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ABSTRACT 

When engaged in extravehicular activity (EVA) in the microgravity of space, 

safety requires astronauts to employ multiple tethers to ensure proximity of their person 

and tools to the spacecraft.  Due to the cumbersome nature of constant tethering 

activities, this necessary component of EVA consumes a large amount of highly valuable 

time.  This research investigates an automated system for the simplification of tether use. 

The automated tether management system consists of a remotely releasable 

robotic gripper that secures the system to the spacecraft, a retractor that contains and 

controls the length of extended tether, and a hybrid tether that provides both tensile 

structural support and communication between the gripper and retractor.  The gripper is 

optimized to engage a variety of anchor types and is self-locking.  The retractor employs 

active as well as passive retraction capability that minimizes consumption of power. 

Dynamic models are developed that simulate the system in reference frames that 

are fixed and in orbit in order to understand the limitations of the designed system and the 

effects of orbital dynamics.  Experimentation and testing of the prototype system is 

described.  Experiments measure key capabilities of each device, reveal unexpected 

characteristics of the system, and verify applicable dynamic simulations of the system.  

Expanded applications for the system outside the strict role of an astronaut safety tether 

are also considered. 
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1. INTRODUCTION 

When engaged in Extravehicular Activity (EVA) in the microgravity of space, 

safety requires astronauts to employ multiple tethers to ensure the proximity of 

themselves and their tools to the spacecraft. In particular, it is required of astronauts to 

secure their person to the spacecraft with at least two safety tethers when stationary 

during EVA. This necessary component of EVA requires a significant amount of highly 

valuable time. Although documentation is not readily available regarding the full 

percentage of time spent managing tethers, a typical EVA egress procedure can involve 

15 minutes of working with tethers to simply prepare to begin working. Doubling this 

time to account for reentering the spacecraft gives nearly 8% of a 6.5-hour EVA that is 

spent managing tethers only during exit from and reentry into the spacecraft [1]. 

Tethers that are in current use, such as the short waist tether (Figure 1a), consist 

of a flexible tensile structural member with manually operated hooks at each end. These 

hooks are specialized for manual operation, and are fastened around tether loops or cables 

that are integral to the equipment, suits, and structures with which the crewmembers 

interact.  To allow a greater range of motion, the retractable safety tether (Figure 1b) is 

applied. This device features a spring-loaded reel that dispenses and controls the length of 

tether in the workspace. The safety tether can also engage slide wires (Figure 1c) that 

span the length of the Space Shuttle cargo bay to further expand the range of travel. 
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When complete, the International Space Station will be the largest spacecraft ever 

constructed, requiring many tether loops, slide wires, and handrails for tethered travel 

about its relatively large exterior.  In order to travel past the range of one safety tether, an 

EVA crewmember would need to transfer his or her tether to a new anchor. 

Accomplishing this with currently used flight hardware would necessitate attaching a 

new tether to an anchor near the end of the current tether and returning to the initial 

anchor to release the first hook before continuing the traverse. This process can increase 

the distance a crewmember must travel by as much as three times. Since the travel speed 

of crewmembers during EVA is deliberately slow, such transfers can be time consuming. 

 
Figure 1. Tethering devices in current use [2-4]. 
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The purpose of the present research is to improve the mobility of tethered EVA 

crewmembers in micro-gravity.  An automated tether management system would 

simplify tether transfer by allowing a crewmember to remain stationary while remotely 

opening a tether hook and retracting his or her safety tether.  This functionality would be 

particularly useful in areas of space structures where guide wires may not be present or 

convenient and during construction of these structures.  

Additional potential applications for the automated tether management system 

include crewmember locomotion and object manipulation. Since the system incorporates 

a powered tether retractor, a suited crewmember could be safely transported across gaps 

in a space structure where no handholds are available. With a proper supporting structure, 

multiple systems could also be used in an antagonistic configuration to manipulate cargo. 

The key components of the proposed automated tether system (Figure 2) are a 

remotely controllable robotic gripper, a power assisted tether retractor, and a hybrid 

tether that provides tensile support and carries communication signals.  The gripper 

positively engages (fully encircles) an anchor, locks without relying on system power, 

and is capable of remote disengagement.  The retractor emulates existing passive tether 

retractors (Figure 1b) and adds the capability of active tether retraction.   The retractor 

actively applies a force to the extended tether until the tether and gripper reach a terminal 

velocity, and then saves power by disengaging the drive mechanism to allow passive 

retraction. This allows continued tether retraction without consuming power or 

developing slack. The hybrid tether essentially consists of a Vectran [5] structural weave 

encasing a single-mode fiber optic core, which transmits commands to the gripper that 

are entered via a manual interface (not shown) on the retractor. 
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Figure 2. Automated tether management system. 



 

 

2. BACKGROUND AND DESIGN REQUIREMENTS 

The overall goal of the automated tether management system was to meet or 

exceed the functionality of existing tethering devices in all areas. Most design 

specifications were established by referencing NASA documents [2-4] that specify 

requirements for EVA tool performance and describe currently used tools.  Additional 

requirements were then added to provide functionality that surpasses that of existing 

flight hardware in key areas, such as automation and adaptability in allowable tether 

anchors.  Although independently derived, many of the following gripper requirements 

coincide with those set by Mahalingam et al. [6] for gripping in space. 

Throughout this work, the English system of units (ft-lbf-s) is referenced, as it is 

the standard used at NASA Johnson Space Center. 

2.1. Gripper Specifications 

Trade-offs between functionality and size were necessary to yield a suitable 

gripper design. Multiple degree of freedom (DOF) grippers provide superb functionality 

and adaptability, e.g., Biagiotti et al. [7], but also require considerable space for 

packaging actuators and sensors. Passive gripper designs, such as that of Arisumi and 

Komoriya [8], require minimal space but allow minimal control. The gripper of the 

present system was required to be an automated, stand-alone, handheld unit, so it was 
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decided to allow a maximum of one DOF while incorporating as many passive features as 

viable. 

The following requirements were established for the automated gripper in order to 

meet and exceed the performance of existing tether hooks. Many of these specifications 

are necessary in order to meet NASA standards for EVA hardware. 

2.1.1. Anchor Points 

The gripper will be capable of engaging multiple anchor points, which include 

standard EVA handrails and loops designed for existing tether hooks (see Figure 3), as 

well as the standard slidewire.  This requires the gripper to pass through and securely 

engage a loop with a 0.75 in minimum inner diameter and thickness of up to 0.5 in, as 

well as a wire with 0.125 in diameter. 

 
Figure 3. Standard EVA handrail and tether loop. 
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2.1.2. Gripping 

The gripping mechanism will incorporate positive engagement for each anchor 

with a redundant safety lock. The safety lock will include a clearly visible indication of 

lock status as well as clear indication of engagement and release procedures. Gripping to 

each anchor will be versatile, with the ability for either a loose or firm (no-slip) grip.  

Maximum clamping force will be less than 25 lbf to avoid damage to an anchor. 

2.1.3. Loading 

The anchored gripper will be capable of supporting an axial load of 400 lbf, 

which includes a safety factor of 2. The maximum load applied to an EVA handrail will 

be 300 in-lbf of torsion acting simultaneously with a 50 lbf force in any direction. 

2.1.4. Release 

The gripper will not release unintentionally. It will allow active remote release as 

well as manual contingency release. During remote release, there will be minimal force 

exerted on the anchor by the gripper, keeping the free-floating gripper relatively 

stationary until it is retracted.  

2.1.5. Ergonomics 

Manual gripper operation will require less than 30 in-lbf of torque. All forces 

required from fingers will be between 2 and 10 lbf. The handle of the gripper will have a 

minimum length of 3.75 in and will incorporate a nonslip, nonabrading surface. 
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2.1.6. Power Supply 

Power will be supplied by an internal battery pack, which will be replaceable at 

the EVA worksite by a suited crewmember. An indicator will display the level of battery 

charge. 

2.1.7. Degrees of Freedom 

The gripper will have one DOF to reduce complexity, save space, and minimize 

weight. 

2.2. Retractor Specifications 

The following requirements were established based on existing retractable safety 

tethers as well as additional features desired of the system. 

2.2.1. Loading 

The retractor will bring a 550 lb mass at 4 ft/s to a stop with mass attenuation of 

less than 100 lbf. The minimum design load will be 400 lbf. 

2.2.2. Tether Length 

The retractor will contain a tether length of at least 50 ft in order to provide 

functionality similar to existing safety tethers.  

2.2.3. Retraction 

Retraction will be passive unless a driving force is required.  Passive operation 

will be similar to existing retractable tethers, which require 0.5 lbf to extend the spring-

loaded tether and incorporate a friction brake to prevent retraction.  The brake is 

overridden and tether extension accomplished with a 1.5 lbf tether force.  The active 
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drive will automatically engage and disengage the tether reel as required.  The maximum 

retraction rate will be less than 0.5 ft/s, and maximum distance of the gripper from the 

retractor (which is fastened to the crewmember's chest toolkit) upon return will be 2 ft to 

ensure that it is within reach. 

2.2.4. Power Supply 

Power supply requirements are the same as those required of the gripper (see 

Section 2.1.6). 



 

 

3.  PROTOTYPE SYSTEM DESIGN 

3.1. Gripper Prototype 

The assembled prototype gripper is shown in Figure 2, with an exploded view 

shown in Figure 4. The housing serves as a handle for the gripper and provides structural 

support for the internal mechanism, jaws and tether.  A geared motor and a lead screw 

drive three opposing jaws via parallel coupling linkages.  The housing also contains 

batteries for powering the system and all control electronics.  Commands for opening and 

closing the gripper are received via a fiber optic core at the center of the tether or via 

tactile switches (not shown) on the handle of the gripper. 

 
Figure 4. Gripper exploded view. 
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3.1.1. Jaw Design 

A configuration of opposing offset rotating jaws was chosen in order to maintain 

a single DOF while allowing the jaws to grip objects with large variations in size and 

shape.  The jaws also open widely in a small space, which reduces alignment problems 

when approaching the object to be gripped (see Figure 5).  When closed, the offset jaws 

intermesh and surround the gripped object in order to achieve positive engagement.  The 

jaws can securely grip an anchor either loosely or firmly by partially or fully closing the 

jaws, respectively. The purpose of this is to allow, for each anchor, (1) the option of a 

sliding grip, as might be especially useful on a slide wire; (2) rotation of the gripper and 

alignment with the tether, as is especially needed when loads are applied to the tether; 

and (3) the option of a solid grip, which would keep the gripper stationary, even on a 

slide wire. Inner jaw geometry was designed such that the gripper would engage a variety 

 

Figure 5. Gripper linkage. 
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of anchors including the relatively large EVA handrail, standard tether loops, and the 

small 0.125 in diameter slide wire, which are all shown in Figure 6.  Jaw actuation is 

accomplished by parallel four-bar linkages driven by an acme lead screw (see Figure 4 

and Figure 7).  Rotation of the acme lead screw causes linear displacement of the acme 

nut, which in turn causes the coupler links to move and the jaws to rotate. The acme 

screw is self-locking, allowing the jaws to maintain position without applied power. The 

gripper thus locks passively and is designed, along with the coupling linkage (described 

below), to withstand forces at the jaws in excess of 400 lbf. 

3.1.2. Coupling Linkage 

A four-bar linkage configuration was chosen for its capability to provide 

relatively constant gripping force on various-sized anchors when properly optimized. The 

goal of the linkage optimization was to obtain a maximum yet uniform force 

magnification factor for a variety of anchors while limiting the required travel of the lead 

screw.  This force magnification factor, XFmag, is defined as the ratio of the maximum 

force exerted by the jaws, Fjaw, on an anchor to the linear force exerted by the acme nut, 

 
Figure 6. Range of gripper applications. The variable effective moment arm, r, is shown. 
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Fnut, or using terms defined in Figure 5 and Figure 7, 

 2 cos cosjaw
Fmag

nut

F LX
F r

α β= =  (1) 

where 

 
22 2 2

1 1 2 0

1 2

( )sin
2

L L x x d
L L

β − ⎛ ⎞+ − − −
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 (2) 

and 

 1 1 2
2 2

0 0

costan sin
( )

d L
x x x x d

βα − −
⎛ ⎞⎛ ⎞
⎜ ⎟= − +⎜ ⎟ ⎜ ⎟− − +⎝ ⎠ ⎝ ⎠

. (3) 

 

Figure 7. Parameters that determine grip properties. 
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The challenge is that the maximum jaw moment arm acting on large objects, such 

as the EVA handrail (r, Figure 6a), is larger than the moment arm acting on small objects, 

such as the slide cable (r, Figure 6c).  A constant maximum torque applied to the jaws for 

gripping all anchors could result in crushing of some anchors and loose gripping of 

others. Avoiding this was the motivation for selection of four-bar linkages, which were 

then optimized using constrained gradient-based techniques [9] to find the optimal 

configuration for gripping several different sized objects.  As shown in Figure 5, the 

parameters varied during the optimization included the horizontal separation, d, between 

the jaw pivot and acme nut pivot, the length L1 of the coupling link, the length L2 

between the jaw pivot and connection to the coupler link, and the initial angle λ0 

describing the fully-open angular position of the jaw relative to vertical.  A composite 

cost function, F, was minimized, which is a 2-norm that includes weighted force 

magnification factors for four different anchors and the weighted maximum nut travel 

distance, D, 

 
4

2 2

1
i i D

i

F W f W D
=

= +∑  (4) 

where 

 ( )2i Fmag i
f X= − . (5) 

In the minimization function, (5) was used for each anchor since the goal was to 

maximize all values of XFmag while finding relatively constant values for all anchors.  

Geometry allowed the possibility of values of XFmag greater than 1, so in order to assure 
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maximization, a 2 was used in (5).  The factors iW  are weightings for respective elements 

of the optimization and are described below. 

The anchor cross sections included in the optimization were the EVA handrail, a 

0.75 in diameter round, a 0.50 in round, and a 0.125 in round.  For geometric and 

packaging purposes, the parameters were constrained such that 

 

0

1

2

10 180

0.1 2 in
0.94 2 in
0.5 0.35 in

toggle

L
L

d

λ λ+ ≤ ≤

≤ ≤

≤ ≤

− ≤ ≤

 (6) 

where λtoggle is the angle describing the toggle position of the linkage.  The constraint 

involving this value prevents the coupling linkage from passing through its toggle point 

and folding inwardly and provides an acceptable mechanical advantage at the fully open 

position of the jaws. 

Starting the optimization from multiple initial configurations and weightings 

reliably indicated that the optimum configuration was described by 

 0 1 20.29 rad 2.0 in 0.94 in 0.35 inL L dλ = = = =  

which results in a maximum nut travel, D, of 1.73 in and a value of 2.9 in for x0 (see 

Figure 7).  This configuration is the result of all four optimized parameters lying at the 

bounds of their respective constraints.  The weighting factors W1-W4 had no effect on the 

results of the optimization, but values of WD between 1 and 0.05 resulted in the length of 

link L2 ranging from its lower bound of 0.94 in to 1.35 in.  This slightly increased the 

values of XFmag for all anchors due to the increased moment arm about the jaw pivot, but 
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did not appreciably change the relative ratios.  This increase in XFmag came at the cost of 

an increase in D as well, which ranged from 1.73 in to 2.5 in for the above values of WD.  

Minimizing the packaging size of the already relatively large gripper was a high priority, 

so the weight WD was kept at a value of 1, which minimized the lengths L2 and D.  

Resulting gripping properties for several anchors are summarized in Table 1.  The 

comparison in Figure 8 of XFmag for these anchors shows that the linkage optimization 

was successful in obtaining relatively constant values for several anchor sizes. 

In Figure 9, angular jaw position is plotted against linear displacement of the lead 

screw nut for the optimized linkage described above.  This plot shows that in addition to 

achieving a relatively consistent value of XFmag for each anchor, the linkage provides a 

roughly linear relationship between the angular motion of the gripper jaws and the linear 

motion of the lead screw nut.  This is beneficial from a controls standpoint, since there 

are no regions of appreciable jaw acceleration when the motor is moving at a constant 

speed.  The open-loop behavior of the jaws is intuitively predictable by a typical user, 

with the only significant accelerations of the jaws occurring when actuation is engaged or 

Table 1.  Gripping characteristics for various anchors. 
 

Anchor Moment Arm, 
 r (in) 

Nut Disp., 
 x (in) 

Max Grip Force, 
Fjaw (lbf) XFmag 

EVA Handrail 1.27 0.98 16.9 0.676 

0.75 in round 1.19 1.26 15.8 0.632 

0.5 in round 0.725 1.43 22.6 0.905 

0.5 in square 0.728 1.47 21.6 0.865 

0.25 in round 0.685 1.62 18.7 0.747 

0.125 in round 0.642 1.73 15.3 0.614 
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Figure 8. Force magnification factors, XFmag, for several anchors. 

 
Figure 9. Angular jaw position vs linear acme nut position. 
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disengaged.  If closed-loop control were implemented, no major considerations would be 

required to account for nonlinear behavior between the nut and the jaws.  The influence 

of various values of the optimization weighting factor WD on the shape of the curve of 

Figure 9 was examined to determine their effects.  It was found that with values of WD 

larger than 1, the curve became less linear, which gives additional motivation for the 

choice of WD as 1. 

3.1.3. Actuation 

Actuation of the gripper is accomplished with a 2.3 watt MicroMo 1528-012BRE 

brushless DC servo motor with integrated drive electronics, which is suitable for use in a 

vacuum. It is identical to the motor used in the retractor.  The motor is fitted with a 14:1 

planetary gearbox (MicroMo 16/7), and drives the 0.375 in, 12 thread-per-in, single-lead 

acme screw through a 3.75:1 secondary gear stage. Maximum gripping force is 

approximately 23 pounds on the 0.5 in round, and the designed maximum closing time is 

approximately 4 s on the 0.125 in round. 

3.2. Retractor Prototype 

The prototype retractor is shown in Figure 2, with an exploded view in Figure 10.  

The housing top and bottom plates and midsection contain and provide support to the 

internal mechanism of the device.  A spiral spring and a geared motor provide passive 

and active retraction actuation, respectively, with a clutch mechanism to switch between 

modes as required.  Commands are sent across the tether from the retractor to the gripper 

via a fiber optic transmitter coupled to a commutator plate that allows communication 



 19

between stationary circuitry within the retractor body and the rotating tether on the reel.  

Batteries and control electronics are also contained within the unit. 

3.2.1. Passive Actuation 

Spring retraction and a friction brake provide the retractor with passive behavior 

that is designed to emulate existing retractable safety tethers.  A long coil of 0.015 in x 

0.125 in spring steel (not shown) provides a relatively constant tether retraction force of 

approximately 0.5 pounds.  Retraction can be prevented by applying a brake, which 

consists of a spring-loaded friction pad that rubs on the side of the reel.  Similar to the 

retractable safety tether currently in use (see Figure 1b), extension of the tether is still 

possible once the brake is applied, but a sufficient tether force, adjustable between 0.5 

and 2.0 pounds, must overcome the friction. 

3.2.2. Active Actuation 

The drive motor and worm gearing provide active functionality to the retractor.  A 

MicroMo 1528-012BRE DC brushless motor with a 14:1 planetary gearbox is used, 

 
Figure 10. Exploded view of retractor. 
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which is identical to the motor that powers the gripper. A worm gear on the motor shaft 

mates to a worm wheel that is rigidly coupled to the drive shaft. The drive shaft passes 

through and supports the reel on its bearings and is in turn supported at its ends by 

bearings pressed into the housing top and bottom plates.  With a single-lead worm stage 

and 40:1 reduction, active actuation is designed to apply a maximum tether retraction 

force of 3.8 lbf with a terminal velocity of 0.4 ft/s. 

3.2.3. Clutch Mechanism 

The clutch mechanism shown exploded in Figure 11 allows switching between 

modes of passive and active actuation.  When engaged, the clutch transmits torque from 

the motor to the reel.  When the clutch is disengaged, the reel is free to rotate 

bidirectionally relative to the drive shaft via the reel support bearings, allowing it to be 

driven by the spring. 

The clutch housing envelops the clutch cam and provides retaining slots to 

support the clutch keys as seen in Figure 12a.  The clutch cam is rigidly fixed to the 

 
Figure 11. Exploded view of clutch components. 
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driveshaft, so when the drive shaft rotates, the cam turns relative to the clutch housing, 

and the thrust surfaces of the cam force the clutch keys outward against the reel (Figure 

12b).  If the keyways are misaligned (Figure 12c), the clutch housing rotates with the 

clutch cam until the keyways are aligned with the clutch keys.  Once oriented, the clutch 

keys fully engage the keyways in the reel (Figure 12d), which allows the motor to drive 

the reel. 

The drive system disengages when the motor is deactivated or the spring-loaded 

reel turns faster than the terminal speed of the motor.  This causes the clutch cam to rotate 

relative to the clutch housing until the fingers engage the key pockets (Figure 13a-c).  

The clutch cam continues to rotate until the keys are completely disengaged (Figure 13d), 

and the reel is allowed to rotate independent of the motor.  The spring-loaded reel can 

 
Figure 12. Clutch engagement process. 

 
Figure 13. Retractor clutch disengagement. 
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then passively retract the tether, preventing excess tether from accumulating in the 

workspace and permitting power consumption to cease. 

3.3. Multifunctional Tether and Communications 

A sample length of tether was acquired for prototyping that had similar 

dimensions as that specified for the system, but had differing materials and load 

capabilities.  It is a 0.118 in composite cord that incorporates both tensile structural 

support and communication transmission.  At the core of the tether is a single-mode fiber 

optic element within a protective plastic jacket.  Surrounding this core is an aramid yarn 

that provides a rated structural strength of 40 lbf and a polyurethane outer coating that 

contains and provides protection for the aramid fibers and fiber optics [5].  The rated 

bend radius of this tether is 1.18 in.  Although the load limitations of this particular tether 

preclude its use in a safety tether system, it served as an effective low-cost substitute with 

properties indicative of the tether of similar construction that was specified for the 

system. 

Commands are transmitted from the retractor to the gripper via the fiber optic 

element at the core of the tether.  This mode of communication was selected because of 

challenges in the operating environment.  Radio communication is not practical due to a 

lack of available frequencies, infrared transmissions are affected by extreme variations in 

light levels and blockage of line-of-sight, and long conductors traveling at high velocities 

through Earth’s magnetic field can produce voltages that may damage motors and 

electronics. 

A commutator plate and brushes within the retractor allow an infrared transmitter 

mounted within the rotating reel to transmit commands from stationary circuitry within 
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the retractor body.  To limit sensitivity to noise, allow multiple command transmission, 

and prevent false command transmission, a signal encoder/decoder pair is used.  The 

encoder interfaces with tactile switches at the retractor and encodes signals on a 38kHz 

carrier wave.  Commands are transmitted by the infrared emitter through the fiber optic 

cable to a receiver at the gripper, where they are decoded and executed, allowing remote 

gripper release and subsequent retraction.  The transmitter and receiver are Industrial 

Fiber Optics, Inc. models IF-E96 and IF-D96, respectively. 



 

 

4. SYSTEM DYNAMIC MODELS 

A dynamic model of the automated tether system was constructed and simulated 

in order to predict results of testing as well as to investigate orbital effects that cannot be 

readily tested on earth.  An inertial field model was first derived that serves as a basis for 

more detailed modeling and gives initial indication of retraction dynamics.  Translation 

and rotation of the gripper in two dimensions were modeled in order to provide insight 

into the dynamics of the current system as well as to verify results of tests to be 

performed with the system, which were necessarily conducted in a two-dimensional 

inertial frame (see Section 5 for information on system testing).  An orbital model was 

then developed in order to describe the dynamics that would occur in a system that is in 

orbit around the earth.  Equations of motion were derived using Lagrange’s equations 

[10] with the application of simplifying assumptions as described in the following 

sections.  

4.1. Inertial Field Model 

Dynamic equations of motion for spring-assisted retraction of the system in an 

inertial field served to provide initial insight into the dynamics of the tether system as 

well as to verify results of retraction tests to be performed on the system.  In this 

derivation, the tether is assumed to be massless and taut at all times, which allows 

modeling of the coil spring and tether collectively as a massless linear spring and neglects 
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any dynamics of the tether itself.  This is justified under the assumption that the tether has 

little mass relative to the gripper and exerts negligible forces on the device.  Non-

conservative forces are assumed negligible since they would result only from friction in 

the retractor when operated in microgravity. 

The system is referenced in the polar coordinate system shown in Figure 14 with 

the retractor placed at the origin (point O) and the tether attached to the gripper at point 

A.  The kinetic and potential energies for the system are expressed respectively as 

 ( )2 2 2 21 1
2 2g c c gT m r r Jθ φ= + +� ��  (7) 

 ( )20
1
2 TV k r r= +  (8) 

where gm  and gJ  are the gripper’s mass and rotational inertia about its center of mass, k 

approximates the stiffness of the retractor spring, c cr r=  is the distance from the center 

 

Figure 14. Gripper diagram in an inertial field. 
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of mass of the gripper to point O, T Tr r=  is the length of extended tether, and 0r  

provides for the preload of the spring when fully retracted. 

The vector Tr can be determined by 

 cT offr r r= −  (9) 

which allows expression of the potential energy stored in the spring as 

 ( )( )22 2
0

1 2 cos
2 c cV r l r l rφ θ= + − − +  (10) 

where offl r=  is the offset distance between the attachment point of the tether and the 

center of mass of the gripper. 

With kinetic and potential energies known, the Lagrangian can be calculated by 

 L T V= − . (11) 

With non-conservative forces ignored, the Lagrange equations of motion are then found 

by 

 0
i i

d L L
dt q q

⎛ ⎞∂ ∂⎟⎜ − =⎟⎜ ⎟⎟⎜ ∂ ∂⎝ ⎠�
 (12) 

where { }, ,cq r θ φ= .  The resulting equations of motion are then 
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4.2. Orbital Field Model 

The purpose of orbital simulations of the system is to explore the dynamic effects 

of on-orbit retraction of the gripper.  The gripper is treated as a particle since it is desired 

to find the relative translation induced in the gripper due to coriolis effects.  The gripper 

is described in the reference frame of the astronaut, which rotates during orbit in order to 

maintain a constant orientation relative to the surface of the earth.  This orientation of the 

orbiting frame was chosen since it describes the orientation of the International Space 

Station, which has the same side facing the earth at all times.  The astronaut faces the 

gripper at the beginning of retraction, but does not rotate to follow the gripper during 

retraction.  The retractor is assumed to be rigidly fixed to the astronaut, and any forces 

exerted on the relatively massive crewmember due to retraction of the gripper are 

neglected.  The tether and spring are again modeled collectively as a massless linear 

spring, which requires the tether to be massless and taut at all times.  It is also assumed 

that the crewmember is traveling in a planar, circular orbit, which implies constant 

velocity and altitude.  The altitude of the crewmember’s orbit is approximately that of the 
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International Space Station (~240 mi) with a sustaining speed that balances gravitational 

and centrifugal forces, or 

 
( )22

2
eA A AA A A

A A A

m rm Gm m
r r r
v θ
= =

�
 (14) 

where em  and Am  are the masses of the earth and the astronaut, respectively, Ar  is the 

distance from the center of the earth to the astronaut, Aθ�  is the angular speed of the 

astronaut’s orbit, and Av  is the linear speed of the astronaut. 

 For calculation of the kinetic and potential energies, the gripper is referenced in 

the coordinate frame 1 2 3ˆ ˆ ˆ, ,e e e  shown in Figure 15, where 1̂e  remains parallel to cr  and 

3 1 2ˆ ˆ ˆe e e= × .  The position vector of the gripper is then 

 ( ) 1 2ˆ ˆcos sincG A Ar r r e r eγ γ= + −  (15) 

where cr  and Ar  are the respective magnitudes of the vectors cr  and Ar . 

 
Figure 15.  Diagram of system in an orbital frame. 
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For the sake of simplicity, gravitational potential energy is defined in terms of the 

acceleration due to gravity at the altitude of the astronaut, which is derived from 

Newton’s law of gravitation, 

 1 2
2g

Gm m
F

r
= . (16) 

Using Equations (14) and (16), the acceleration due to gravity as seen by the astronaut 

can then be described as 

 2
2 28.55 ft/se

eff A A
A

Gmg r
r

θ= = =�  (17) 

which is valid under the assumption that the maximum 50 ft difference in altitude 

between the astronaut and gripper results in a negligible difference in gravitational 

attraction to the earth. 

The expression for kinetic energy of the gripper is then 

 ( ) ( )22 21 2 cos 2 sin
2 g c c c cA A A A A A A AT m r r r r r r rθ γ θ γ θ γ θ γ θ⎡ ⎤= + + + + + +⎢ ⎥⎣ ⎦

� � � � �� �� � (18) 

where gm  is the mass of the gripper.  The potential energy is the sum of the potential 

energy due to the spring and that due to the force of gravity, 

 ( )2 2 2
0

1 2 cos
2 c g c ceff A AV k r r m g r r r r γ= + + + +  (19) 

where Gr  of (15) describes the gripper height for determination of gravitational potential.  

With the kinetic and potential energies known, the Lagrangian can be calculated from 

(11). 
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As described in Section 4.3.1, the results of inertial frame dynamic simulations 

revealed that even a very weak spring would accelerate the gripper to dangerous 

velocities, so velocity damping of the retraction was implemented.  Although this 

damping force would in reality be applied to the retractor reel, it is modeled as applied to 

the gripper for the purpose of simplification.  This introduces a nonconservative force 

into the system, so the form of the Lagrange equation that must be used is 

 ,
1

  
N

j
nc j

i ij

rd L L F
dt q q q=

∂⎛ ⎞∂ ∂⎟⎜ − =⎟⎜ ⎟⎟⎜ ∂ ∂ ∂⎝ ⎠ ∑ i�  (20) 

where { },cq r γ= .  The only nonconservative force in the system is that due to 

damping, 

 1̂nc cF Br e= − �  (21) 

where B is a damping coefficient.  The vector jr  in (20) that describes the point of 

application of this force is simply the position vector of the gripper relative to the 

astronaut, 

 1̂c cjr r r e= = . (22) 

The final equations of motion for the orbital model are 
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4.3. Simulation Results and Discussion 

4.3.1. Inertial Field Model 

Simulations run with the inertial field model immediately indicated that pure 

spring retraction is not feasible due to the large speeds induced by the continuous force 

applied to the free-floating gripper.  According to these simulations, if the 0.015 in thick 

spring were used that provides the design force of relatively constant 0.5 lbf, the gripper 

would be accelerated to a speed of 22 ft/s when retracted from a distance of 50 ft.  Even 

with a much smaller spring of thickness 0.007 in, which provides roughly 1/10 the force 

of the 0.015 in spring, the gripper would be accelerated to a speed of 7.6 ft/s.  It is 

therefore clear that simple spring retraction is not a satisfactory method of gripper 

retraction.  One solution to this problem is the inclusion of velocity damping to the 

retractor reel to prevent retraction speeds from becoming large.  This addition of damping 

was explored in the orbital model and results are described below in Section 4.3.2. 

Although pure spring retraction was found to be much too strong for safety, the 

results from the inertial-field model provide insight regarding the dynamics inherent to 

the system.  Figure 16 shows the path of the gripper as well as schematics of its position 

and orientation at regular intervals during three cases of retraction with the smaller 0.007 

in spring.  It is shown that with angular misalignments of π/4 rad, the gripper undergoes 

multiple, increasing angular oscillations that grow as large as 1.5 rad with angular 

velocities as high as 2.7 rad/s.  These effects are due to the offset between the gripper's 

center of mass and tether attachment point.  The oscillations of the gripper are likely to be 

strongly influenced by properties of the tether and are apt to induce waves in the tether.  

This indicates that neglect of tether dynamics introduces a large amount of error into the 
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system model.  The length of tether was restricted to 20 ft in this simulation because with 

an initial lateral speed of 0.45 ft/s (cases A and C), the drift of the gripper upon arriving 

at the y axis was within the 2 ft limit defined in Section 2.2.3.  The speed limit of 0.5 ft/s 

is, however, violated by speeds of approximately 4.7 ft/s, and will be addressed in the 

following section as results of velocity damping are introduced. 

4.3.2. Orbital Model 

The results of the orbital simulations are transformed to the reference frame of the 

astronaut, 1, 2,ˆ ˆ,A Ae e , shown in Figure 17.  The astronaut faces in the direction of the 

vector 1,ˆ Ae , which is described by the initial angle 0γ , throughout the retraction of the 

gripper.  This means that the astronaut faces the gripper at the beginning of retraction and 

does not rotate to follow it as it retracts.  The transformations 

 
Figure 16. Simulation results with 0.007 in spring in an inertial reference frame with 

various initial conditions. 
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are used to place the gripper in a cartesian reference frame relative to the astronaut. 

Simulations of the system in orbit showed that coriolis acceleration significantly 

influenced the behavior of the gripper during retraction.  Figure 18 shows results of 

retraction of the gripper from a distance of 50 ft along the 1,ˆ Ae  axis with a 0.007 in spring 

and sufficient damping to keep the gripper within the 0.5 ft/s speed limit when it reaches 

the astronaut.  While this damping keeps the gripper within safe speed limits, retraction 

from this distance allows coriolis effects to cause the gripper to drift laterally until it is 

more than 6 ft from the astronaut when it reaches the 2,ˆ Ae  axis.  It should be noted that 

the slowing of the gripper shown in this figure is due to modeling error and is addressed 

below. 

The retraction characteristics shown in Figure 18 indicate that retraction of the 

gripper from a distance of 50 ft is not possible without violating either the speed or drift 

 
Figure 17. Orbital model including astronaut's reference frame. 
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constraints set forth in Section 2.2.3.  The amount of drift shown in Figure 18 can be 

rectified by decreasing velocity damping, but the gripper would return to the astronaut at 

a speed that violates the safety constraint of 0.5 ft/s.  These results indicate that there 

exists a maximum distance from which the gripper can be safely retracted for given 

spring or damping characteristics.  Figure 19 shows the simulated paths and velocities of 

the gripper when retracted from maximum allowable distances for both the 0.015 in and 

0.007 in springs.  In both cases, the lateral drift upon return is 2 ft and the maximum 

speed reached by the gripper is 0.5 ft/s.  Under these constraints, the maximum safe 

retraction distance was found to be 25.9 ft and 28.5 ft for the larger and smaller springs, 

respectively.  The times required to retract the gripper from these distances were 76.9 s 

and 85.1 s, respectively.  These plots show that the combined effects of the spring and 

 
Figure 18. Coriolis effects on gripper position and velocity when retracted with damped 

0.007 in spring. 
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damping cause the gripper velocity to quickly increase to a peak value (points A), and 

then decrease until it approaches the astronaut, where it increases once more due to its 

being pulled in from its deviating path by the taut tether.  The trajectory plots show that 

the gripper drifts away from the 1,ˆ Ae  axis on which the tether was initially aligned, then 

as it approaches the astronaut, the retraction force vector from the taut tether approaches 

a direction that is normal to the path, and it is accelerated towards the crewmember. 

This gripper velocity response indicates significant errors introduced by the 

simplifications that were applied to the model of the system.  Since the derived equations 

describe the motion of the gripper, a damping force can be applied only to the gripper 

rather than to the retractor reel.  The gripper's velocity could not appreciably decrease in 

microgravity unless the tether was stiff enough to withstand significant compressive 

forces without buckling.  After reaching the initial peak in velocity (points A), the gripper 

 
Figure 19. Optimal retraction trajectories and speeds for 0.015 in spring and 0.007 in 

spring. 



 36
will in reality continue at this speed while the retraction of the tether slows under the 

influence of the damped, decreasing spring force applied to the reel, which results in a 

loose tether.  In addition, the acceleration occurring in the simulation as retraction 

finishes is due to a taut tether accelerating the deviating gripper towards the astronaut.  If 

the tether became loose as described above, the assumption of a taut tether would be 

violated and this acceleration would not occur, resulting in additional drift of the gripper 

upon reaching the 2,ˆ Ae  axis and a possible continuation of decelerating tether retraction.  

It is again evident that tether properties must be included in modeling in order to produce 

results that give a clear picture of the dynamic characteristics of the system. 

The retraction behavior of the gripper was found to be independent of the value of 

0γ .  Each orbital simulation scenario described was run with 0γ  varying between 0º and 

360º at 1º increments.  Upon comparing the results of these 360 simulations for each 

scenario, the maximum difference of any one point in the 1,Ar  vs 2,Ar  plot was found to 

be less than 1.25 in, which can be attributed to numerical simulation error.  This result is 

interesting in that the gripper will behave the same from the veiwpoint of the astronaut 

(within the orbital plane), no matter what direction the astronaut faces. 

4.3.3. General Discussion of Simulation Results 

Simulation results showed that spring retraction, as designed, brings the gripper to 

dangerous speeds when retracted over any appreciable distance.  With a relatively 

constant force of this magnitude applied to the gripper, it continuously accelerates over 

the entire distance of retraction.  Velocity damping restricts this force when undesirable 

speeds are reached, but as the orbital simulations showed, the effect of a spring force that 

decreases as the tether retracts together with a constant damping coefficient result in 
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deceleration of the reel after the initial peak velocity is reached.  Since the gripper cannot 

be slowed by the tether, it will overtake the tether and may return to the astronaut while 

the tether continues to retract.  This is likely to cause additional lateral offset as the 

gripper returns.  Since the tether is not taut as the gripper approaches the astronaut, it 

cannot cause the path correcting acceleration toward the astronaut that is seen in Figure 

19 at points B. 

A solution to this problem would be a truly constant-force spring or a spring that 

applies a slowly increasing force as the tether is retracted.  A damped, constant-force 

spring would keep tether retraction at a constant maximum speed and prevent loose tether 

from accumulating as the gripper travels to the astronaut.  A damped increasing-force 

spring would likely be more desirable.  In this case, the gripper would be quickly brought 

to a certain speed, and then continually accelerated at a very slow rate, keeping it under a 

degree of control of the slightly taut tether.  Figure 20 shows the retraction characteristics 

of both a damped constant-force spring and a damped increasing-force spring.  The 

constant-force scenario requires the least time of the two since the gripper travels at a 

higher speed for a longer period of time, but the validity of the assumption of a taut tether 

is less sure since there is less acceleration after the initial peak.  There is some 

acceleration of the gripper due to its deviation from the 1,ˆ Ae  axis, which may provide 

sufficient control, but a more detailed model that includes tether properties is needed in 

order to find an optimal retraction profile.  Of the options explored thus far, the damped 

increasing-force spring scenario is the preferred method of retraction.  Tension is 

maintained in the tether throughout retraction, which provides the maximum amount of 

control possible when using a single extended cable.  The maximum allowable retraction 



 38

distance is also the greatest of all current options, as shown in Figure 20, which shows a 

maximum distance approaching 30 ft for the damped increasing-force retractor spring. 

Tether characteristics were found to be important in describing the dynamics of 

the system during retraction.  The inertial frame results showed that when the gripper is 

not aligned with the tether when released, multiple angular oscillations result, which 

would cause significant interaction between the gripper and the tether.  In the case of the 

orbital simulations with simple coil springs, tension in the tether was not maintained, and 

the gripper overtook the tether as the retractor reel slowed.  In order to more fully 

understand the dynamics of the gripper when retracted, properties of the tether must be 

taken into account.  The tether that was chosen for the current system is a multilayered 

composite with highly complex static and dynamic properties, and modeling of this 

magnitude is beyond the scope of the current research. 

 
Figure 20. Hypothetical retraction profiles. 
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Coriolis acceleration was found to have significant impact on the behavior of the 

gripper during in-orbit retraction.  This acceleration caused lateral drifting of the gripper 

relative to the viewpoint of the astronaut that is unacceptable when retracted from a 

distance of 50 ft.  It was therefore determined that use of the automated tether system on 

orbit would require restriction of the maximum tether length to be somewhat less than 50 

ft.  The actual maximum allowable tether length cannot be determined with the present 

model due to the error introduced by simplifying assumptions.  Aside from causing 

lateral offset of the gripper upon return to the astronaut, coriolis acceleration also 

introduces the possible danger of unexpected collisions of the gripper with other objects 

as it retracts.  Rebounding of the gripper after a collision is highly random and would 

produce largely unpredictable dynamics. 

Finally, it should be noted that these simulations assume no disturbances seen by 

the gripper during retraction.  Since the gripper can be controlled only with tensile force 

from the tether, a collision or other disturbance that applies forces in any direction other 

than against the tether cannot be counteracted and would have significant influence on 

the dynamics of the gripper.  A margin of safety that reduces the maximum length of 

tether will likely be needed to allow for disturbances in order to be statistically confident 

that the gripper will travel at safe speeds and be within reach of the astronaut upon return. 



 

 

5. SYSTEM TESTING 

Experimentation with the automated tether system was important in order to 

verify design specifications and reveal potential problems in the system that were not 

foreseen during design.  Capabilities of both the retractor and gripper were measured and 

compared to designed specifications. The fully assembled system was also tested using 

an air bearing facility, which served as a simulation of microgravity in two dimensions. 

5.1. Experiment Design 

Experiments were designed to provide key information about each component of 

the tether system in order to evaluate system capabilities.  Digital video was the primary 

form of acquired data due to its high data density and relative ease of capture.  Visual 

displays relayed information to the video from sensors measuring values such as voltage, 

current and tether force. Tether forces were measured with a 25 lbf capacity FUTEK 

tensile/compressive force sensor. Tether length measurements were taken by placing 

visible marks on the 45 ft tether at 3 in increments and later taking measurements via 

video analysis. 

5.1.1. Gripper Test Design 

The initial tests performed on the gripper were of qualitative functionality.  These 

tests included grasping ability with the main anchors targeted for the device, namely the 

standard tether loop and EVA handrail.  The gripper was tested with each of these 
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anchors to define the maximum allowable misalignment for a successful grip as well as 

the amount of gripper movement that a loose grip would permit. 

Tests of controls of the gripper mainly entailed measurements of open and close 

time and amount of overshoot.  The gripper cover plate was removed to expose the inner 

mechanism and give more visual reference for video analysis.  Since no loads were 

applied to the jaws, the remaining housing provided sufficient support to the jaws and 

inner mechanism, which avoided significant alteration in performance.  The jaws were 

fully closed and opened several times at various motor voltage levels while recording 

with video to measure the open and close times and amount of overshoot after motor 

deactivation. 

An air bearing table was used to conduct further gripper tests designed to help 

determine the dynamics induced by release from an anchor in microgravity.  The virtually 

friction-free surface of the air bearing table simulated this environment in two 

dimensions.  The table was a 4 ft x 8 ft x ~1.5 ft slab of granite machined to an ultra-flat 

surface and leveled to within a slope of 2x10-5, which created a nominal 20 µg 

environment.  Levitation was achieved with an 8 in diameter air bearing (see Figure 21a) 

that consisted of aluminum honeycomb sandwiched by two circular, highly smooth glass 

plates [11].  A single orifice in the center of the bottom plate provided a maximum of 

approximately 0.0002 to 0.0004 in of levitation by expelling gas that was stored in a 

lightweight onboard aerosol canister.  A flow control nozzle allowed approximately 3 

minutes of useful levitation after filling the canister with gaseous difluoroethane (Dust-

Off®, [12]) to a pressure of approximately 72 lbf/in2. In order to minimize unwanted 

disturbances during testing, a phototransistor circuit that was controlled with direct 
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incandescent light was used to activate and deactivate the gripper.  Figure 21b shows the 

gripper on the air bearing together with the gas reservoir and required control electronics.  

A similar air bearing facility setup was used for initial prototype testing of a free-flying 

inspection robot for space, AERCam [13], which is currently under development by 

NASA. 

In order to study the amount of translation and rotation induced by release, the 

gripper was secured to the tether loop and the handrail in three orthogonal orientations. 

The gripper was then opened and released several times from each anchor in each 

orientation and the resulting behavior was recorded via video.  

5.1.2. Retractor Test Design 

The initial tests performed for characterizing the retractor were of general 

suitability, such as winding characteristics and capacity of tether containment. Since the 

retractor lacks a method of guiding the tether onto the reel, it was important to determine 

the need for such a feature. Also, the retractor reel was initially designed to contain a 

 
Figure 21. Air bearing equipment for gripper testing. 
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tether length of 50 ft, so this ability was tested.  The tether was fully extended and then 

retracted using the motor drive with varying amounts of resistive tension.  For each test, 

when the wound tether on the reel began binding against the retractor housing (taken to 

signify the maximum capacity of the reel), the length of retracted tether was recorded.  

Throughout all retractor tests, the reel was observed in order to qualitatively determine 

the winding density.  This was possible by using the partial housing midsection shown on 

the retractor in Figure 22, which allowed observation of the reel without affecting 

winding performance. 

Retraction force profiles for both the spring and motor were obtained using 

information from the FUTEK force sensor as shown in Figure 22.  The sensor was 

secured at each end with pin joints to avoid unwanted torques.  The retractor and sensor 

both rested on a bearing material consisting of a mixture of miniature plastic balls 

(diameter ≈ 0.024 - 0.037 in) and cornmeal [14] to minimize force contributions of static 

 
Figure 22. Experimental setup for force capabilities of retractor. 
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friction.  The tether was fully extended, then retracted and stalled at each of the 3 in 

tether marks until the filtered force sensor reading settled.  Although the motor of the 

retractor would not likely be stalled when used as an active safety tether, stall forces are 

readily measurable and provide information about maximum motor capabilities.  Also, if 

the system were used for antagonistic parallel wire manipulation, motor stalling data 

would be important for defining system behavior and capabilities. 

Retraction speed capabilities of the retractor motor were measured at several 

motor voltage levels by fully extending the tether and video-recording retraction until 

initial binding of the tether on the retractor housing was observed.  The markings on the 

tether combined with timing information on video allowed generation of a retraction 

speed profile.  During retraction, the tether was guided by hand at a distance of 

approximately 3 ft from the retractor in order to align it with the retractor and introduce 

as little force on the tether as possible. 

5.1.3. Full System Retraction Tests 

In order to better understand retraction dynamics of the full tether system, and to 

verify simulation results, retraction performance was tested on the air bearing table used 

for gripper testing. The system was fully assembled and the gripper was secured to an 

anchor while being levitated by the air bearing. The gripper was then opened and 

retracted approximately 27 in by the retractor under both active and passive modes. Tests 

were performed with and without initial tension applied by the retractor, and at various 

angles of alignment between the gripper and the tether. 
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5.1.4. Communications Testing 

In order to focus experimental efforts on the mechanical aspects of this system, 

testing of communications between the retractor and gripper was not conducted.  Fiber 

optic communication is widely used in industry and it was taken for granted that a system 

could be developed that would be appropriate for the automated tether system.  Primary 

electrical components were selected and required space was reserved within each device, 

but actual implementation of the communication function was forgone. 

5.2.  Experimental Results and Discussion 

5.2.1. Gripper Results 

The gripper interfaces well with the targeted anchors. The jaws mate well with the 

shape of the handrail, providing an extremely firm grip, and as long as the jaw tips reach 

past the far side of the handrail without interference, the jaws automatically align the 

gripper for a proper grip when closing. Similarly, the only mechanical requirement for a 

suitable grip on the tether loop is that the jaw tips pass through the center of the loop. A 

loose grip on the handrail is fairly restrictive but a loose grip on the tether loop is very 

flexible when the jaws are oriented as shown in Figure 6b.  The maximum range of 

angular movement with a loose grip is 26º on the handrail and 162º on the tether loop.  At 

full motor voltage of 12 V, minimum close time was 2.8 s for the handrail, 3.3 s for the 

tether loop, and 5 s for full closure, which is acceptably close to the original design goal 

of 4 s for full closure. 

Since there is currently no feedback control implemented for the gripper, the 

amount of overshoot seen after cutting motor power was measured.  When operating at 

steady state speed at the full motor voltage of 12 V, the significant amount of rotational 
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inertia inherent to the geared motor, lead screw, and secondary gearing caused the lead 

screw nut to continue traveling an average of 0.088 in after cutting power, as seen in 

Figure 23, where the time of 0 s represents the instant of turning off the motor power.  On 

average, the nut settled to within 95% of this value in 0.427 s.  Figure 23 shows the 

average response of 16 test runs of both opening and closing the gripper at full power, 

bracketed by the 95% confidence intervals of the raw data.  Due to the characteristics of 

the four-bar linkages described by Equations (2) and (3), the maximum angular overshoot 

of the jaws occurs at the fully open and closed positions, with respective values of 14° 

and 12°.  Although these are the maximum values at the limits of the lead screw motion, 

typical values of overshoot over the majority of the jaws' range of motion were between 

5° and 8°. 

Using the air bearing facilities, the dynamics induced by release of the gripper 

 
Figure 23. Overshoot of gripper lead screw nut at full motor power (12V). 
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from an anchor were recorded in three orthogonal planes. Small amounts of translation 

and rotation resulting from the dynamics of the gripper’s internal mechanism were 

measured when it was released alone from an anchor.  As described in the following 

section, it was found that these small dynamics were insignificant in relation to other 

effects, such as tether forces, and were thus not analyzed in detail. 

5.2.2. Discussion of Gripper Results 

Interfacing of the gripper with the tested anchors met and exceeded expectations.  

The main result obtained was that the EVA handrail is much better suited for a tight grip 

while the tether loop is best suited for a loose grip.  As shown in Figure 6a, the gripper 

jaws interface closely with the outer contour of the EVA handrail, providing a very solid 

engagement.  When loosely interfacing with a tether loop, as shown in Figure 6b, large 

amounts of rotation are possible, which allows alignment of the gripper with the tether 

even when the tether is oriented parallel to the supporting surface of the tether loop.  The 

result is a reduction in the possibility of unacceptable moments applied to the tether loop.  

The lead screw is a successful locking mechanism that fully prevents backdriving of the 

jaws and contributes to the strength of grip possible on the handrail. 

Some drawbacks inherent to the gripping properties of the gripper have been 

identified.  When gripping the handrail firmly, large moments can be introduced to the 

handrail due to the long, solid body.  Although the gripper is capable of a loose grip on 

the handrail, the range of possible orientations is very limited, which in turn limits the 

amount that moments introduced to the handrail can be reduced by aligning the gripper 

with the tether.  In addition, due to the square cross-section of the tether loop, as the jaws 
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close into a firm grip on this anchor, the gripper is forced into a skewed position, making 

a firm grip on the tether loop less desirable. 

Although tests were carried out to measure translation and rotation of the gripper 

induced solely by its internal mechanism during release from an anchor, later retraction 

tests with the full system revealed that the static and dynamic forces of the tether were so 

much more influential in the behavior of the gripper during release and retraction as to 

make these small internal dynamic forces insignificant (see Section 5.2.5). 

Results from overshoot tests of the gripper showed open-loop control to be 

suitable for this device.  The amount that the jaws overshoot after cutting power is 

relatively small, and highly accurate positioning of the jaws is not necessary for a 

satisfactory grip, either loose or firm.  The overshoot response is most sensitive at the 

fully open and fully closed positions, but at these positions, the likelihood that accurate 

positioning would be needed is remote. 

5.2.3. Retractor Results 

Tether winding behavior of the retractor was very good considering the lack of a 

guide mechanism. The tether naturally tended to compactly fill the width and depth of the 

reel, resulting in generally dense winds, as seen in Figure 24, which shows the result of 

retracting the tether with a small amount of tension applied to the tether. The average 

tether length capacity of the reel was 31.5 ft, and ranged from 26 to 36 ft, which is well 

short of the 50 ft design goal.  The capacity of the reel was not significantly affected by 

the amount of tension on the tether during retraction.  Tests conducted with tether tension 

of less than 0.1 lbf showed winding results that were very similar to tests where frequent 
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tether tension was sufficient to stall the motor at full power, giving about 1 - 1.75 lbf of 

force. 

Retraction force profiles for both the spring and motor over the retractable length 

of tether are shown in Figure 25, which shows the tether force required to stall retraction 

at 1 ft increments.  Two curves for the motor stall force reflect the fact that this force 

peaked immediately after the tether motion was stopped, and then settled to a lower 

steady value, as described below.  As expected, all results show a force gradient that 

generally decreases as more tether length is taken onto the reel. This is due to the 

increasing equivalent radius of the reel. The resulting increase in the effective moment 

arm of the reel decreases the force that is exerted on the tether by the relatively constant 

torque sources. 

Figure 26 shows the speed characteristics of the retractor with a minimal force 

(under 0.1 lbf) applied to the tether. These profiles show an expected increase in speed as

 
Figure 24. Typical tether wind on retractor reel. 
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Figure 25. Stalled retraction force profiles for motor and spring. 

 
Figure 26. Minimal-load motor retraction speed. 
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the amount of retracted tether increases. As tether accumulates on the constant-speed reel, 

the resulting increase in effective reel radius causes the tether retraction speed to increase.  

The profiles show that at full motor voltage (Vmot = 12V), the tether reaches a speed of 

approximately 0.4 ft/s for the amount of tether that would fit on the reel.  By 

extrapolating this trend, a maximum speed of 0.46 ft/s is indicated for a retracted tether 

length of 50 ft. 

5.2.4. Discussion of Retractor Results 

Figure 25 shows spring forces for a 0.015 in coil spring that range from 0.3 to 0.6 

lbf, which is satisfactorily close to the original design goal of a constant 0.5 lbf.  

However, in the simulations of Section 4.1, this designed spring force was found to be far 

too large for safe operation of the device in microgravity.  If retracted 50 ft, even a 

constant 0.3 lbf force would accelerate the 2.8 lbf gripper to a speed of 18 ft/s, making it 

a dangerous projectile.  Although the spring was thus known to be far too stiff, it was 

nevertheless used in testing since it was available and served the purposes of 

characterizing some spring behavior. 

Experimentally obtained values for stalled retraction force with the motor ranged 

from about 1 lbf to 1.4 lbf, which is much lower than the design value of 3.8 lbf.  This is 

not a significant problem for retraction of the gripper, since even a 1 lbf load would 

accelerate the gripper to 0.5 ft/s within 1 s.  A greater force capability may be desired, 

however, if the system were used for other purposes such as locomotion or payload 

manipulation.  Higher forces would likely be needed for adequate control in these 

applications.  The maximum motor-controlled retraction speed of 0.46 ft/s was well 

within the 0.5 ft/s safety limit. 
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The noise observed in the motor force results of Figure 25 was a result of several 

contributors.  Figure 27 illustrates the effect of current limiting the motor voltage supply, 

which was necessary to protect the motor from thermal overload.  When the current limit 

is exceeded, the supply voltage automatically reduces until the current is within the 

specified limit. Thus, when the motor stalls, the resulting current surge and overload 

causes a drop in motor voltage and a subsequent drop in motor current and torque. This 

combined with the pulsed-field characteristics of the brushless motor resulted in tether 

tension that peaked quickly after motor stall, and then slowly decayed to a more constant 

holding force (see Figure 27).  Figure 25 shows both the peak forces and the settled 

 
Figure 27. Retractor current-limited stall characteristics at full power. 
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forces, as reported by the low-pass-filtered visual display of the FUTEK force sensor.  

The use of a heavily filtered display to record this highly dynamic force also introduced a 

large amount of noise.  However, these values give a good overall representation of the 

capabilities of the retractor motor system. Another main source of noise in both the 

spring and motor retraction force measurements was the contribution of static friction 

between the retractor and the supporting surface. A low-friction bearing surface was used 

to minimize these effects, as described in Section 5, but remaining static friction 

contributions were found to be as high as 0.09 lbf. 

5.2.5. System Retraction Results 

Experimental retraction tests on the air bearing table were a final verification that 

the original retractor spring designed for the system was far too stiff for safety.  The 

frame sequence shown in Figure 28 shows the gripper being retracted by this spring from 

the handrail at 0.28 s intervals.  Over this retraction distance of only 2 ft, the gripper 

reached a speed of 2.17 ft/s, which is four times the maximum safe speed for the device.  

 
Figure 28. Sequence of spring retraction.  Interval between frames is 0.28 s. 
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Using the video record of the experiment and the known mass of the gripper, an average 

retraction force of 0.174 lbf was determined for this test.  This force is lower than that 

measured during extension (see Figure 25), but is consistent with forces measured during 

retraction, as discussed in Section 5.3.2.  Figure 29 shows the results of a simulation of 

this test using the inertial field model of Section 4.1 with initial conditions and spring 

force measured from the test video.  The maximum velocity reached by the gripper in the 

simulation was 2.24 ft/s, and the schematic representations showing position and 

orientation of the gripper indicate behavior that is highly similar to that shown in Figure 

28.  Errors can be attributed to linearization and friction of the spring (described in 

Section 5.3.2) and use of gripper response on video for calculation of the linearized 

spring constant. 

When tension is applied to the tether as the gripper is released from the handrail, 

such as under the influence of the spring, unexpected dynamics were introduced that may 

significantly affect the dynamics of a long tether.  Several angular oscillations of the 

gripper occurred before full release due to the gripper jaw tips alternating contact with the 

 
Figure 29. Simulation results of spring retraction with initial conditions similar to those 

of experimental tests. 
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backside of the handrail.  These oscillations could conceivably produce traveling waves 

and other vibrations in a tether that is extended to a substantial length.  Figure 30 shows

the results of maintaining a nominal load of 1 lbf on approximately 2 ft of tether, without 

any retraction of the tether.  In frames (a) and (b), two oscillations with magnitudes of 

approximately ±2° are shown that took place while the jaws were in the process of 

opening from the fully closed position.  Immediately prior to release, one side of the jaws 

maintains contact and the gripper is held at an angle of approximately 7° (see Figure 30c 

and Figure 28a) while the jaws continue opening.  Due to this initial angle, rotation is 

induced in the gripper once it fully releases from the handrail and is retracted, which 

produces the rotations seen in Figure 28.  For the test shown in Figure 30, the end of the 

tether was held stationary with a tensile load of 1 lbf.  Since no retraction device was 

attached, the gripper was not retracted, and the translation and rotation after release, 

shown in Figure 30d, is due only to the strain energy stored in 2 ft of tether under a 1 lbf 

load.  Although this exaggerates the resulting rotation of the gripper after release, it is 

clear that a significant amount of rotation can be brought about by this release behavior.  

Another interesting result of this test is the amount of movement produced in the gripper 

 
Figure 30. Oscillation and rotation of gripper when released with 2 ft of tether under 

nominal load of 1lbf. 



 56
by releasing the strain energy in the tether.  When extended to lengths of scores of feet 

and released under tension, this longitudinal flexibility of the tether would likely produce 

important dynamics and must be given attention in future analysis of the tether. 

Other forces resulting from tether properties were found to be very significant 

during the retraction tests on the air bearing table.  It was found that the tether tended to 

retain a portion of the curvature experienced when wound on the retractor reel, and the 

resulting forces in the tether strongly influenced the behavior of the gripper when 

retracted at a slower rate.  In Figure 31, a sequence of video frames shows a typical motor 

retraction test with the tether initially slack.  Influence of internal tether forces can be 

seen in frames (a) through (d) in particular, where the gripper undergoes significant 

rotation induced by the curvature set and stiffness of the tether.  Although tests were 

performed to measure the dynamics introduced by the inner mechanism of the gripper as 

it released, these forces were dominated by those stemming from the curvature set in the 

tether and were thus found to be insignificant.  These indications of considerable forces 

 

Figure 31. Motor powered gripper retraction test on the air bearing table with the tether 
initially slack.  Interval between frames is 4 s. 
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from the tether support the conclusions of Section 4.3, which state that inclusion of tether 

properties is a necessary component of a moderately accurate model of the system. 

Other complex dynamics were found to occur during the retractions tests on the 

air bearing facility.  When the gripper was retracted in directions other than along its 

longitudinal axis, or when forces from the loose tether were sufficient to push it into the 

anchor, it was often found that the gripper would collide with the anchor.  The resulting 

rebound of the gripper produced significant rotation and translation of the gripper that 

could potentially have a large effect on its retraction behavior.  It was seen in the 

simulations of Section 4.3 that an initial velocity—linear or angular—of the gripper can 

greatly affect its behavior during retraction and the conditions of its return to the 

astronaut.  Once the tether is modeled, many initial conditions must be considered and 

analyzed in order to better understand the behavior of the system under these 

unpredictable initial conditions. 

5.3. General Discussion of Experimental Results 

5.3.1. Tether 

Some of the most problematic characteristics of the system found during testing 

were those inherent to the tether itself. It was unexpectedly found that forces internal to 

the tether had very significant effects on the behavior of the gripper when it is retracted at 

safe speeds.  The main internal characteristic observed, as seen in Figure 31, was a 

tendency to retain the curvature induced when wound around the retractor reel.  This set 

in the tether is thought to be a result of friction between its composite layers and/or 

deformation of the urethane jacket and polymer fiber optic casing. Winding on the reel 

forces the layers of the tether to slide relative to each other, and as the tether is fed and 
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released from the reel, friction prevents the layers from fully returning to their relative 

pre-wound positions.  These internal forces of the tether were large enough to have a 

significant effect on the behavior of the gripper when retracted from a distance of 27 in 

during testing, so if a 50 ft length of this tether were to be used in microgravity, the 

unpredictable behavior would be unacceptable. The type of tether specified for this 

system is therefore considered inadequate for this application. 

5.3.2. Retractor Spring 

Experimental testing verified the results of simulations indicating that the spring 

implemented for passive retraction is far too stiff for safe operation of the system.  

Although the original design goal was to emulate the properties of the existing retractable 

safety tether (see Figure 1b), the two systems are used under different circumstances.  

The currently used safety tether cannot be remotely released or retracted, and if the hook 

were ever retracted freely, it would be from a maximum distance of the crewmember’s 

reach, since it must be manually released from an anchor and the retractor is secured to 

the front of the crewmember’s suit.  Thus, the 0.5 lbf spring force applied to the existing 

retractable safety tether serves only to maintain a minimum amount of tether in the 

workspace when both ends of the tether are secure.  When this same load is applied to the 

free-floating gripper of the automated tether system at any significant distance, the result 

is dangerous acceleration of a fairly massive object directed toward the crewmember.  A 

spring of thickness 0.007 in was acquired for implementation and testing, but geometric 

constraints within the retractor precluded its use. 

The method of implementation of the coil spring was also found during testing to 

require redesign.  Figure 32 shows the installed spring with the outer coil attached to a 
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fixed point in the retractor body and the inner coil attached to the inner hub of the reel.  

During tether retraction, the outermost coils of the spring expand and the inner coil 

maintains a shape that is as straight as possible within geometric constraints, which forces

the outer coil away from the center of the reel in the direction opposite the attachment 

point on the center hub of the reel.  The spring is free to extend beyond the edge of the 

reel on one side of the retractor (top right in Figure 32), but restricted by the housing 

midsection on the other (bottom left in Figure 32).  Since the inner attachment point of 

the spring (and thus the direction of outward force on the spring) rotates with the reel, the 

resulting effect is periodic friction occurring with each revolution of the reel that is often 

forceful enough to stall retraction completely.  The effect of this spring binding is evident 

in the spring retraction tests of Figure 33, which shows very oscillatory behavior of the 

force applied to the tether by the spring.  This binding problem did not occur while 

extending the tether against the spring load since the inner coils compressed first and 

compactly nested against the inner hub of the reel, thus preventing the outer coil from 

being forced against the inner wall of the retractor body midsection.  For this reason, the 

 
Figure 32. Spring binding against retractor housing 



 60

measurements of spring retraction forces that are reported in Figure 25 were recorded 

during extension of the tether. 

One potential solution to this problem is forming of the spring steel strip that was 

used for the spring.  The prototype spring was simply a straight length of spring steel 

wound onto the reel. Since the at-rest shape of the current spring is straight, the inner 

coil's tendency to return to this shape forces the spring against the retractor housing wall.  

If the spring were formed into a spiral shape, this force would be reduced, as would the

retraction force of the spring, since maximum force for a given thickness of spring is 

achieved with a maximum stress in the spring.  This would be a favorable result, since the 

force of the current spring is far too great for safety.  Another solution that is most likely 

more effective is a redesign of the attachment method of the spring.  If a rim were present 

on the outer edge of the reel, and the outer coil of the spring were attached to the reel on 

this outer rim, the outer coils of the spring would be contained therein, preventing friction 

 
Figure 33. Force profile of spring during retraction. Periodic binding of spring is evident. 
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with the housing wall.  However, since the outer coil of the spring would then be affixed 

to the reel, the inner coil would require attachment to a point that is fixed and non-

rotating relative to the retractor body.  This would require a nonrotating shaft to protrude 

from the center of the reel, which would in turn require a redesign of the active drive 

mechanism of the retractor, since the current design includes a drive shaft that engages 

the reel and drives its rotation. 

5.3.3. Retraction Actuation 

The properties of motorized retraction speed shown in Figure 26 indicate that 

using the motor for full retraction would be very beneficial for controlling the dynamics 

of the system.  In Section 4.3.3, it was concluded that an optimal retraction method would 

quickly bring the gripper to a maximum speed, then might accelerate very slightly 

afterward in order to maintain a small amount of tension in the tether.  As shown in 

Figure 26, the speed of unloaded motorized tether retraction increases as tether is taken 

onto the reel.  The low-speed torque of the motor would quickly accelerate the gripper 

until the motor's top speed is reached, then as more tether accumulates on the reel, the 

speed of tether retraction would increase very slowly.  This indicates that, with 

optimization of motor implementation, the active drive of the retractor would provide the 

best retraction behavior when used for retraction of the entire tether.  It may be desirable, 

then, to dispose of passive retraction altogether and implement only motor-powered 

retraction.  It may still be useful for the spring to engage during tether dispensing in order 

to limit the amount of tether in the workspace, which is similar to the spring function of 

the existing retractable tether.  This approach would sacrifice additional power 

consumption for the benefit of favorable retraction characteristics. 



 

 

6. FUTURE WORK 

The purpose of this research was initial exploration of the concept of smart tools, 

specifically an automated tether system, as a resource for EVA operations.  This initial 

research has provided a great deal of insight into the feasibility and functionality of such 

a device, but much work must yet be carried out before it can be fully proven as a useful 

and efficient tool.  Following are the main areas of further work that require attention. 

6.1. Communications Development 

The current research did not address the detailed design or testing of fiber optic 

communication between the retractor and the gripper, so this subsystem must be finalized 

and tested.  Important issues to address are noise rejection and reliable transmission and 

interpretation of commands. 

6.2. System Improvements 

The purpose of the current research is to explore and verify the concept of an 

automated tether system. For the sake of simplicity, and in order to quickly produce a 

system that could be used to prove this concept, several of the design requirements listed 

in Section 2, as well as known shortcomings to the design, were disregarded. These 

issues, as well as those uncovered during testing, must be addressed in future versions of 

the system.  Other improvements have also been identified that could add significant 
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functionality to the system and allow broader application.  Currently foreseen 

improvements follow in approximate order of importance. 

6.2.1. Tether Modeling and Material 

The results of simulations indicate that neglect of the tether in modeling 

introduces a large amount of error.  Although a good deal was learned about the dynamic 

response of the system under this assumption, details regarding the influence of a tether 

on that response are noteworthy unknowns.  Modeling of a tether is a formidable task, 

especially when it consists of multiple composite layers that interact statically and 

dynamically, as in the tether used for the initial prototype system.  It is clear that an 

appropriate tether material must be researched and selected before proper tether modeling 

can be implemented into the system model. 

The tendency of the current tether to retain a portion of the curvature it 

experiences when wound hinders its usefulness for this application, requiring the use of a 

different type of tether.  One possible solution is a tube of solid material.  A hollow 

center would permit a floating fiber optic core, and a solid, homogeneous tube would 

prevent curvature presets that arise due to interactions between composite layers.  When 

wound on the 3 in diameter of the retractor reel, the maximum strain experienced by the 

tether is 

 max 3
teth

teth

d
in d

ε =
+

 (25) 

where dteth is the outer diameter of the tether.  For the 0.118 in tether used for 

prototyping, this results in a maximum strain of 3.8%, so in order for a solid tube to be a 
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viable solution, a material must be used for which relatively large amounts of strain 

remain in the elastic region of deformation. 

One material that satisfies this strain requirement is the super-elastic alloy 

NiTiNOL (Nickel Titanium Naval Ordnance Laboratory).  This material has very high 

kink resistance and at strains of up to 6%, the typical maximum permanent set is a mere 

0.2%.  The material's high torsional strength would likely be a significant aid in its 

winding on the retractor reel, but may also introduce undesirable effects such as torsional 

vibrations.  The typical yield strength of Nitinol is sufficient to allow a tube with 

respective inner and outer diameters of 0.040 in and 0.100 in to bear an axial load of 535 

lbf before yielding [15].  According to Equation (25), this outer diameter will then result 

in a maximum strain of 3.2%, which is well within the super-elastic region of 

deformation for this material.  This type of tether will likely also introduce a certain 

amount of buckling strength, particularly at smaller lengths of tether extension, which 

would likely significantly affect the behavior of the free-floating gripper during retraction 

and must be examined. 

One unusual property of Nitinol is that of shape memory.  Its material properties 

are controlled by a transformation temperature below which it is easily plastically 

deformed and above which it will return to its pre-deformed shape, even in the presence 

of very high opposing forces.  This transformation temperature of Nitinol can vary widely 

with different alloys and heat treatments with typical values that range between -60°F and 

330°F [16], and may in principle be reduced to approximately -150°F or below.  In order 

to be usable as a tether material, a Nitinol alloy would be required to have a transition 

temperature at or below -220ºF in order to possess super-elastic properties during 
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temperature verification tests of EVA hardware.  This is due to the fact that the super-

elastic properties mentioned above are characteristic of Nitinol alloys when maintained at 

approximately 120°F above the transformation temperature [17] or higher, so another 

potential challenge of this approach would be to design an alloy for which the super-

elastic properties are dominant over the extreme range of temperatures found in space (-

200°F to +250°F).  However, the potentially high forces that can be applied by Nitinol 

when used as a shape memory alloy may also be useful in conjunction with a device such 

as the automated tether system in certain applications. 

One property of a super-elastic alloy tether that may be undesirable is longitudinal 

flexibility.  When a tensile force is applied, the super-elastic material would behave as a 

long spring.  This would be beneficial for reducing the impact of impulse loads, but when 

the potential energy thus stored in the tether is returned to external components in the 

form of kinetic energy, situations may be introduced that are more dangerous than the 

cause of the original impulse load.  Special provisions would also be required to protect 

the less flexible fiber optic core. 

Although there are many favorable tether properties of super-elastic alloys such as 

Nitinol, it is clear that a careful analysis is required to determine the suitability of this 

type of material for an automated tether management system.  Tether properties must be 

analyzed along with feasible retraction methods to determine the optimal configuration. 

Another tether property worthy of consideration is electrical conductivity.  While 

it is undesirable to use long conductors on orbit for control of electrical signals, a 

conductive tether may be useful for neutralizing electrical potential differences between 

objects at the ends of the tether.  If an astronaut were working at the end of a non-



66 
conducting tether without any other physical contact with the anchoring spacecraft, a 

static potential could build up on the exterior of the astronaut's suit relative to that of the 

spacecraft, which would be abruptly neutralized upon contact with the spacecraft.  The 

electrical pulse resulting from this neutralization could potentially damage electronics or 

have other undesirable effects.  For this reason, the need for electrical conductivity must 

be explored during selection of the appropriate tether material. 

6.2.2. Retraction Methods 

The optimal methods of retraction must be determined.  Thus far, passive spring 

retraction was found difficult because without velocity damping, gripper speeds grew too 

large. When damped, the decreasing force from the relaxing spring caused retraction of 

the tether to slow and the gripper to overtake the tether, which in turn caused an increase 

in the lateral drift of the gripper as it reached the astronaut when in orbit.  One solution to 

this problem is to use motor retraction exclusively, as described in Section 5.3.3, which 

details the beneficial properties of motorized retraction.  However, this approach requires 

much higher power consumption.  Since passive retraction is preferable from this 

standpoint, research should be conducted to determine the feasibility of a passive solution 

that will produce the desired retraction properties described in Section 4.3.3. 

Another element of retraction control that is worthy of investigation is 

implementation of a small propulsion system on the gripper.  For an object floating freely 

in microgravity, gas propulsion is the only current method of total position, speed, and 

orientation control.  With such a propulsion system, full control of the gripper during 

retraction would theoretically be possible, which would allow unlimited retraction 

distance and optimal retraction times with perfect positioning and speed upon return to 
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the astronaut.  The cost of these advantages is extensive additional hardware, more 

complex control algorithms, and an additional type of energy storage.  Required hardware 

would include valves, jets, propellant storage, and gyroscopes and other sensors, which 

would significantly increase the minimum size of the gripper.  In addition, a compressed 

gas supply would require regular monitoring and replenishment. 

6.2.3. Reduction of Moments at Anchor 

When the gripper is engaging an anchor with a firm grip, large moments can be 

introduced to the anchor, depending on the direction of tether tension relative to the 

gripper.  This can also occur with a loose grip on the handrail, since little rotation of the 

gripper is possible.  On the current gripper prototype, 8 in separate the point of contact 

with the anchor and the end of the handle where the tether is attached.  Any component of 

force on the tether normal to the longitudinal axis of the device would translate through 

the rigid handle to a moment and force on the gripped anchor. This is potentially very 

damaging to both the gripped object and the gripper jaws.  Standard EVA handrail is 

rated for a maximum 300 in-lbf moment acting simultaneously with a 50 lbf force in any 

direction, so in a worst case of the tether being pulled perpendicular to the handle, only a 

37 lbf tether load would be permissible within the handrail rating.  This problem is 

complicated by the requirement of the gripper to incorporate a handle, which places a 

minimum limit on the permissible length of the device. Therefore, a pivot point that 

allows the handle to rotate or other solution that reduces this moment arm should be 

implemented into the mechanical design of future versions. 
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6.2.4. Full Conformity to EVA Tool Requirements 

In order to be acceptable as an EVA tool, the system must conform to all 

requirements established by NASA for EVA tools [3]. The main features that the current 

system lacks in this area are a redundant gripper safety lock and improved battery 

implementation for both devices.  

All safety tether hooks are required to implement a redundant lock that precludes 

accidental release. In the case of the gripper, the non-backdrivability of its lead screw 

provides passive mechanical locking, but accidental motor activation would still move its 

jaws.  An evaluation must be conducted to identify what possible measures would 

provide appropriate redundant locks in this case.  Possibilities include mechanical shields 

of controls or requiring simultaneous activation of multiple controls. 

Battery-powered EVA tools are required to allow for a suited crewmember to 

replace the batteries at the EVA worksite. For design simplicity, the current automated 

tether system requires disassembly of both the gripper and retractor in order to replace 

their respective batteries. Another required battery-related feature that is absent on the 

current system is an indicator that displays the level of battery charge.  These issues are 

relatively simply solved by implementing a battery access door and adding the electronics 

and indicators necessary for battery status display. 

6.2.5. Manual Gripper Operation 

In the event of unexpected power loss or other contingency, the gripper must be 

capable of manual operation.  An interface should be implemented to allow a suited 

astronaut to manually operate the gripper.  This manual operation must be designed such 
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that accidental manual operation is precluded while being relatively easy to operate in the 

event of a contingency. 

6.2.6. Polymeric Gripper Jaw Coating 

Although the prototype gripper jaws are solid aluminum, the intent of their design 

was implementation of a polymeric coating for distribution of pressures applied to an 

anchor and protection of both jaw and anchor from marring and burring.  In particular, 

the inner protrusions of the jaws were intended to consist of a stiff yet deformable 

material that would conform to anchors.  Future revisions of the system must incorporate 

some type of jaw coating or other method of protecting anchors from dangerous burring 

and marring. 

6.2.7. Communications 

Although the initial design of the fiber optic communication system incorporates 

a single channel, two-way communication between the gripper and retractor would be 

very beneficial and should be investigated as the communications system is developed 

and optimized.  This would allow monitoring of system status, such as speed and applied 

force, and would allow control of the system from user interfaces on either the gripper or 

retractor.  With these additions, more diverse applications would be possible, such as 

cargo manipulation or crewmember locomotion (see Section 6.3).  Bidirectional 

communication can be accomplished in fiber optics with either a pair of single-mode 

fibers with each dedicated to a particular direction of communication, or a single 

bifurcated fiber that allows both transmission and reception of communication along the 

same fiber.  Bifurcated fiber would not allow simultaneous transmission and reception of 

communications, but the advantage of using a single fiber may outweigh this drawback 
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for certain control schemes.  More advanced communication features such as voice 

command and computer interfacing may also be of interest in future versions of the 

system. 

6.3. Parallel Manipulation and Other Applications 

The automated features of the automated tether system provide for potential use in 

a variety of applications other than that of a safety tether.  A high degree of adaptability 

has already been incorporated, and multiple versions of the system are conceivable with 

specializations for specific applications.  The main applications considered so far are 

cargo manipulation and crewmember locomotion. 

If used for manipulation, multiple, synchronized tether systems would be 

necessary for proper control of a payload.  Two tether systems in an antagonistic 

configuration could control the position of a payload along a line.  Three systems can 

control translation within a plane, and six systems could theoretically fully control 

position and orientation in three dimensions.  The advantage of such a system is large 

savings of space, launch weight, and power consumption over traditional robotic serial 

manipulators.  An outer framework would be required for support of the tethers, which 

may be relatively compliant and delicate.  Hybrid manipulation is also an option, in 

which one or more traditional serial manipulators are used in conjunction with the tether 

systems and provide a portion of the required support.  Control algorithms would be 

required that include optimal tether distribution across existing supporting structures in 

order to protect the integrity of the supports, provide maximum maneuverability, and 

prevent tether crossover.  Hardware that allows communication and synchronization 

between several automated tether units would also be necessary.  If tether-based 
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manipulation were proven valuable, a supporting structure may even be implemented 

specifically for the tether system that would support expected loads in an optimal 

configuration. 

Crewmember locomotion is another potential use of the automated tether system.  

Safety is a major concern when a suited crewmember is in motion in any context, so 

control algorithms must be developed accordingly.  When pulled in a given direction with 

a single tether, minimal control of the crewmember is possible, but two antagonistic 

systems could likely provide sufficient control along a line.  If a long-term travel corridor 

were convenient across an open space of a structure, for example, this type of 

configuration could provide safe transportation. 



 

 

7. CONCLUSION 

An automated tether management system has been designed, simulated, and tested 

for the purpose of increasing efficiency of valuable EVA time.  The system consists of a 

remotely releasable, self-locking robotic gripper that engages a variety of anchors; a 

retractor with both passive and active actuation capability that contains and controls the 

length of tether in the workspace; and a hybrid tether with tensile structural support 

capability and a fiber optic core to allow communication between the retractor and the 

gripper.  The system is designed to conform to NASA standards for safety tethers [3] and 

expand the role of the currently used retractable safety tether. 

Simulations of the system show that on-orbit coriolis effects limit the allowable 

length of tether, and that retraction methods for the retractor require further analysis.  

Further modeling is needed, however, in order to better understand the dynamics of the 

system.  Current modeling methods neglected dynamics of the tether for simplicity, but 

results indicate that a significant amount of error was introduced thereby. 

Experimental results verified applicable simulations, and quantified the 

capabilities of the system, which were found in general to be sufficient for the role of a 

safety tether.  During experimentation, it was found that the tether chosen for the 

prototype system was inadequate for the current application due to the curvature sets 

induced by winding onto the reel of the retractor.  Further research is needed to determine 

an appropriate tether material. 
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Properties of the system indicate many more applications than a personal safety 

tether, and indicate the possibility of specialized versions of the system for specific 

applications.  Multiple tethers can be used simultaneously for payload manipulation, and 

motorized retraction could be used as a method of crewmember locomotion. 

Although more work must be accomplished before the automated tether system 

can be a useful tool, the current research provides important groundwork for further 

development of such a system.  With the knowledge gained during this research, all 

elements of the system can be concurrently modeled, designed, and optimized to result in 

a next-generation prototype with functionality near to that required for tools used in 

space. 
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