6]*Lvect[6]+d*Lvect[6]*Lvect[6]*Lvect[6]+e*Lvect[6
]*Lvect[6]*Lvect[6]*Lvect[6]); 
 
 L += dL/2; 
 while (L<Lvect[6]) 
 { 
  curvPrev = curv; 
  curv = a+b*L+c*L*L+d*L*L*L+e*L*L*L*L; // curve = curvature of beam 
at x 
  if (fabs(curv)>1e-13) 
  { 
   dPsi = dL*curv;    //dPsi = dL/rho; 
   dx = sin(dPsi)/curv;  //dx = rho*sin(dPsi); 
   dy = (1-cos(dPsi))/curv; //dy = rho-rho*cos(dPsi); 
  } 
  else 
  { 
   dPsi = 0; 
   dx = dL; 
   dy = 0; 
  } 
   
  psiP = psi; 
  xx  += dx*cos(-psiP)+dy*sin(-psiP); 
  yy  += -dx*sin(-psiP)+dy*cos(-psiP); 
  psi += dPsi; 
   
  // calc next dL 
  if ((dL+dLprev)/2>1e-15) Dcl = fabs(curv-curvPrev)/((dL+dLprev)/2); 
  dLprev = dL; 
  dL = (dLmin-dLmax)/DclMax*Dcl+dLmax; 
  if (dL<dLmin) dL = dLmin; 
   
  if (L+dLprev/2+dL>Lvect[6]) dL = Lvect[6]-L-dLprev/2; 
  L += dLprev/2+dL/2; 
   
  n+=1; 
  if (Dcl>DclMM) DclMM = Dcl; 
   
 } 
 
 y[0] = Lrigid0+xx+LrigidF*cos(psi); 
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 y[1] = yy+LrigidF*sin(psi); 
 y[2] = psi; //*180./3.141592653589793; 
 //y[3] = n; 
 //y[4] = DclMM; 
  
} 
 
 
 
#define MDL_DERIVATIVES 
/* Function: mdlDerivatives 
================================================= 
 * Abstract: 
 *      xdot = Ax + Bu 
 */ 
static void mdlDerivatives(SimStruct *S) 
{ 
 
} 
 
 
 
/* Function: mdlTerminate 
===================================================== 
 * Abstract: 
 *    No termination needed, but we are required to have this routine. 
 */ 
static void mdlTerminate(SimStruct *S) 
{ 
    UNUSED_ARG(S); /* unused input argument */ 
} 
 
#ifdef  MATLAB_MEX_FILE    /* Is this file being compiled as a MEX-file? 
*/ 
#include "simulink.c"      /* MEX-file interface mechanism */ 
#else 
#include "cg_sfun.h"       /* Code generation registration function */ 
#endif 
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