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ABSTRACT

This thesis is concerned with analyzing stability and controllability of nonlinear me-

chanical systems subject to forcing inputs with multiple sinusoidal components. Analysis

is applied, in particular, to that of an ornithopter micro aerial vehicle, an aircraft that

utilizes flapping motion to fly. The dynamic complexity of flapping wing flight generates

the desire for semiautonomous flight control to reduce the load on the pilot, as well as to

gain stability, maneuverability, and efficiency. Micro Aerial/Air Vehicles size and weight

constraints limit the available computational power and generate the need for simple

linear feedback control. However, the existence of multiple sinusoidal terms in the forcing

input created by the wings, along with the nonlinearities in the state-space model, make

control challenging.

Controller design is studied via analysis, modeling, and simulation and is based

on research which indicates stability of nonlinear systems subject to vibrational and

oscillatory forcing. First, acceleration data are analyzed to characterize the forcing input

as a function of flapping frequency. Then, linear-motion data are used to identify a

one-dimensional ornithopter system transfer function. A feedback path filter is designed

based on the frequency spectrum of the forcing input and for limited delay. Velocity

control is achieved with a proportional-integral controller based on the identified transfer

function and an approximation of the mean velocity found from filtering. Cases for

constant horizontal velocity and constant hover are considered. Lastly, a state-space

model of the ornithopter is created by considering horizontal, vertical, and angular

equations of motion and is used to represent the ornithopter in hover and in steady

horizontal flight. For these cases, feedback gains are found to control the velocity and

altitude and integral action is included for robust tracking and disturbance rejection.

Though control is obtained for the instances considered in this thesis, it is found

that a better system model is required to successfully proceed with further altitude and

velocity control. Expressly, a model of lift, which in this case is generated mainly from

the flapping of the wings, is required as a function of angle of attack. This work serves

as a basis for semiautonomous flight control of an ornithopter MAV.
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CHAPTER 1

INTRODUCTION

1.1 Application and Motivation

An ornithopter is an aircraft that uses flapping wing motion to fly. This type of

flight offers potential advantages over fixed-wing flight, such as maneuverability [1], at

slow speeds (1-40m/s). Natural ornithopters range in size from small flying insects to

large birds, as noted in [1], and flap their wings from about 5 to 200Hz, as noted in

[2]. The Defense Advanced Research Projects Agency (DARPA) largely motivates Micro

Aerial/Air Vehicle development in military application for reconnaissance missions in

confined spaces or under dangerous circumstances. The discreetness of a flapping wing

MAV adds appeal for these types of covert operations. Employment in civilian search and

rescue missions under dangerous or questionable circumstances such as fire or earthquake

also fuels MAV development. Inspiration to mimic insect flight, which combines oscillating

and rotating wings, is detailed in [2] and points to the adeptness that can be obtained

through this type of flight. Another important insight from [2] is the focus on simple

control loops in place of the complex control loops prevalent in modern aircraft. This

focus spawns from the combination of limited on-board processing power with the need

for many sensors and high-frequency update rates.

The ornithopter under study was developed as a Mechanical Engineering Senior Design

Project.1 Basic open-loop flight control is possible through a radio frequency remote

controller with joystick. Closed-loop control is desired to make the ornithopter easier

to maneuver and control for the average user. Because MAVs are restricted both in

size and weight, an embedded system used to control the ornithopter must be low-power

and lightweight. This limits the processing power available for control calculations and

generates the need for simple control loops. Initial work to create an embedded control

1Details on the ornithopter design and the Ornithopter Design Group can be found in Appendix A.
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system to meet these requirements was done as an Electrical Engineering Senior Project.2

Before choosing a final micro-controller, however, processor speed and other requirements

(input-output capability, floating point unit requirement, etc.) must be specified. This

requires the design of a controller and inertial measurement unit.

1.2 Challenges

There are many challenges involved in the study of flapping wing flight. At low

speeds, there is a lack of significant lift generated from oncoming airflow. Hence, lift and

thrust must be generated predominantly from flapping. Besides aerodynamic challenges,

there are also those involving control issues. As noted in the previous section, limited

on-board processing power creates the desire for a low complexity controller. However,

flapping-wing flight introduces oscillations to the system that appear as large sinusoidal

disturbances. As the frequency of flapping changes, both the mean of the forcing input

from the wings and the amplitude, frequency, and phase of individual sinusoidal com-

ponents of the forcing input from the wings vary nonlinearly. This makes tracking hard

and control challenging. Use of traditional disturbance rejection techniques to cancel

these sinusoidal disturbances is not suitable as they are components of the forcing input

exciting the system.

1.3 Related Ornithopter Research

Scientific exploration into the aerodynamics of flapping-wing flight is limited, but has

recently been on the rise. [1], [3], [4], and [5] study mechanical design of an ornithopter

MAV. Trade-offs between ornithopter weight and wing length, mass and speed, and wing

designs are identified in [1]. Micro-electro-mechanical systems wing technology for a

battery-powered ornithopter was also studied and created in [1]. A study of the unsteady

aerodynamics of a flapping wing was done in [3] for a flapping wing MAV in hover. A

flapping wing MAV was built and studied in [4] in order to maximize flap efficiency. A

wing’s force and flow structures were studied in [5] for a simplified flapping motion similar

to that of an insect.

After developing a competitive inch-size flapping wing MAV, averaging is used to show

controllability of the Micromechanical Flying Insect being developed at UC Berkeley.

This is important in that it offers insight into the controllability of the ornithopter being

2Work done by Katherine Shigeoka
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studied in this thesis. In designing the MFI, work was first done to investigate rotational

wing movement [6]. Flight force measurements and simulations were then generated in

[7]. Wing generated forcing and controllability issues were assessed in [8]. With this

work, a force map characterization was completed in [9]. This force map characterization

correlates the sinusoidal voltage amplitude input and flapping and rotation angle phase

differences of the wings to the generated thrust and lift. Stable hovering motion via

control of wing movement is simulated for a dynamic model of the MFI thorax with

approximate wing movements in [10]. As noted, one drawback to these simulations is the

approximation of the nonlinear periodic forcing input generated by the wings. Attitude

control along the z-axis is then shown using ocelli (e.g. light sensors) and halteres (e.g.

rotational velocity detectors) in [11]. Most importantly, a detailed controllability analysis

of flapping wing flight is presented in [12]. Here, high frequency control theory is used to

apply averaging to the controllability of a MAV with wings each limited to a single degree

of freedom and passive rotation. Controllability is then extended to the case including the

wing thorax dynamics and a foundation for use of simple linear feedback laws is made.

The simplified ornithopter MAV model in [12] is quite similar to the one studied here and

the research offers a basis on which to proceed with simple feedback control.

1.4 Related and Applicable Theory

The nonlinearity of the ornithopter system, as well as forcing input to the system,

create difficulty for stability and control of the ornithopter. The forcing input created

by a wing’s flapping motion is also vibrational and semiperiodic. However, stability

and control of nonlinear systems via vibrational, oscillatory, or periodic inputs has been

intensively researched.

Stability of nonlinear systems though vibrational control was heavily researched by

R. E. Bellman, J. Bentsman, and S. M. Meerkov in the 1980s as an alternative where

classical control methods fail. Criteria for stability via nonlinear multiplicative vibrations,

quasi-periodic forcing, and vector additive vibrations is presented in [13]. Controllability

is then shown in [14]. Gurvits extends the use of oscillatory inputs to nonholonomic

motion planning via averaging in [15].

Open-loop, high-frequency oscillatory forcing of mechanical control systems was stud-

ied by J. Baillieul and S. Weibel beginning in the mid-1990s. In this research, the

Method of Averaging and the Method of Multiple Scales offer solutions in the form of an
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“averaged potential.” The use of open-loop, high frequency oscillatory forcing to bring

a nonlinear mechanical system to rest at fixed points of the averaged system, which are

not equilibria of the nonautonomous or forced system, is researched in [16]. In the 1998

publication of [17], J. Ballieul and S. Weibel summarized the developments of oscillatory

control of mechanical systems up to that point and looked at the nonlinear effects of

oscillatory forcing. Ballieul goes on to summarize the response of under-actuated systems

to oscillatory forcing via the averaged potential of the forcing input in [18].

Periodic forcing and oscillatory control are studied in [19],[20],[21],[22], and [23] though

averaging theory. Application of averaging theory to prove stability and controllability

require a relatively robust dynamic model. Though one is not currently available for this

project, these theories offer insight into controllability of the ornithopter. A link between

averaging and controllability theory is found in [19] where mechanical systems subject

to high amplitude high frequency inputs are studied. An under-actuated spacecraft with

small-amplitude, periodically time-varying forcing is studied in [20], open-loop attitude

control via periodic forcing is studied in [21], and control via large amplitude high

frequency oscillatory inputs is studied in [22]. An autonomous undersea vehicle with

oscillating fins is studied in [23] where a Fourier expansion is used to characterize the

force and moment signals created by the fins. This body of work, along with that done in

[12] on the MFI, support the use of averaging to show controllability of the ornithopter

and for stabilization through basic control laws.

1.5 Goals and Contributions

With evidence showing controllability of systems subject to vibrational, periodic, and

oscillatory inputs through averaging analyses and evidence of superior low-speed flight

capability with flapping flight, work is now done to control the ornithopter. The objective

of this research is to:

• Analyze motion data of an ornithopter MAV in order to develop a system transfer

function

• Examine the frequency spectrum of the forcing input created by an ornithopter’s

flapping wings

• Characterize and model the forcing input created by the wings
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• Generate a time-varying forcing input in order to demonstrate closed-loop control

through simulations

• Develop a feedback path filter to filter out turbulence in the motion data based on

frequency spectrum analysis

• Demonstrate controllability of an ornithopter MAV via simple feedback control

• Demonstrate controllability of nonlinear systems subject to semi-periodic, forcing

inputs with multiple large amplitude sinusoidal terms based on that demonstrated

with the ornithopter MAV

• Develop velocity and altitude control in order to gain a basis for semiautonomous

control of the ornithopter.

1.6 Research Approach

The design process of the ornithopter is very fluid. This is because the ornithopter has

been redesigned multiple times since the commencement of this project and is currently

out of commission. Given these design iterations and the difficulty involved in producing

an analytical model of the flapping forces, an exact model of the ornithopter is unavailable.

In this thesis, simple experimental motion data are analyzed and used to obtain a

rudimentary model of the ornithopter sufficient for simulation based controller evaluation.

Control of the ornithopter is first implemented for 2 one-dimensional models. The

one-dimensional models consist of velocity control for the ornithopter constrained to 1)

forward horizontal movement along a line and 2) vertical movement for hover. In the

previous case, the ornithopter is faced in a horizontal stance, and in the later case, the

ornithopter is faced in a vertical stance. In both of these cases the ornithopter is subject

to a forcing input from the wings only. Velocity and altitude control are then implemented

for 2 two-dimensional longitudinal models of the ornithopter in 1) hover and 2) horizontal

flight. In these cases, forcing input comes from the wings and tail. Research being done

in parallel with this thesis includes the development of an IMU by Eric A. Johnson.3

3Paper to be submitted to IEEE: “An Adaptive Filter for Rejecting Noise and Tracking Bias in Inertial
Sensors.”



CHAPTER 2

ONE-DIMENSIONAL CONTROL

In this chapter one-dimensional models of the ornithopter are derived and validated

according to motion sensor data.

2.1 Data Acquisition

Data was collected from the ornithopter while traveling down a linear bearing rail by

Eric A. Johnson1 and Charles Fisher. The ornithopter was strapped to a slider on the rail,

restricting the ornithopter to movement in the forward horizontal direction. Acceleration

and position sensor information were collected at different throttles. Here, throttle refers

to the position of the joystick on the remote control device. This is approximately

proportional to speed of the brushless DC motor sourcing the wings.2 Acceleration

data was measured by an accelerometer strapped to the body of the ornithopter while

submillimeter position data were collected with a VICON Motion Tracking System.3 The

bias level of the accelerometer data was adjusted until it agreed with the second derivative

of the position data. In this way, the sensor drift of the accelerometer is accounted for.

Approximate velocity data were found from the integral of the tuned acceleration data.

Figures 2.1, 2.2, and 2.3 show the acceleration data filtered with a low pass filter with

cutoff frequency of 40Hz, velocity, and position data found from the accelerometer.

1The data used here were collected and analyzed to aid in development of an IMU. Paper to be
submitted to IEEE: “An Adaptive Filter for Rejecting Noise and Tracking Bias in Inertial Sensors,” by
Eric A. Johnson.

2Voltage applied to the brushless motor is a more suitable and accurate measurement of changes in
the forcing input. This information is not available; hence approximate throttle value is used instead.

3The VICON motion tracking system was developed by and belongs to The Motion Analysis Core
Facility (http://mocap.uofupt.com/index.html). Personal help obtained from John Droge.
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Figure 2.1. Filtered Acceleration Data
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Figure 2.3. Position Data

2.2 Data Analysis and Modeling

This section describes data analysis and modeling of the ornithopter. First, a basic

model of the ornithopter is derived using equations of motion. Then, the net force driving

the ornithopter is characterized based on the acceleration data. Work is then done to

find a specific transfer function of the ornithopter based on the basic model and motion

data. The model is then validated through simulation.

2.2.1 A Basic Model

In the case of the ornithoper constrained to one-dimensional horizontal motion, a

simplified model can be expressed as a mass with damping subject to a forcing input.

The following equation of motion describes the time-domain model of the ornithopter,

which is pictured in Figure 2.4:

f(t) = mẍ + Bẋ = mv̇ + Bv.

From this equation, a transfer function from forcing input to velocity output can be

obtained through a Laplace Transform as:

F (s) = msV (s) + BV (s) = (ms + B)V (s).
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Figure 2.4. One-Dimensional Free Body Diagram of Ornithopter: Horizontal Movement

Giving the transfer function:

P (s) =
V (s)
F (s)

=
1

ms + B
=

1/m

s + B/m
.

We can also obtain the transfer function from acceleration to velocity as:

V (s)
F (s)

=
V (s)

mA(s)
= P (s)

V (s)
A(s)

= mP (s) =
1

s + B/m
. (2.1)

Thus, a first-order transfer function from acceleration input to velocity output can be

determined to match the gain and rise-time of the measured velocities. However, the

acceleration must first be characterized in order to simulate it as an input to the transfer

function.

2.2.2 Frequency Analysis and Simulation of Acceleration

The frequency spectrum of the filtered acceleration data, shown in Figure 2.5, reveals

some important things about the system under study. The frequency of flapping (or

forcing) is determined to be the smallest non-DC frequency component of the acceleration.

Table 2.1 summarizes the estimated flapping frequency found at each throttle. These

values change slightly, by about ±0.1Hz, depending on the period of the data examined.

Each acceleration signal can be summarized through a Fourier series expansion, as:
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Figure 2.5. Frequency Spectrum of Filtered Acceleration Data

Table 2.1. Throttle vs. Estimated Frequency of Flapping
Throttle Frequency of Flapping

1/4 4.6Hz
1/2 5.6Hz
3/4 6.6Hz
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a(t) =
n∑

i=0

{Mi cos (ωit + φi)}

Where n is the number of components (or harmonics) used to represent the signal. In

this way, the acceleration can be simulated using the frequency, amplitude, and phase of

the most prominent components. For instance, Table 2.2 summarizes this information

for the five most prominent components of the acceleration at 1/2 throttle.

Each acceleration signal is cut to one representative period in order to allow for simu-

lation over an unspecified amount of time and to avoid windowing problems. Windowing

problems occur when frequency components exist which correspond to the period of the

window of time in which the data is taken. Because data is available for three different

throttles, a third-order polynomial can be fit to the three Fourier series expansions to

approximate acceleration at other throttles. Also, to avoid the ambiguity of approximate

“throttle,” the estimated frequency of flapping is used instead as the input. Figure 2.6

compares the cut acceleration (single period representation of the actual data repeated

over time) next to that simulated via MATLAB at a flapping frequency of 5.6Hz. Here,

n, the number of components, is equal to 10. From this figure, one can see that the

simulation is relatively accurate, but that the simulated signal does not have quite the

same peak-to-peak or DC magnitude of the sensor data.

To allow simulation of the acceleration in a SIMULINK model, a SIMULINK s-

function is made. This allows for future use in real-time control simulations. Gains are

added to adjust the DC and peak-to-peak magnitude for a better approximation. Though

one could theoretically duplicate the acceleration exactly by increasing the number of

frequency components used to approximate the signal, this requires a large increase in

computational power. Adding simple fixed gains to the simulation achieves the same goal

of more accurately modeling the acceleration signal, but does not significantly increase the

required computational power. Figure 2.7 shows the SIMULINK model with s-function

and gains. The s-function code which makes explicit calls to generate the acceleration

Table 2.2. Summary of Amplitude, Frequency, and Phase of the Five Most Prominent
Components in Acceleration at 1/2 Throttle

Component 1 2 3 4 5
Relative Amplitude (m/s) 594.2 230.9 511.1 25.0 25.0

Frequency (hertz) 0 5.6 11.3 16.9 22.5
Phase (radians) 0 1.7 2.9 2.4 -2.0
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Frequency = 5.6 Hz)

Figure 2.7. SIMULINK Acceleration Simulator S-Function with Gains

through use of polynomial coefficients can be found in Appendix C. Figure 2.8 shows the

cut acceleration along with that simulated in SIMULINK, again, at a flapping frequency

of 5.6Hz.4 Here, one can see a significant increase in the accuracy of the simulated

acceleration due to the addition of gain blocks.

In order to better visualize the acceleration as a function of flapping frequency,

it is simulated over flapping frequencies which can reasonably be estimated from the

4Plots of simulations at other frequencies can be found in Appendix B.
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polynomial fit. Figure 2.9 shows the mean acceleration simulated from 0 to 10Hz. The

sensor data at 6.6Hz (or 3/4 throttle) is estimated to be close to the maximum achievable

acceleration. Therefore the upper bound of the frequency of flapping or input to the

acceleration will be limited to 7Hz in subsequent simulations. This range is further

restricted, for the same reason, to a minimum bound of 4 Hz and since the simulated

acceleration loses fidelity below this point. In future work on the ornithopter, more data

should be collected to better approximate the acceleration at other flapping frequencies.

The RMS (root mean squared) acceleration is also found and plotted for given frequency

of flapping in Figure 2.10.

In addition to limiting the input range, the acceleration is modified to account for

slowly time-varying inputs. This allows one to change the frequency of flapping during

simulation without incongruities in the acceleration. This can be done by incorporating

changes in frequency into the phase, since phase is the time integral of frequency. In this

case one component of the acceleration signal is expressed as:

Sn+1 = An+1 cos (φn+1)
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for

φn+1 = φn + ωndt

where S is the time-varying signal, A is the amplitude of the signal, ω is the frequency (in

radians), φ is the phase, and n is the sample number. Figure 2.11 shows the time-varying

acceleration generated for input flapping frequencies from 4Hz to 7Hz. The s-function

code updated to account for time-varying inputs can be found in Appendix C. With the

ability to simulate the acceleration, a transfer function from acceleration input to velocity

output can now be found.

2.2.3 Modeling of Ornithopter Transfer Function
and Model Validation

A first-order transfer function of the ornithopter, similar to the one found from the

equations of motion, can be found by measuring the gain and rise-time of the velocity.

However, the velocity information must first be extrapolated to find its steady-state

value since the measured data is restricted to about one second and does not reach a

steady-state value. The restriction in data come from the fact that the linear bearing rail

used to confine the ornithopter to one-dimensional horizontal movement is only about
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Figure 2.11. Time Varying Input and Simulated Acceleration
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0.75 meters long. Figure 2.12 shows an extrapolation of the velocity for a frequency

of flapping of 5.63Hz. The exponential equations expressing the extrapolated velocities

are v(t) = 1(1 − e−1.15t), v(t) = 1.5(1 − e−1.2t), and v(t) = 1.6(1 − e−1.5t) for flapping

frequencies of 4.6Hz, 5.6Hz, and 6.6Hz, respectively. The average exponential velocity

fit, v(t) = 1.33(1− e−1.28t), can be used as an approximation of the system. Thus, for an

input, A(s), output, V(s), and 1st-order transfer function, G(s), we have:

V (s)
A(s)

= G(s)

V (s) = A(s)G(s) = A(s)
K

(s + a)
.

If we assume a step input (seen as the DC component of the acceleration), we now have:

V (s) =
A0

s

K

(s + a)
=

A0K/a

s
− A0K/a

(s + a)
.

Using the Final Value Theorem, the steady-state velocity, vSS , can be found as:

vSS = lim
t→∞

v(t) = lim
s→0

sV (s) =
A0K

a
.
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Figure 2.12. Extrapolation of Linear Velocity Data to Steady State (Flapping Frequency
= 5.63Hz)
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This gives the time domain response:

v(t) = vSS(1− e−at) = (
A0K

a
)(1− e−at).

From the average exponential velocity fit, we can assume

A0K

a
= 1.33

and

a = 1.28.

Therefore

A0K = 1.71,

which gives

G(s) =
K

s + a
=

1.71/A0

s + 1.28
.

From Figure 2.9, an estimated average acceleration is A0 = 0.73. The transfer function

now becomes

G(s) =
2.34

s + 1.28
. (2.2)

From this transfer function, we can also find bx, the coefficient of viscous friction (or

damping). From equation 2.1 and 2.2 we find that

B/m = a

and

B = am = 1.28(1/s) ∗ 0.096(kg) = 0.12(Ns/m).

Acceleration, velocity, and position are simulated in order to validate the estimated trans-

fer function model. The open-loop model used for simulation and created in SIMULINK

is shown in Figure 2.13. The “f flap” block specifies the flapping frequency input in

Hertz and the “Acceleration Function Subsystem” is the acceleration simulator described

in Section 2.2.2 and shown in Figure 2.7. The “accel”, “vel”, and “pos” blocks output

the simulated data to the workspace in MATLAB. Figure 2.14 compares the simulated

and actual open-loop velocity at a flapping frequency of 5.6Hz. The simulated veloc-

ity is extended to 10 seconds. The flapping frequencies and corresponding simulated

linear velocities are summarized at the sensor data points in Table 2.3. In order to

demonstrate the validity of these linear velocities, they are compared to the final slope
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Figure 2.13. One-Dimensional Horizontal SIMULINK Model of Ornithopter
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Figure 2.14. Comparison of Simulated and Actual Linear Velocity (Frequency of
Flapping = 5.63Hz)
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Table 2.3. Frequency of Flapping vs. Simulated and Estimated Steady-State Linear
Velocity

Frequency of Flapping Estimated Steady-State Linear Velocity
Simulated Based on Position Data Extrapolated

4.6 Hz 1.26 m/s .93 -1.17 m/s 1 m/s
5.6 Hz 1.34 m/s 1.33 -1.67 m/s 1.5 m/s
6.6 Hz 1.80 m/s 1.57 -1.97 m/s 1.6 m/s

of the corresponding position data. If we assume that the velocity at these points are at

60% to 75% of their steady-state values, we find that the simulated linear velocities are

reasonable approximations. The steady-state velocities estimated from the position data

and the extrapolated velocities are also summarized in Table 2.3. The velocity output is

integrated to find position and a comparison with the position data is shown in Figure

2.15. Figure 2.16 shows the estimated linear velocity from 4Hz to 7Hz.
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Figure 2.16. Frequency of Flapping vs. Simulated Linear Velocity

2.2.4 Model Assumptions and Corrections

While verifying the model transfer function in the previous section, the acceleration

input is assumed to be a step input where the magnitude of the step is the DC component

of the acceleration. This assumption is verified by separating the DC and non-DC

components of the acceleration and viewing the non-DC components as a disturbance

to the system:

a(t) =
n∑

i=0

{Mi cos (ωit + φi)}

= M0 +
n∑

i=1

{Mi cos (ωit + φi)}

A(s) =
M0

s
+

n∑
i=1

Mi{
s ∗ cos(φi)− ωi ∗ sin(φi)

s2 + ω2
i

}

A model of the ornithopter with transfer function from acceleration to velocity and from

forcing to velocity is shown in Figure 2.17. Here, the input u(s) = M0
s and the disturbance

d(s) =
∑n

i=1 Mi{ s∗cos(φi)−ωi∗sin(φi)
s2+ω2

i
}. In an ideal case each sinusoidal term is symmetric

about zero and each will have a net effect in acceleration of zero over time. Because we are
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Figure 2.17. One-Dimensional Horizontal Model of Ornithopter with Disturbance

assuming a linear model of the ornithopter, the velocity output from each pure sinusoidal

input term will include a magnitude and phase change, but will still be symmetric about

zero. Because we do not have an ideal case and the ornithopter is not completely linear,

some error in the velocity output is expected to exist.

Because the modeling done in the previous sections has been concerned with the

experimental data, it reflects the motion of the total mass of the ornithopter and slider

used to attach it to the linear bearing rail. If we assume that the same force is generated

by the ornithopter with and without the mass of the slider included, we can make the

following calculations for the ornithopter’s actual acceleration:

F = ma

mtestatest = mornithopteranew

anew =
mtest

mornitopter
atest =

0.2kg

0.096kg
atest

anew ≈ 2atest

Therefore, the acceleration of the ornithopter alone is twice that of the sensor data

acceleration.5 Following simulations will reflect this increase in acceleration.

5Other causes of attenuation in acceleration may exist due to the friction between the slider and linear
bearing rail and/or torques on the ornithopter.
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2.3 One-Dimensional Horizontal Closed-Loop
System

The following sections address challenges created by flapping of the wings, controlla-

bility and stability of the one-dimensional ornithopter model, and design of a controller.

2.3.1 Feedback Path Filter

A filter is used in the feedback path of the closed-loop system to avoid tracking of

fluctuations in velocity created by the flapping of the wings. Though the ornithopter itself

acts as a low pass filter (LPF), which filters the forcing input and has a cutoff frequency

at about 1rad/sec (based on the transfer function, Equation 2.2, found in Section 2.2.3),

fluctuations still exist in the velocity as is evident upon examination of the velocity data.

This is problematic as the frequency of flapping is close to that of the oscillations one

might see in velocity about steady-state. A LPF can be used to eliminate the majority

of the unwanted frequency components and to facilitate tracking of the mean velocity. A

LPF of the following form was chosen:

H(s) =
a

s + a

for a < 0.

In choosing the placement of the filter pole one must consider the tradeoff between the

delay of the filter and its filtering capability. As the filter pole decreases in magnitude, the

filtering capability of lower frequencies increases. Because the contribution of the filtered

frequency components is attenuated, the magnitude of the filtered signal is smaller and

takes longer to reach a steady-state value. This is seen as a delay in the filter output

and so it takes longer to track the actual velocity. A unity gain filter with good filtering

capability (based on the frequency spectrum seen in Figure 2.5) and limited delay was

chosen to filter frequencies above 0.5 Hz:

H(s) =
2π ∗ 0.5

s + (2π ∗ 0.5)
=

π

s + π
.

The simulated and filtered velocities are shown in Figure 2.18 and a Bode plot of the

filter is shown in Figure 2.19.

2.3.2 Controllability, Stability, and Controller Choice for
One-Dimensional Horizontal System

The simplified transfer function of the ornithopter from forcing input to velocity

output is a first order transfer function consisting of a pole in the left-hand plane around
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s = −1 (based on the transfer function, Equation 2.2, found in Section 2.2.3). Another

pole and zero are added when the filter is included in the system. Stability of this

simplified model can be assumed, since all of the poles are in the LHP. A controller can

be chosen by looking at the closed-loop system again with the forcing input separated

into a constant (DC) term plus sinusoidal terms. Figure 2.20 shows the system with

input, U(s), and disturbance, D(s). The error, E(s), and output, V(s), can then be

found as: E(s) = R(s) − H(s)V (s) and V (s) = G(s)D(s) + G(s)F (s)E(s), where

F (s) = C(s)W2(s)). We can then look at the total error:

E(s) = R(s)−H(s)[G(s)D(s) + G(s)F (s)E(s)]

= R(s)−H(s)G(s)D(s)−H(s)G(s)F (s)E(s)

E(s)[1 + H(s)G(s)F (s)] = R(s)−H(s)G(s)D(s)

E(s) =
R(s)

1 + H(s)G(s)F (s)︸ ︷︷ ︸
error due to input

− H(s)G(s)D(s)
1 + H(s)G(s)F (s)︸ ︷︷ ︸
error due to disturbance

which are the error due to the input and disturbance, respectively. We want zero error

at steady-state which can be found using the Final Value Theorem:

lim
t→∞

e(t) = lim
s→0

sE(s) = 0

G(s)

+

+
+

U(s)

D(s)

V(s)

W(s)+

+

R(s)

A(s)

-

E(s)

C(s)

H(s)

A(s)

G(s)

V(s)

W(s)+
+

R(s)

-

E(s)

C(s)

H(s)

a)

b)

1

2

Figure 2.20. Closed-Loop System a) Shown as Originally Modeled b) Shown Modeling
Sinusoidal Part of Acceleration as a Disturbance



25

Applying this to the error due to the input alone (for a step input):

lim
s→0

sE(s) = lim
s→0

sR(s)
1 + H(s)G(s)F (s)

= lim
s→0

s(1
s )

1 + (nH
dH

)(nG
dG

)(nF
dF

)

= lim
s→0

dHdGdF

dHdGdF + nHnGnF

One can see that if the denominator of F(s), dF , becomes zero as s → 0, then the error

due to the input will also be zero. This requires a pole at 0. Since F (s) = C(s)W2(s)

and W2(s) cannot be changed, the denominator of the controller dC must have a pole at

zero. We now look at the error due to the disturbance alone (again, for a step input in

disturbance):

lim
s→0

sE(s) = lim
s→0

− sH(s)G(s)D(s)
1 + H(s)G(s)F (s)

= lim
s→0

−
s(nH

dH
)(nG

dG
)(nD

dD
)

1 + (nH
dH

)(nG
dG

)(nF
dF

)

= lim
s→0

−
snHnGnD

dF
dD

dHdGdF + nHnGnF

We see again that if dF has a pole at 0, the error due to the disturbance will also

approach zero as s → 0. This again implies that dC must have a pole at zero. A

proportional-integral (PI) controller can then be chosen to eliminate error in the output

at steady-state due to a step in the input and disturbance. Adding derivative action to

the controller is undesirable for the same reasons the filter was added. We do not want

the controller to track velocity fluctuations. Because the actual system is subject to more

than a step input disturbance, large feedback gains can theoretically be used to reduce

the error caused by the sinusoidal terms.

2.3.3 One-Dimensional Horizontal Closed-Loop
Simulations and Controller Design

Control of the one-dimensional horizontal system is considered and simulated in this

section. Given that C(s), W2(s), G(s), and H(s) from Figure 2.20 are of the forms:

C(s) = K(s+zC)
s , W2(s) = Cw2, G(s) = V (s)

A(s) = 2.34
s+1.28 , and H(s) = π

s+π , where Cw2 is a

constant, the simplified loop-gain of the system is:

C(S)W2(s)G(s)H(s) =
2.34Cw2K(s + zC)π
s(s + 1.28)(s + π)

.
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The root locus of this simplified system does not consider the effects of the sinusoidal

components and so is incomplete, however it does offer insight into placement of the

controller zero. Simulations were used to test the system with zeros at different locations

and to find and adjust gains. The following PI controller was found:

C(S) =
KP (s + KI

KP
)

s
=

K(s + 0.05)
s

with K = 40. Figure 2.21 shows a closed-loop SIMULINK model of the ornithopter.

Important to note are the Relay, Frequency of Flapping Limiter, and Product blocks. To-

gether, this combination effectively limits the allowed flapping frequencies, while enabling

the ornithopter to turn off when the control signal reaches a certain point. Currently,

the relay will turn off after the control signal goes below −40Hz. This is an arbitrary

point used to avoid having the ornithopter turn off during initial testing and simulations.

However, this point can be changed to allow thee ornithopter to turn off. The ability of

this component will be considered more in Section 2.3.4.

The desired and actual velocities of the simulated closed-loop system are shown in

Figure 2.22. The controller output is seen in Figure 2.23 along with the limited control

signal (limited from 4-7 Hz as noted in Section 2.2.2). Upon examination of the controller

signals, one can see that the controller is tracking the fluctuations caused by the flapping

of the wings despite attempts to filter them. To curb this problem, the controller’s

proportional gain is reduced from KP = 40 to KP = 10 once the error between the

desired and actual velocities reduces to below 0.1m/s. Figure 2.24 and 2.25 show the

velocity and control signals for the improved controller.

2.3.4 One-Dimensional Horizontal Closed-Loop
System Additions

As noted in Section 2.3.3, there exists a Relay, Frequency of Flapping Limiter, and

Product block in the SIMULINK Model of the Horizontal Closed-Loop System seen in

Figure 2.21. Not only does this allow the ornithopter to turn off at some point, but it

also allows the ornithopter to achieve a flapping-gliding behavior to reach slower speeds.

Though this is not a main concern in this thesis, it is worth noting for future develop-

ments of the controller design. To demonstrate the ability of this part of the controller,

simulations of the ornithopter at velocities in and below the range for continuous flapping

are shown in Figure 2.26. Control signals can be seen in Figure 2.27 where the relay turns

the flapping off when the (unlimited) control signal goes below −4Hz.
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Figure 2.22. Simulated One-Dimensional Horizontal Closed-Loop Velocity with
KP = 40 and KI = 2
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Figure 2.23. Control Signals of Simulated One-Dimensional Horizontal Closed-Loop
System with KP = 40 and KI = 2
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Figure 2.24. Simulated One-Dimensional Horizontal Closed-Loop Velocity (Updated
Controller) with KP = 40 and KI = 2)
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System (Updated Controller) with KP = 40 and KI = 2
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Figure 2.26. Simulated One-Dimensional Horizontal Closed-Loop Velocity with
KP = 40 and KI = 2 Showing Flapping-Gliding Behavior
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Figure 2.27. Close-up View of Control Signals of Simulated One-Dimensional Horizontal
Closed-Loop System with KP = 40 and KI = 2 Showing Flapping-Gliding Behavior
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2.4 One-Dimensional Vertical Closed-Loop
System

In order to gain more insight into the ornithopter system, analysis of a one-dimensional

system of the ornithopter in hover is considered in this section. The information gained

here will help in developing a state-space model, which will be considered in the next

section. Here, the ornithopter is in a completely vertical facing stance. This allows the

ornithopter to direct all of its thrust upward, to counteract gravity, while limiting its

horizontal movement. An equation describing this motion is:

f(t)−mg = mÿ + Bẏ = mv̇ + Bv.

Hence, the same transfer function will appear for the vertical case, along with a gravita-

tional term subtracted from the forcing term. Figure 2.28 show a free body diagram of

this system. Because the maximum acceleration of the ornithopter is around 2.4m/s2,

the current design of the ornithopter cannot overcome gravity (at 9.81m/s2). If we

assume a gain in thrust (thrust = force = ma) is possible through physical reassessment

and design of the ornithopter, a gain block can be added in series with the acceleration

s-function block to reflect this adjustment. Though lacking in precision, this approach

may lead to insight into controllability of the system in hover.

Open-loop simulations of the system lead to the conclusion that a minimum gain in

acceleration of G = 4.6 is required for hover at a flapping frequency of 7Hz. This is slightly

Figure 2.28. One-Dimensional Free Body Diagram of Ornithopter: Vertical Movement
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above the required gain of about 4.1 when considering the estimated acceleration at 7Hz

in Figure 2.9 (remember that the data in this figure must be multiplied by a gain of 2

in order to compensate for the mass of the slider). Simulations of the closed-loop system

lead to a small change in the controller from that found for the horizontal case. Although

a gain of K = 40 will still work, the zero is moved from z = −0.05 to z = −1. This

amounts to an increase in the integral component of the control signal since KI
KP

= −z.

Because the gain in acceleration increases the magnitude of the fluctuations in velocity,

the updated controller of Section 2.3.3 was of no help. Simulations of the closed-loop

system velocity and position are seen in Figure 2.29 and 2.30 with a gain in acceleration

of G = 5 for good measure. The reference input for velocity dictates a constant step, step

down to zero, and then gradual ramp. This allows the integrator to accumulate enough

gain to have an effect on the system at hover and shows the capability of the system

beyond hovering.
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Figure 2.29. Simulated One-Dimensional Vertical Closed-Loop Velocity with KP = 40
and KI = 40
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CHAPTER 3

TWO-DIMENSIONAL CONTROL

In this chapter, a state-space model of the ornithopter is derived to allow for velocity

and altitude control. Equilibrium points are analyzed for vertical hover and for steady

horizontal flight. Feedback gains are found for both cases to implement control.

3.1 A General Two-Dimensional Model
of the Ornithopter

A general free body diagram of the ornithopter in flight is shown in Figure 3.1. The

following notation applies to Figure 3.1 and following free body diagrams:

x the horizontal axis.

y the vertical axis.

x̂ the horizontal body axis.

Figure 3.1. General Two-Dimensional Free Body Diagram of Ornithopter in Flight
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ŷ the vertical body axis.

θ the angular position of the ornithopter.

α the angle of attack of the ornithopter and angle between the velocity vector and

horizontal body axis.

δE the angle of the tail (or elevator).

m the mass of the ornithopter.

g Earth’s gravity: g ≈ 9.81m/s2.

v the velocity of the ornithopter: v =
√

v2
x + v2

y =
√

ẋ2 + ẏ2.

T the thrust produced by the wings, which is assumed to be parallel to the body axis.

L the lift generated by oncoming air flow.

The equations of motion for this case can be summarized as:

mẍ + bxẋ = T cos θ − L sin θ

mÿ + byẏ = T sin θ + L cos θ −mg

θ̈I + bθθ̈ = −KtδE

where bx, by, and bθ are horizontal, vertical, and rotational damping of the ornithopter,

I is the moment of inertia of the ornithopter, and Kt is a torque constant relating the

total torque, of which the ornithopter is subject, to the angle of the tail. From the free

body diagram, we can also conclude that ẋ = v cos (θ − α) and ẏ = v sin (θ − α).

3.2 Two-Dimensional Closed-Loop System
with Vertical Equilibrium

The system in hover described in the Section 2.4 is extended here to state-space

representation. This allows for a more realistic model of the ornithopter and is helpful as

a precursor to velocity and altitude control for steady horizontal flight. Figure 3.2 shows

a free body diagram of this system. The notation from Section 3.1 applies to this section

as well. Here, the lift, L, is approximately equal to zero. Hence, the equations of motion

used for the ornithopter in vertical hover can be summarized as:

mẍ + bxẋ = T cos θ
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Figure 3.2. Two-Dimensional Free Body Diagram of Ornithopter in Hover

mÿ + byẏ = T sin θ −mg

Iθ̈ + bθθ̇ = −KtδE .

An approximation of the moment of inertia is made using the following equation for

the moment of inertia for a solid cuboid:

I =
1
12

m(h2 + l2)

where h = height and l = length. For h ≈ 4 in. = 0.1016 m, l ≈ 6 in. = 0.1524 m,

and m = 0.096 kg, we find that I ≈ 2.6839E − 4 kg ·m2. An estimate of the rotational

damping and torque constant can be made by considering two cases for the equation

Iθ̈ + bθθ̇ = −KtδE . In the first case, the ornithopter is at rest and a maximum step in

angular acceleration, θ̈max, is applied to the system. At this point θ̇ = 0 and δE = δE,max.

From observation, δE,max ≈ ±45◦ and θ̈max ≈ ±540◦/s2 ≈ ±9.43 rad/s2.1 We can then

solving for Kt ≈ 0.0032. In the second case, the ornithopter is in steady rotation. Here

θ̇ = θ̇max = 180◦/s and θ̈ = 0.2 We can then solve for bθ ≈ 8.0516E − 4 N · s/m.

1The approximation for θ̈max is a ballpark figure and should be validated in future work.

2The approximation for θ̇max is also a ballpark figure and should be validated in future work.
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Now that we have the required information for the equations of motion, we can

continue with analysis of the system. The state-space equations for this system become:

x =



x1

x2

x3

x4

x5

x6

 =



x
ẋ
y
ẏ
θ

θ̇

 and ẋ =



ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

 =



ẋ
ẍ
ẏ
ÿ

θ̇

θ̈

 =



x2
u1
m cos x5 − bx

m x2

x4
u1
m sinx5 − by

mx4 − g
x6

−Kt
I u2 − bθ

I x6


with input

u =
[

u1

u2

]
=

[
T
δE

]
.

This gives a set of nonlinear differential equations of the form

ẋ(t) = h(x(t), u(t), t) (3.1)

A linearized system can be obtained, as an estimate of this system, by evaluating the state-

space equations at an equilibrium point. If the system is linearized around an equilibrium

point with initial state, x0, and input, u0, which is subject to small perturbations, 3.1

become:

ẋ0(t) + ẋ(t) = h(x0(t) + x(t), u0(t) + u(t), t)

= h(x0(t), u0(t), t) +
∂h

∂x
x +

∂h

∂u
u + · · · ,

which reduces to

ẋ(t) =
∂h

∂x
x +

∂h

∂u
u = A(t)x + B(t)u

(where A(t) := ∂h
∂x and B(t) := ∂h

∂u are Jacobians) [24]. For the ornithopter in vertical

hover, θ is approximately equal to 90◦ and the angle of attack, α, is approximately equal

to zero. The equilibrium is expressed as:

x0 =



0
0
C1

0
C2

0

 and ẋ0 =



0
0
0
0
0
0
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where C1 = constant altitude, C2 = 90◦ = constant angular position, and we assume that

the system experiences no rotational torque at its equilibrium. This requires an initial

input of:

u0 =
[

mg
0

]
.

The Jacobian matrices, A and B, can then be solved for as:

A =



0 1 0 0 0 0
0 − bx

m 0 0 −g 0
0 0 0 1 0 0
0 0 0 − by

m 0 0
0 0 0 0 0 1
0 0 0 0 0 − bθ

I


and B =



0 0
0 0
0 0
1
m 0
0 0
0 −Kt

I

 .

Because the rank of the controllability matrix, C = [B AB A2B · · · An−1B], is of full

rank (rank(C) = 6), the system is assumed to be controllable. This linearized system

can then be used to design state-feedback gains, which in turn can be used to control

the nonlinear system. Closed-loop system gains are found for the linearized system to

place the desired closed-loop system poles in a Butterworth pattern below the ζ = 0.707

damping line (the damping, ζ > 0.707) [24]. By varying the radius of the closed-loop

poles, gains can be found which yield the best response. For a system of the following

form:

ẋ(t) = Ax + Bu

with u = u0 − ū, ū = Kx̄, and x̄ = x− x0, the closed-loop system becomes:

ẋ(t) = (A−BK)x + Bu0 + BKx0.

For a radius of R = 15, the gain matrix is

K =
[
−390.7551 −61.4923 19.9253 2.5061 41.4851 1.0601
441.5719 92.4694 1.2553 0.0886 −92.2723 −4.1380

]
.

Low-pass filters, each with a pole at p = 2 Hz are used to filter the ẋ and ẏ states before

feeding them back. The filter poles in this system have been increased from those in the

one-dimenasional case to reduce the delay. Poles at p = 0.5 Hz add too much delay for

this system to remain stable.

In addition to state-feedback, integral control is added for robust tracking and dis-

turbance rejection [24]. This addition aids in control where disturbances exist (from the

flapping of the wings). It is also needed due to a constant error in the mean steady-state
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altitude, y, for the system with feedback gains alone. An augmented state variable, xa,

is added. We now have:

u = u0 − ū + ũ = u0 −Kx̄ + Kaxa

with

ẋa = r − y = r − Cx

where

C =

 0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

 , y =

 ẋ
y
θ

 , r =

 ẋd

yd

θd

 ,

and

Ka =
[

Ka11 Ka12 Ka13

Ka21 Ka22 Ka23

]
=

[
30 30 30
0 0 0

]
.

Here, the subtext, d, stands for the desired state. Simulation results for the altitude and

vertical velocity are shown in Figures 3.3 and 3.4. Simulation results for the horizontal

and angular position are shown in Figure 3.5 and 3.6.

3.3 Two-Dimensional Closed-Loop System
with Horizontal Equilibrium

In this section, a longitudinal state-space representation is found for the ornithopter

in steady horizontal flight. In this case, the ornithopter is subject to a lift force, L.

Because we do not know the exact lift model for the ornithopter, a linear function is used

to approximate lift generation based on observations obtained from nominal flight under

manual control. Hence, we assume a linearized model of the lift to be proportional to

velocity, v. The equations of motion for this case can be summarized as:

mẍ + bxẋ = T cos θ − L sin θ

mÿ + byẏ = T sin θ + L cos θ −mg

θ̈I + bθθ̈ = −KtδE

With notation defined in Section 3.1. Since lift is assumed to be proportional to velocity,

it can be expressed as L = Klv =
√

v2
x + v2

y (where Kl is a lift constant). A free body

diagram of this system is included in Figure 3.7 to aid in visualization. The state-space

representation then becomes
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Figure 3.3. Simulated Two-Dimensional Closed-Loop System in Vertical Hover: Vertical
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Figure 3.5. Simulated Closed-Loop System in Vertical Hover: Horizontal Position
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Figure 3.6. Simulated Closed-Loop System in Vertical Hover: Angular Position
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Figure 3.7. Two-Dimensional Free Body Diagram of Ornithopter in Horizontal Flight

ẋ =



ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

 =



ẋ
ẍ
ẏ
ÿ

θ̇

θ̈

 =



x2
u1
m cos x5 − Kl

m

√
x2

2 + x2
4 cos (90◦ − x5) − bx

m x2

x4
u1
m sinx5 + Kl

m

√
x2

2 + x2
4 sin (90◦ − x5)− by

mx4 − g
x6

−Kt
I u2 − bθ

I x6


.

A horizontal equilibrium can then be found for the ornithopter in steady horizontal flight.

Here, the ornithopter is flying with a constant horizontal velocity, ẋ0 = C1, at a constant

altitude, y0 = C2, and at a constant angular position, θ0 = C3. At this equilibrium

point, the ornithopter experiences no increase in velocity or altitude and experiences no

rotational torque. The initial states for this equilibrium are

x0 =



0
C1

C2

0
C3

0

 and ẋ =



C1

0
0
0
0
0

 .

From observation, θ0 ≈ 5◦. Since the velocity vector is aligned with the x-axis, we also

find that α ≈ 5◦. Therefore, ẋ = vcos(θ − α) = v and ẏ = vsin(θ − α) = 0 as desired.

The initial input, u1, and lift constant, Kl, required for equilibrium can be solved for
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from the equations of motion via matrix algebra as Ax = B, where A and B (here A and

B are different from the Jacobian matrices A and B) are:

A =
[

cos θ −
√

x2
2 + x2

4 sin θ

sin θ
√

x2
2 + x2

4 cos θ

]
and B =

[
mẍ + bxẋ

mÿ + byẏ + mg

]
.

We can then solve for x = A−1B =
[

T0

Kl

]
. We now have u0 =

[
u1,0

u2,0

]
=

[
T0

0

]
. With

these initial conditions, the Jacobian matrices, A and B, become:

A =



0 1 0 0 0 0
0 a2,2 0 a4,2 a5,2 0
0 0 0 1 0 0
0 a2,4 0 a4,4 a5,4 0
0 0 0 0 0 1
0 0 0 0 0 a6,6

 and B =



0 0
1
m cos x5 0

0 0
1
m sinx5 0

0 0
0 −Kt

I

 ,

where:

a2,2 = −1
2

(
Kl

m

)
(x2

2 + x2
4)
− 1

2 (2x2) sinx5 −
bx

m

a2,4 =
1
2

(
Kl

m

)
(x2

2 + x2
4)
− 1

2 (2x2) cos x5

a4,2 = −1
2

(
Kl

m

)
(x2

2 + x2
4)
− 1

2 (2x4) sinx5

a4,4 =
1
2

(
Kl

m

)
(x2

2 + x2
4)
− 1

2 (2x4) cos x5 −
by

m

a5,2 = −u1

m
sinx5 −

(
Kl

m

) √
x2

2 + x2
4 cos x5

a5,4 =
u1

m
cos x5 −

(
Kl

m

) √
x2

2 + x2
4 sinx5

a6,6 = −bθ

I

and are evaluated at the initial states. As was done in Section 3.2, the controllability

matrix is determined to be of full rank and then gains are found and tested in simulation.

Simulation worked well for the nonlinear system without flapping input for almost any

closed-loop pole radius, R. There was also a noticeable increased in responsiveness with

an increase in R (or gain, K). However, once the flapping is included the system becomes

unstable. Feedback gains alone are not sufficient and the robust tracking implemented in

Section 3.2 must be used to maintain stability. Control is implemented for a closed-loop

pole radius, R = 10, and a corresponding gain matrix of

K =
[
−29.2864 1.0324 39.5990 15.4548 9.6418 0.4829

51.3869 1.5476 −9.9783 −14.2381 −20.8977 −1.9712

]
.
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Unity feedback is implemented with:

C =

 0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

 , y =

 ẋ
y
θ

 , r =

 ẋd

yd

θd

 ,

and

Ka =
[

Ka11 Ka12 Ka13

Ka21 Ka22 Ka23

]
=

[
100 100 100
0 0 0

]
.

Simulation results for horizontal position and velocity, vertical position, and angular

position are shown for θ0 = 5◦ in Figures 3.8-3.11.

Though gains for the augmented states can be increased, within reason, without

detrimental effect to the system, simulations become unstable for state feedback gains

which cause the closed-loop pole radii to be larger then R = 15. In fact, the system is

quite sensitive to large gains. The acceleration gain of G = 5 added for simulation of the

ornithopter in hover (in Section 3.2) makes the system in steady horizontal flight unstable.

When the gain is reduced to G = 3, the system works quite well. This behavior may be

ascribable to an insufficiency in the modeling of the ornithopter and in particular to that
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Figure 3.8. Simulated Two-Dimensional Closed-Loop for Horizontal Flight: Horizontal
Position
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Figure 3.10. Simulated Two-Dimensional Closed-Loop System for Horizontal Flight:
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Figure 3.11. Simulated Two-Dimensional Closed-Loop System for Horizontal Flight:
Angular Position

concerning angular motion and lift. Experimental analysis of the system’s rotational

damping, moment of inertia, and elevator (tail) effectiveness would help improve the

system model. More accurate modeling of the net torque can be achieved by looking at

the moment arms of individual parts of the ornithopter. Accurate determination of the

lift and pitching moment of the ornithopter also seem to be required in order to achieve

stability in horizontal flight. A more realistic model of the lift can be found by analyzing

the lift coefficient versus angle of attack. In the future, drag also needs to be factored

into the system.

If instability at high gains is indeed observable upon improvement of the ornithopter

model and/or in the real system, doubts concerning the ability of the ornithopter to

hover may arise. The large magnitude thrust required to maintain hover may instigate

instability. It may also point to a trade-off in thrust and/or lift versus stability, which

was observed and noted in [12].

To test the controller for robustness, the initial conditions were perturbed by incre-

mental amounts until the system became unstable. Maximum deviation tolerances are

summarized in Table 3.1, which show the controller has a satisfactory aptitude for recov-



47

Table 3.1. Summary of Controller’s Maximum Deviation Tolerance
State Maximum Deviation from Initial Conditions

x1 = x0 0.2m ≈ 7.87in.
x2 = ẋ0 2m/s ≈ 78.74in./s
x3 = y0 0.6m ≈ 23.62in./s
x4 = ẏ0 0.5m/s ≈ 19.79in./s
x5 = θ0 1.05rad ≈ 60◦

x6 = θ̇0 12.5664rad/s ≈ −720◦/s

ery. Figures 3.12-3.17 show the ornithopter recovering from the following displacements

in initial conditions: x = x0, ẋ0 = ẋ0 + 2m/s, y0 = y0 − 0.5m, ẏ0 = ẏ0 + 0.5m/s, θ0 =

θ0 + 60◦, θ̇0 = θ̇0 − 720◦/s.

One observation found while running simulations which deserves attention is the fact

that once filters are added to the closed-loop system without the flapping included, the

system becomes unstable. Though this is expected, since the addition of filters effectively

changes the loop gain of the system, this does not happen to the system with flapping

input. Perhaps the flapping force possesses a restorative attribute. More research must

be done to investigate this phenomena.
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Figure 3.12. Simulation Showing Perturbations in Two-Dimensional Horizontal
Closed-Loop Position for Horizontal Flight
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Figure 3.13. Simulation Showing Perturbations in Two-Dimensional Closed-Loop
System for Horizontal Flight: Horizontal Velocity
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Figure 3.14. Simulation Showing Perturbations in Two-Dimensional Closed-Loop
System for Horizontal Flight: Vertical Position
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Figure 3.15. Simulation Showing Perturbations in Two-Dimensional Horizontal
Closed-Loop Vertical Velocity for Horizontal Flight
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Figure 3.16. Simulation Showing Perturbations in Two-Dimensional Closed-Loop
System for Horizontal Flight: Angular Position
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Figure 3.17. Simulation Showing Perturbations in Two-Dimensional Horizontal
Closed-Loop Angular Velocity for Horizontal Flight



CHAPTER 4

CONCLUSIONS

4.1 Results

The main objective of this work was to analyze and develop control of an ornithopter

MAV. This work has broader implications to control of nonlinear systems subject to

nonlinear forcing inputs with multiple sinusoidal components. In this work, a wing-force

characterization for the ornithopter was done based on the amplitude, frequency, and

phase information found from acceleration data. This lead to the ability to extrapolate

the acceleration and mean acceleration at other flapping frequencies; to the design of a

transfer function describing a one-dimensional model of the ornithopter; and to design of

feedback path filters based on the frequency spectrum of the forcing input. The ability to

recreate a time-varying acceleration input was completed to allow for real-time simulation

and control. Therefore insight into the aerodynamics and controllability of flapping wing

flight is gained through explicit modeling of wings forcing input.

A nominal state-space LTI (linear time-invariant) model of the ornithopter was created

for hover and steady longitudinal flight based on linearization techniques and by first

studying more simple one-dimensional models. Control of these systems was completed

using a simple feedback gain scheme and placing the closed-loop poles in a Butterworth

pattern. Integral control was added to achieve zero steady-state error and tracking ability.

Though control was obtained for both the system in hover and in steady horizontal flight,

the later showed instability at high gains. This indicated a need for a more accurate model

of the ornithopter and suggested a trade-off between lift and controllability.

4.2 Discussion

Our findings support those of [12] where controllability of a flapping wing MAV with

wings limited to a single degree of freedom and passive rotation was analyzed by use

of averaging and high frequency control. Here, controllability was shown to be ensured

and a basis for use of simple linear feedback laws was posed. In this thesis, the use of
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simple control laws to design a controller was achieved through use of rigid body-motion

equations and by analysis of the mean forcing input and torque related to the center of

mass. As noted in [12], our work also suggests tradeoffs between controllability and lift

generation ability.

Flapping wing MAVs offer the ability for maneuverability at low speeds, as well as to

hover. It was observed in this thesis that the ornithopter did not generate enough lift to

hover. Though the ornithopter mechanism had begun a steady decline in condition by

the time that sensor motion data was collected, exploration summarized in [8] suggests

that this indeed the case. Here, the success of a flapping wing MAV was concluded to

depend on three lift generating mechanisms called delayed stall, rotational circulation,

and wake capture. Similar findings are observed and studied in [3] and [5]. This required

the ability of the wings to rotate: something of which our ornithopter is not capable.

However, if hovering is not an end objective for this ornithopter, something of which not

all natural ornithopters are capable, forward velocity was observed, both in real life and

in simulations, to provide enough lift for flight.

4.3 Future Work

As noted, in future work a more precise model of the ornithopter system is needed.

This includes acquiring better steady-state velocity information and experimental analysis

of elevator/tail effectiveness, pitching moment, and lift. This will enable design of a better

and more precise controller. Estimates of angular damping, moment of inertia, and torque

constants must also be revised. A better model of the ornithopter will also include varying

the angle of attack, α. Other things to be considered in the model include experimental

analysis of lift-induced and parasitic drag, the coefficient of lift, and total lift. If hovering

is desired, perhaps the physical design of the ornithopter must also be improved to gain

more acceleration.

Once a new controller is found for the new system model, work must also be done

to validate the controllers’ ability on the actual ornithopter and with the integration of

sensors.1 From there, lateral aerodynamics, which include roll and yaw movements can

be analyzed and incorporated into a three-dimensional system. Lateral and longitudinal

1Validation of the current controllers’ abilities was not done in this thesis due to disrepair of the
ornithopter and a lack of complete embedded control system including sensors.
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control can then be the subject of future work. Beneficial insight can be gleaned from

the approaches taken in [10] and [11].



APPENDIX A

ORNITHOPTER DESIGN

The Ornithopter Design Group includes Eric A Johnson, Ari Fershtut, Charles Fisher,

Jared Terry, and Brent Orme. This ornithopter was developed as a Senior Design

Project at the University of Utah. A design report on the ornithopter was submit-

ted in 2006 to the 10th Annual MAV Competition at Brigham Young University (see

http://www.et.byu.edu/groups/wwwmav/Tenth MAV Site/Home/home.htm) and is called

“University of Utah MAV Ornithopter Design.” Figures A.1 show a head on view of the

ornithopter drawn in Pro/ENGINEER with wings fully closed and opened.

Figure A.1. Head On View of Ornithopter with Wings Closed and Opened



APPENDIX B

SIMULATION AND DATA PLOTS
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Figure B.1. Comparison of SIMULINK Simulated and Cut Acceleration (Flapping
Frequency = 4.64 Hz)
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APPENDIX C

SIMULINK CODE AND FIGURES

Figure C.1. SIMULINK S-Function Code for Acceleration (Part I)



62

Figure C.2. SIMULINK S-Function Code for Acceleration (Part II)
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Figure C.3. SIMULINK S-Function Code for Time-Varying Acceleration (Part I)
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Figure C.4. SIMULINK S-Function Code for Time-Varying Acceleration (Part II)
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Figure C.5. SIMULINK S-Function Code for Time-Varying Acceleration (Part III)
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Figure C.7. SIMULINK Model of Closed-Loop State-Space System
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