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ABSTRACT 

The compliant framed modular mobile robot is a new type of wheeled mobile 

robot for which the motion control problems of posture stabilization, path following, and 

trajectory tracking are studied.  This robot has the advantages of a simple modular design 

that provides full suspension and steering capability without any additional components.  

Due to the flexible nature of the robot, the kinematics are much more complicated than 

typical mobile robot designs.  It is shown that an equivalent curvature based model that 

improves mobility and reduces required traction forces can describe the kinematics. 

A time invariant control law is developed for the posture stabilization problem 

and extended to compensate for nonideal initial conditions and system drift.  It is shown 

through Lyapunov stability analysis that provided a special choice is made for the robot 

velocity and curvature, the system will stabilize to the origin. The trajectories generated 

are smooth and meet the desired requirements of the equivalent curvature based model.  

A similar control law is developed for the path following problem, and it is shown that 

this control law may also be utilized in the posture stabilization case. Hence, a single 

control law may be used for both the path following and posture stabilization problems. 

The control laws developed are tested in simulation, and experimentally on the 

Partially Compliant Test Robot at the University of Utah.  The results are presented and 

show the proposed control laws perform as expected in the point stabilization, path 

following, and trajectory tracking cases. 
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CHAPTER I  

INTRODUCTION 

Point stabilization and path following control of a new breed of wheeled mobile 

robotic systems is the subject of this thesis.  This new breed of robot is the compliant 

framed modular mobile robot (Figure 1).  The concept of the Compliant Framed Robot 

(CFR) is unique in two ways.  First, it uses a novel yet simple structure to provide 

suspension and highly controllable steering capability without adding any additional 

hardware to the system.  This is accomplished by using flexible frame elements to couple 

rigid, differentially steered axles.  In this study, the frame element provides compliant roll 

and yaw between the axles.  Relative roll provides suspension capability in order to 

accommodate uneven terrain, and yaw allows the axles to independently change heading 

 
Figure 1:  Compliant framed modular mobile robot. 
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for advanced steering capability.  Steering and maneuvering of the system are thus 

accomplished via coordinated control of the axles.  Since each axle can be steered 

independently, the system provides enhanced maneuverability in confined environments 

as well as the capability to control the shape of the frame. 

A second unique aspect of the compliant framed mobile robot is its suitability for 

modular mobile robotics.  Reconfigurable modular robotic systems have been of keen 

interest to researchers during the last decade due to their improved ability to overcome 

obstacles and perform multiple tasks using a single hardware platform.  Towards this 

goal, numerous researchers have devoted their efforts to investigating minimalist 

homogenous robotic modules.  These systems have examined reconfigurable 

manipulation [1, 2], mobility [3-5], or a combination therein [6-8].  Homogeneity of the 

modules is argued to reduce maintenance, offer increased robustness through redundancy, 

provide compact and ordered storage, and increase the adaptability of the systems [9, 10].  

The compliant frame allows this concept to be extended to wheeled mobile robots by 

allowing a number of different vehicle configurations to be formed from a set of uniform 

frame and axle modules.   

A limited number of compliant vehicles can be found in the literature, yet none 

possess a similar highly compliant frame whose deflection is controlled by coordinated 

actuation of the wheels.  The earliest reference to compliant vehicles is a system 

proposed for planetary exploration that uses compliant members to provide roll and pitch 

degrees of freedom for suspension capability between the axles [11].  This concept was 

later extended [12] in a design where the frame of a vehicle was composed of at least one 

helical spring, but hydraulic cylinders were used to control the deflection.  In each of 
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these cases, compliance was introduced for accommodating terrain.  More recent research 

has introduced compliance for accommodating measurement error and resulting wheel 

slip occurring between independently controlled axle units on a service robot [13].  This 

robot is similar in spirit to the compliant framed system in that it allows relative rotation 

between the axles, but this is provided by rotary joints connected to the ends of a frame 

with limited prismatic compliance.   The system is intended for operation on flat surfaces 

in industrial service settings.  As the author states, the system provides high levels of 

mobility, but since the axle units are coupled by a relatively nonconforming rigid frame, 

its ability to maneuver in confined environments will be limited [14].  Other flexible 

robots use actuated, articulated joints to provide similar relative motion between axles, as 

in the case of the Marsokhod rover [15] and other six wheeled research rovers with high 

relative DOF provided between axles modules [16]. 

  The compliant frame mobile robotics system proposed here allows independent 

steering control of the axles with minimal slip and no additional hardware or actuators.  

For a more thorough presentation of the benefits of the CFR type platform see [17].  In 

this work, Schwenson studies the manufacturing, cost, and flexibility benefits of the CFR 

platform, along with two methodologies for steering the robot along a path.  An initial 

study of CFR kinematics, steering, and point stabilization by Albiston et al. is presented 

in [18]. 

The subject of this thesis is point stabilization and path following control of the 

CFR concept.  Discussion is limited to the configuration shown in Figure 1, consisting of 

two axle modules and one frame module.  In Chapter II, point stabilization and path 

following control of the CFR is compared to existing point stabilization and path 



4 

 

following control strategies.  The unique challenges of the CFR type robot are also 

presented.  In Chapter III an equivalent curvature based kinematic model is developed for 

the purpose of simplified motion planning, and the desired characteristics of a CFR 

control scheme are stated.     In Chapter IV, a time invariant point stabilization control 

law is developed for this model based upon the work of Indiveri [19].  This control law is 

then extended to the path following case utilizing a signed polar representation similar in 

spirit to the work of Tayebi [20].    The experimental platform is described in Chapter V, 

including the methodology used to characterize the experimental platform.  Chapter VI 

presents simulation and experimental results indicating the performance of the system, 

along with a discussion of those results.  Concluding remarks and a discussion of future 

work are presented in Chapter VII.     



 

 

CHAPTER II  

BACKGROUND 

Control of mobile robots and nonholonomic systems has received a great deal of 

attention in recent years, and many control alternatives have been proposed.  Control of 

these systems is generally broken up into three types of problems: point stabilization, and 

path following, and trajectory tracking.  The point stabilization problem consists of the 

robot starting from any initial condition and driving to a specified position and 

orientation, or “parking.”  The path following problem consists of the robot tracking a 

memorized path.   This path generally consists of a specified position and orientation in 

time. Trajectory tracking involves the robot tracking any desired velocity and curvature.   

Point Stabilization   

Point stabilization is generally viewed as the more difficult of the two problems.  

The challenge is that nonholonomic mobile robot systems have more degrees of freedom 

than controls.  When represented in Cartesian space, they cannot be stabilized with a 

continuously differentiable, time-invariant feedback control law as pointed out in the 

famous paper by Brockett [21].  Various approaches have been undertaken to stabilize 

these systems such as time-varying [22], adaptive [23], discontinuous [24], and neural 

network based [25] strategies.  For a thorough survey of nonholonomic control 

techniques see the review in [26]. 
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The various strategies may be broken up in to three basic types: discontinuous 

time-invariant, continuous time-varying, and hybrid techniques that are some 

combination of the other two.  All of the techniques make use of the fact that Brockett’s 

Theorem shows that feedback stabilization is achievable if there is a discontinuity 

introduced in either the control law or time.  Each of the techniques has advantages and 

disadvantages for various types of vehicle configurations. 

Discontinuous time-invariant techniques are of two basic types: piecewise 

continuous and sliding mode controllers.  Sliding mode controllers can provide good 

convergence rates by forcing the trajectory to slide on a manifold towards equilibrium, 

but often have problems with chatter as the controller switches control laws along the 

manifold.  Piecewise continuous controllers are of several types, but most make use of a 

coordinate transformation introducing a discontinuity at the origin [19, 27, 28].  These 

controllers offer exponential convergence rates without the problem of chatter 

experienced by sliding mode control, and generally produce smooth natural looking paths 

[20].   

The time-varying control laws that have been developed generally suffer from 

two problems.  First, because time is discontinuous, exponential convergence usually 

cannot be guaranteed.  Hence, these controllers normally suffer from slow convergence 

rates [26].  Second, the paths generated by this type of controller are generally not 

smooth or natural looking.  They would require a robot with a high degree of 

maneuverability to follow the generated paths.  Most of the hybrid techniques also suffer 

from these two problems.    
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Many of the proposed techniques make the simplifying assumption that the 

mobile robot is a simple unicycle type vehicle.  These techniques are therefore well 

suited to vehicles with only one axle to control, the ability to perform a zero radius turn, 

and easily reverse direction.  By its very nature, the CFR vehicle is limited in the 

minimum radius turn it can perform.  The CFR also has independently steered axles with 

compliant coupling due to the flexible frame.  This adds to the complexity of the CFR 

kinematics, and thus the simple assumptions of a unicycle type vehicle do not apply.  

Path Following 

Mobile robot path following is generally viewed as a less difficult problem than 

point stabilization because path movement introduces a discontinuity into the system and 

therefore the limitations of Brockett’s Theorem do not apply.  Thus, a continuously 

differentiable, time-invariant feedback control law is possible. 

Like point stabilization, many approaches have been taken in the literature to 

accomplish path following.  Most simply minimize the tangential, normal, and angular 

error between the current robot position and orientation and the current path position and 

orientation.  An example of such an approach is given by Diaz del Rio [29].   

In most path following techniques, the path is defined as a specified position and 

orientation in time.  Hence, the path proceeds without any regard for the current states of 

the robot.  Problems may arise when the path is defined by this method.  Large 

perturbations may force the robot to remain at rest, yet the path will unavoidably continue 

its course [29].  Many recent techniques base the path velocity on the current states of the 

robot.  The benefit to this approach is that the path velocity may be defined as to slow or 

stop altogether if the error grows beyond some specified bound.  In the case of the path 



8 

 

following algorithm developed for the CFR in section IV, the path velocity is based upon 

the states of the robot in such a way as to guarantee the asymptotic stability of the control 

algorithm. 

Trajectory Tracking 

Trajectory tracking is generally considered as the most basic of the three control 

problems.  It simply consists of the robot tracking a specified velocity and curvature 

trajectory.  This trajectory may be generated by a path following, point stabilization, or 

other control law, or it may be an input into the system by a human operator.  It is 

considered as the most basic control problem, because generally a robot must be able to 

track a desired trajectory in order to achieve any of the previous control problems 

mentioned.  Otherwise, no guarantee could be made that the robot would follow the 

trajectory output by the point stabilization or path following controller.  For the CFR 

robot, the ability to track a trajectory shall flow from the controller dynamic extension 

performed in Chapter IV.  

Mathematical Preliminaries 

Nonlinear control theory is used extensively in the development of the point 

stabilization, path following, and trajectory tracking controllers in Chapter IV.  Several 

mathematical theorems related to nonlinear control theory are repeated here for reader 

convenience.   

Global Asymptotic Lyapunov Stability 

From Khalil Theorem 4.2 [30], let a general nonlinear, time invariant system 

( )x f x= , have an equilibrium point at 0x = .  System equilibrium points not located at 
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0x =  may be moved to the origin through a suitable coordinate transformation. Define a 

continuously differentiable Lyapunov function : nV →  such that  

 
(0) 0 and ( ) 0,   x 0

x   ( )

( ) 0,   0

V V x
V x

V x x

= > ∀ ≠

→∞ ⇒ →∞

< ∀ ≠

 (1) 

then the origin 0x =  is globally asymptotically stable.  This implies the system has only 

one equilibrium point. 

LaSalle’s Theorem 

  From Khalil Theorem 4.4 [30], let DΩ⊂  be a compact set that is positively 

invariant with respect to ( )x f x= .  Let : nV →  be a continuously differentiable 

function such that ( ) 0 in V x ≤ Ω .  Let E be the set of all points in Ω  where ( ) 0.V x =   

Let M be the largest invariant set in E.  Then every solution starting in Ω  approaches M 

as .t →∞  

This may be extended to asymptotic stability by Khalil Corollary 4.2 [30], let 

0x =  be an equilibrium point for ( )x f x= .  Let : nV →  be a continuously 

differentiable, radially unbounded, positive definite function such that ( ) 0V x ≤  for all 

nx∈ .  Let S = { } | ( ) 0nx V x∈ = and suppose that no solution can stay identically in 

S, other than the trivial solution ( ) 0x t ≡ .  Then, the origin is globally asymptotically 

stable.  The benefit of LaSalle’s theorem is that it does not require V to be negative 

definite for global asymptotic stability. 
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Barbalat’s Lemma 

From Khalil Lemma 8.2 [30], let :φ →  be a uniformly continuous function 

on [0, )∞ .  Suppose that  

 
0

lim ( )
t

t
dφ τ τ

→∞ ∫  (2) 

exists and is finite.  Then, ( ) 0 as t tφ → →∞ . 

Extension of Barbalat’s Lemma 

Barbalat’s lemma is extended to show global asymptotic stability in Khalil 

Theorem 8.4 [30].  Let nD ⊂  be a domain containing 0x =  and suppose f(t,x) is 

piecewise continuous in t and locally Lipschitz in x.  Let V be a continuously 

differentiable function such that   

 1 2( ) ( ) ( )
( ) ( )

W x V x W x
V x W x

≤ ≤

≤ −
 (3) 

for all x D∈ , where W1(x) and W2(x) are continuous positive definite functions and W(x) 

is a continuous positive semidefinite function on D.  Choose r > 0 such that rB D⊂ and 

let 1min ( )x r W xρ =< .  Then all solutions of ( )x f x=  with 2(0) { | ( ) }rx x B W x ρ∈ ∈ ≤  are 

bounded and satisfy 

 ( ) 0 as W x t→ →∞  (4) 
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If all of the above assumptions hold globally and W1(x) is radially unbounded, the 

statement is true for all (0) nx ∈ . 

Baccioti’s Theorem 

Bacciotti [31] defines a cascade system as 

 
( , )
( , )

y y z
z z u

φ
ψ
=
=

 (5) 

where ,  ,  and  and (0,0) (0,0) 0l n l my z u φ ψ−∈ ∈ ∈ = = .  From Bacciotti’s Theorem 

19.2 this system is smoothly stabilizable if both the y and z subsystems are stabilizable, 

n l m− = , ( , )z u uψ = , and the y subsystem introduces a smooth stabilizer ( )z k y= .  The 

proof of this is shown by performing a coordinate change  

 
( ).

Y y
Z z k y
=
= −

 (6) 

The cascade system then becomes 

 
( , ( )) ( , )

( )( ) ( )( ) ( , ).
Y Y Z k Y Y Z
Z z Dk y y u Dk Y Y Z

φ= + = Φ

= − = − Φ
 (7) 

If a stabilizing feedback ( )( ) ( , )u Z Dk Y Y Z= − + Φ  is now applied the closed loop system 

becomes 

 ( , )
.

Y Y Z
Z Z
= Φ

= −
 (8) 



12 

 

Hence, as ,  0t Z→∞ → .  When 0Z = , the equation for Y  will become 

( ,0) ( , ( ))Y y Y y k yφ= = Φ =  which is asymptotically stable at the origin.  In the original 

coordinates the feedback becomes ( )( ) ( , ) ( )u Dk y y z k y zφ= + − .  



 

 

CHAPTER III  

KINEMATIC MODEL 

As stated in Chapter II, the compliant framed mobile robot has much more 

complex steering kinematics than unicycle type vehicles since it possess independently 

steered axles with compliant coupling.  Each of the axles must apply a particular force 

and moment on the frame module to maintain a desired frame deflection for vehicle 

steering.  The force and moment required will vary depending on the stiffness of the 

frame element and the frame deflection magnitude and shape.  These required forces and 

moments will in turn be transferred to the wheels where they will affect the traction force 

of each of the wheels. 

For a particular surface the robot is driving across, there will be maximum 

traction force possible at each of the wheels depending on the coefficient of friction 

between the wheels and the driving surface.  This traction force will be split between the 

amount available for useful propulsion, and the amount necessary to deflect the frame 

element for steering.  It is strongly desired to maintain the percentage of the maximum 

traction force used for robot propulsion as high as possible for two reasons.  First, the 

positional tracking accuracy of the robot may be greatly affected as wheel slip occurs.  

The position of the robot is determined by integrating the angular velocity of each of the 

wheels from encoder feedback.  If one of the wheels slips, then an error will be 

introduced into the positional tracking of the amount of the slip.  The second reason to 
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maintain the percentage of wheel traction force used for propulsion as high as possible is 

to increase the capability of the robot to do useful work.  The greater the percentage of 

useful traction force available, the greater the amount of payload that may be carried or 

towed by the robot.  Correspondingly, increased frame deflection moments and forces 

decrease the amount of payload that may be carried or towed.  

The variations in axle forces and moments imposed by the deflection of the frame 

can be modeled by considering the frame module as a simply supported beam [32].  Each 

axle is viewed as imposing a different end condition on each end of the beam (Figure 2).  

The figure shows three fundamental shapes of the frame imposed by three axle end 

condition cases.  All axle configurations can be classified as some combination of these 

fundamental shapes.   

Each of the axle end condition cases could potentially result from driving the 

robot by a particular method.  Case 1 would result when the axles are coordinated to 

maintain a pure bending, constant curvature condition, which is the equivalent of 

rf
ψ ψ=− .  This would be equivalent to the first mode of bending for a simply supported 

beam. This case would result in an end condition of an equal and opposite moment being 

applied to each end of the beam, with zero transverse force. Cases 2 and 3 result in very 

similar end conditions being applied to the beam, but are the result of different steering 

methods.  Both cases result when the axles apply end conditions of a moment and 

transverse force to the beam.  Case 2 is realized when the robot is steered in a car-like 

fashion, with only the front axle being directed towards the target, and the rear axle 

maintaining ψr =0.  This case results in nonequal similarly directed moments, and equal 

opposing transverse forces.  Case 3 may be produced when each axle is steered to the 
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goal independently, i.e., rf
ψ ψ= − .  Each axle is directed towards the target resulting in 

end conditions of equal similarly directed moments and equal opposing transverse forces 

being applied, by the axles, to each end of the beam.  Cases 2 and 3 are equivalent to the 

Single Independent Axle (SIA) and Dual Independent Axle (DIA) cases studied by 

Schwenson [17]. 

M M

R

(A)

(B)

(C)

−ψf

MM R

R
M

R M
ψ

f

ψr

−ψf

ψr

  
Figure 2:  Euler-Bernoulli beam cases.  (A) Case 1 (B) Case 2 (C) Case 3 
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In order to evaluate which of these three fundamental cases will require the least 

power and traction, the axle moments and reaction forces for a given steering angle ψ , 

(Figure 2) can be described for each axle by the equations, 

 

( )

( )

2
2

2
2

rf f

rf

f

r r f

r f

EI
M

l
M M

R
l

EI
M

l
R R

ψ ψ

ψ ψ

= −

−
=

= −

= −

 (9) 

where l is the robot length, E is the modulus of elasticity, I the beam moment of inertia, 

subscript f for the front axle and subscript r for the rear axle. Using a, the axle half width 

as shown in Figure 3, the traction forces required to produce these moments, M and 

u

uf

ψf

la

O

ψr ur

rw

I.C.

 
Figure 3:  Compliant framed mobile robot turning 

kinematics. 
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lateral reaction forces, R at each wheel, may be found from the equations 

 
2 2 2

2 2m a

m aT

M R
F R

a
F F R

= =

= +
 (10)  

where Fm is the longitudinal force at each wheel to  produce M, Ra is the lateral reaction 

at each wheel to produce R, and FT is the norm of Fm and Ra, or the net traction force 

required to produce M and R. These moments and forces are shown for each of the three 

cases in Table 1.  As inspection of the equations reveals, the minimum traction force 

required for steering the robot is realized when the transverse reaction force is kept at a 

minimum, or zero.  This occurs when the system is deflected in the first mode of beam 

bending, Case 1.  Maintaining the robot in this mode while steering will minimize the 

required traction force.  This will allow the robot to exert larger forces for towing a load 

or accelerating the robot, and reduce the probability of wheel slip.  As it turns out, Case 1 

also results in the smallest turning radius and correspondingly maximum maneuverability 

Table 1:  Robot traction and steering performance.  K=a/l. 
 

Case Max. 
Moment, M 
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Force, R Traction Force, FT
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for a given 
f

ψ , Table 1.  Radius of curvature can be realized by considering the 

intersection of velocity normals relative to the center of the frame, or the instantaneous 

center as denoted by I.C. in Figure 3.   

It is therefore desired to utilize the fact that Case 1 requires minimum traction and 

provides maximum steering capability for the robot to develop an equivalent kinematic 

model.  Further illustration of the system in the Case 1 configuration is shown in Figure 

4.  Using this scenario to derive the kinematics, the net system position and orientation of 

the robot may be described by an equivalent posture attached to point, O, located at the 

center of a line drawn between the axle midpoints. Assuming that the front and rear axles 

θ

y

u

x

e

uf

ψf

la

O

φf

φα

ψr ur

φr

 
Figure 4:  Equivalent model kinematics. 
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steering angle ψ  have equal absolute values and opposite signs, the familiar unicycle 

type Cartesian kinematics for the center point are defined as, 

 

ω

cos

sin

x u

y u

φ

φ

φ

=

=

=

 (11) 

where x and y are the Cartesian coordinates of a moving coordinate frame attached to 

point O, that describes the robot equivalent posture.  The variable u represents the 

velocity of the coordinate frame moving in a heading φ  relative to the global frame, and 

ω  is the rate of change of φ , or the equivalent robot angular velocity.  Equation (11) can 

then be derived in terms of the individual axle kinematics commonly found in the 

literature.   

Before deriving the equivalent kinematic relationships, several desirable steering 

conditions must be described:  

1. As opposed to the case of a unicycle type robot, the compliant framed mobile 

robot cannot turn with a zero radius of curvature.  Thus, the robot should proceed 

only on paths of bounded curvature. 

2. For simplicity, it is desired that the robot's motion proceed only in the forward 

direction.  It is not desired to have cusps in the robots motion.   

3. The pure bending condition, rf
ψ ψ= − , should be maintained throughout all 

turning maneuvers to ensure Case 1, thereby increasing capability and also 

preventing wheel slip. 

The point O can also be represented in polar-like coordinates where 
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 ( )

2 2

2 ,

.

e x y

ATAN y xθ

α θ φ

= +

= − −

= −

 (12)  

The system state equations then may be defined as, 

 

cos

sin

sin
.

e u

u
e

u
e

α

α
α ω

α
θ

= −

= − +

=

 (13)  

The advantage of this polar-like representation is that the state itself is not defined for e = 

0, and therefore Brockett’s Theorem does not hold and a smooth time invariant state 

feedback control law for global asymptotic stability is possible [27], where several 

controllers in the literature have been similarly implemented [19, 27, 28]. 

Using this transformation, the angular velocity of the robot center point, O, can be 

described as a function of the bounded curvature, or inverse turning radius, c.   

 ucω φ= =  (14) 

Substitution into the polar state equations (13) yields 

 

cos

sin

sin

e u

u c
e

u
e

α

α
α

α
θ

= −

⎛ ⎞⎟⎜= − − ⎟⎜ ⎟⎜⎝ ⎠

=

 (15)  
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The angular velocity of the robot equivalent posture can be described as a function of the 

steering angles 
f

ψ  and rψ  (Figure 4).  Once again, it is assumed for simplicity and to 

ensure the pure bending condition that rf
ψ ψ= − .  From Figure 3 expressions for the 

radius and curvature of the robot center point as a function of the steering angle ψ  and 

frame element length l can be shown to be  

 1 2
cos

2 cosO
O

l
r c

r l
ψ

ψ
ψ ψ

= = =  (16)  

Substituting (16) into (14), the angular velocity of O then becomes 

 2
.

cos
uc u

l
ψ

φ
ψ

= =  (17)  

The steering angle ψ  and its time derivative ψ , may be solved for numerically by 

rearranging (16) to form the equation, 

 .
cos 2

c lψ
ψ

=  (18) 

Referring again to Figure 4, the velocities uf and ur are shown to be  

 
cos
u

u urf ψ
= =  (19) 

and it can be deduced that the angular velocities are, 
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.

rf

rf

φ φ ψ φ φ ψ

φ φ ψ φ φ ψ

= + = −

= + = −
 (20) 

Thus, using this equivalent kinematic formulation, the complicated kinematics of 

the CFR may be controlled by admitting familiar steering algorithms that utilize common 

kinematics.  Given u and c, the respective linear velocity and path curvature of the center 

point O, the steering angle ψ  may be found from equation (18).  The robot angular 

velocity may then be found from (17), which may be used to find the angular velocity of 

each axle using (20).  The linear velocity of each axle may then be found from equation 

(19).   The angular velocity of each wheel may then be determined, assuming no wheel 

slip and the pure bending condition, using the velocity Jacobian  
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r r
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r r
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⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

 (21) 

where rw is the wheel radius as shown in Figure 4, and ω is the angular velocity of each 

wheel. 

 

 



 

 

CHAPTER IV  

TIME INVARIANT CONTROL LAWS 

It is desired to develop smooth, time invariant control laws for point stabilization 

and path following of the compliant framed mobile robot utilizing the equivalent 

kinematic model developed in Chapter III.  A control law for point stabilization will be 

developed first utilizing Lyapunov techniques, and then this control law shall be extended 

to the path following case. 

Point Stabilization 

As discussed in Chapter II, many of the nonholonomic point stabilization 

techniques common in the literature are not suitable for the CFR.  The control algorithm 

must meet the desired characteristics set forth in Chapter III:  1.  Generated paths should 

be of bounded curvature.  2.  Paths should not have cusps.  3.  Algorithm should 

accommodate the pure bending condition, rf
ψ ψ= − .  In addition to these three 

characteristics, the control law must also have no discontinuous changes in curvature or 

velocity, including the instant from time 0 to time greater than zero.  In other words, the 

initial conditions of the controller and the robot must match.  This last requirement shall 

also prove critical in path following. 

Indiveri [19] suggests a control law for a bicycle that is of simple yet effective 

design that meets conditions 1, 2, and 3, and may be modified to meet the continuous 
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curvature requirement. The control law is piecewise continuous and makes use of the 

polar coordinate transformation performed in Chapter III equation (12).  As mentioned in 

Chapter III the states are not defined for e = 0, and therefore Brockett’s Theorem does not 

hold and a smooth time invariant state feedback control law for global asymptotic 

stability is possible.  The controller offers exponential convergence rates and produces 

smooth natural looking paths. 

 Based upon the positive definite and radially unbounded Lyapunov function,  

 ( )2 2
2

1
2

V kα θ≡ +  (22) 

Indiveri suggests defining the forward velocity as 

 
1

u k e=  (23) 

where k1 and k2 are positive constant gains.  This ensures the velocity will always proceed 

in the forward direction, since e will always be positive, and hence prevent cusps.  Using 

this definition, the polar state equations become 

 

1

1

1

cos

sin

sin .

e k e

k e c
e

k

α

α
α

θ α

= −

⎛ ⎞⎟⎜= − − ⎟⎜ ⎟⎜⎝ ⎠

=

 (24) 

The time derivative of the quadratic Lyapunov function (22) upon substitution of the 

polar state equations (24) becomes 
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 ( )2 1 2
sin sin .V k k k ecαα θθ α α θ α α= + = + −  (25) 

It is desired to show that (25) is negative definite for asymptotic stability, which suggests 

the choice of c as  

 
2 3

sin sin
.c k k

e e e
α θ α α

α
= + +  (26) 

The time derivative of the Lyapunov function now becomes 

 2
1 3

0V k k α= − ≤  (27) 

which is negative semidefinite for all k1 and k3 > 0.  Because (27) is not negative 

definite, the requirements for Lyapunov global asymptotic stability are not met. 

Indiveri shows that the system is globally asymptotically stable through the use of 

the following logic.  Equation (27) and the fact that V is positive definite and radially 

unbounded implies by Lyapunov’s stability theorem ([30], Theorems 4.2 and 4.4) that V 

tends towards a non-negative finite limit.  As a result, we have, 

 lim
t

α α
→∞

=  (28) 

The fact that 
1 3

2V k k αα= −  is bounded denotes that V is uniformly continuous.  This 

implies by Barbalat’s Lemma ([30], Lemma 8.2 and Theorem 8.4) that V  tends to zero.  

This necessarily indicates that 0α = .  From this result and (24) we see that 
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 lim
t

θ θ
→∞

=  (29) 

From the choice of u and c in (23) and (26) the polar state equations become 

 

1

1 3 2

1

cos

sin

sin .

e k e

k k k

k

α

α
α α θ

α
θ α

= −

⎛ ⎞⎟⎜= − + ⎟⎜ ⎟⎜⎝ ⎠

=

 (30) 

From above we know 0α → , θ θ→ and the state equation for α  is uniformly 

continuous.  Substituting 0α → , θ θ→  into the state equation (30) for α , we can show 

from Barbalat’s Lemma that the limit 

 
1 2

lim 0.
t

k kα θ
→∞

= − =  (31) 

From this limit it can be ascertained that the limit value θ  of θ  must be zero.  Given this 

result and substituting 0α →  into the state equation (30) for θ , it can be concluded that 

θ  tends asymptotically towards zero. Thus we now know that  

 
0; 0

0; 0

α α

θ θ

→ →

→ →
 (32) 

as t → ∞ .  From (32) we know that the state equation for 
1

cose k e α= −  will become 

 
1

0e k e e→ − ⇒ →  (33) 
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as t → ∞ , and therefore e asymptotically converges to zero.  Hence, provided the 

special choice for velocity u and curvature c in (23) and (26), the states (e,α,θ) must 

necessarily globally asymptotically converge to the origin [19]. 

Global asymptotic stability may also be proven through use of the extension to 

Barbalat’s lemma, Theorem 8.4 in Khalil [30].  It may easily be seen that the Lyapunov 

function (22) may be bounded from above and below by two continuous positive definite 

functions W1(x) and W2(x) as in (3).  In fact, W1(x) and W2(x) may simply be chosen as 

being equal to V.  It may also be seen that the derivative of the Lyapunov function (27) is 

less than or equal to the negative of some continuous positive semidefinite function W(x).  

The domain may be chosen as nD x= ∈ , and therefore r may be chosen on (0, )∞ .  

Hence any x(0) shall satisfy 2(0) { | ( ) }rx x B W x ρ∈ ∈ ≤ .  All of the assumptions hold 

globally and W1(x) is radially unbounded; therefore ( ) 0 as W x t→ →∞ for all nx∈ .  

This implies that the derivative of the Lyapunov function (27) is negative definite, and 

hence the system is globally asymptotically stable by an invariance approach and 

Lyapunov’s stability theorem.   

Implementation Issues 

Several issues arise when one tries to implement the above control on an actual 

mobile robot.  First, the choice of u as 1u k e=  implies that u could be very large if the 

robot initial position is too distant from the origin and velocity saturation may occur.  

Indiveri shows that if the choice of u is changed to 

 ( )1 1
: sat e, ,u k e k u=  (34) 
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where 
1

sat(k e, )u  is a positive continuous saturation function that prevents the 

proportional control input u to grow larger than some upper bound u , the convergence of 

the system is still maintained. 

The behavior of the system will also depend on the choice of the constant gains 

k1, k2, and k3.  The velocity gain k1 may simply be chosen by how aggressively it is 

desired that the system minimize the polar error e.  By linearization of the system state 

equations and calculation of the eigenvalues, Indiveri suggests the choice of k2, and k3 as 

 2 3 21 2 1.k k k> < < +  (35) 

The proof of the above is not repeated here and may be found by the interested reader in 

[19].   

Controller Dynamic Extension 

The major implementation issue, especially in the case of the compliant framed 

mobile robot, is that the robot initial conditions will rarely match the initial conditions for 

u and c output by the controller in (34) and (26).  For instance, if the initial states were 

31, ,4 4e π πα θ= = =  with k1=1, k2=2, and k3=2.9, the initial conditions output 

by the controller would be a velocity of 1 m/s and a curvature of 7.2 m-1.  In general, the 

initial robot conditions will be a velocity of 0 m/s and curvature of 0 m-1. This 

discrepancy between the desired and actual initial robot velocity and curvature dictate 

that the robot will not stabilize to the desired stabilization point.  In addition, 

perturbations throughout the robot path resulting in error between the desired u and c and 

the actual u and c will result in error of the final stabilization point. 
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This issue may be resolved with a change in the feedback where the controller 

dynamics are extended.  The extended system may be written as a cascade system of the 

form 

 

1

2

3

2

2

( , )

( , )

( , , )

( , )

l

m
d d

m

y f y z

z f z u

y e

u u c

z

α θ

=

=

= ∈ =

= ∈ =

∈ =

 (36) 

where 
1 2
(0,0) (0,0) 0f f= = , f1 is the system in (30), f2 is the extended system, and ud 

and cd are the desired velocity and curvature output from the controller. The smooth 

stabilizers 

 1

2

u

c

z e

z e

=
=  (37) 

are admitted where 

 u d a

c d a

e u u
e c c
= −
= −

 (38) 

and ua and ca are the actual measured feedback velocity and curvature. Differentiating 

(38) with respect to time  

 u d a

c d a

e u u
e c c
= −
= −

 (39) 
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which can be rearranged such that, 

 
.

a d u

a d c

u u e
c c e

= −
= −

 (40) 

 
Now let the time derivatives of the smooth stabilizers become 
 
 

 1

2

u u u

c c c

z e k e

z e k e

= = −

= = −
 (41) 

and, 

 
( )
( )

a u ad d

a c ad d

u u k u u

c c k c c

= + −

= + −
 (42) 

where ku and kc are positive gains.  Upon substitution of (41) into (39) and utilizing the 

definition for eu and ec the equations for the time derivative of the velocity and curvature 

become  

 
a u ud

a c cd

u u k e

c c k e

= +

= +
 (43) 

which matches the definition for the input u in Bacciotti’s Theorem 19.2 [31].  Hence, by 

Bacciotti’s Theorem 19.2 the overall system is smoothly stabilizable.   An alternate 

formulation of this proof, that more closely follows the proof of Bacciotti, may be found 

in Appendix A. 
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Essentially, the addition of the smooth stabilizers represents the actual velocity 

and curvature of the robot as additional states of the system.  The stabilizing control (43) 

minimizes the error between the actual robot velocity and curvature and the desired 

velocity and curvature output by the point stabilization controller in (35) and (26).  

Therefore, it is no longer required that the robot initial conditions and the controller 

outputs match.  The state equations of the extended system with the control inputs 

inserted now become 

 

1

2 3

sin sin

cos

sin

sin

( )

( )

.

a u a d

a c a d

a

a a

a

k e

k k
e e e

e u

u c
e

u
e

u k u u

c k c cα θ α α
α

α

α
α

α
θ

+ +

= −

⎛ ⎞⎟⎜= − − ⎟⎜ ⎟⎜⎝ ⎠

=

= − +

= − +

 (44) 

One benefit of the formulation of ua and ca in (43) is that the system will now 

track any desired velocity and curvature.  Generally this trajectory will be generated by 

the control law in (34) and (26), but suppose ud and cd in (43) are replaced with ut and ct, 

which could be any desired velocity and curvature trajectory.  This trajectory could be 

input by a human operator or other means.  The system state equations would then 

become 
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 cos

sin

sin

( )

( )

.

t

t

a u a t

a c a t

a

a a

a

u

e u

u c
e

u
e

u k u u

c k c c c

α

α
α

α
θ

= −

⎛ ⎞⎟⎜= − − ⎟⎜ ⎟⎜⎝ ⎠

=

= − +

= − +
 (45) 

and the system would still be guaranteed to stabilize to the desired trajectory.  This would 

prove useful for many types of situations when point stabilization or path following is not 

feasible and a “human in the loop” is preferred. 

Path Following 

Ideally it would be desired to extend the point stabilization controller developed 

above to the path following case.  The point stabilization controller already meets the 

requirements set forth in Chapter III, and it would be convenient to use the same 

controller for both cases.  In fact, the point stabilization controller may be utilized as a 

path following controller provided a special coordinate transformation is performed. 

The kinematics of the path is developed in Figure 5, where the path is a smooth 

directed function s, and O represents the equivalent center posture of the robot.  The 

desired robot posture s is represented as a moving coordinate system tangent to the path.  

Thus, the desired robot velocity now becomes the vector s , which is also oriented 

tangent to the path.  The desired orientation becomes sφ , which is the angle from the 

global x-axis to the path tangent. The polar coordinates now symbolize the polar error 

between the desired robot posture s and the actual robot location. 
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  The Cartesian path error coordinates, xerr, yerr and φerr, may be developed 

according to the equations 

 
err a s

err a s

err a s

x x x

y y y

φ φ φ

= −
= −

= −

 (46) 

where xa, ya and aφ  are the actual robot equivalent center point posture, and xs, ys and sφ  

are the desired center point posture of s as shown in Figure 5. The polar error coordinates 

may then be found from the Cartesian error coordinates by the following equations 

 

2 2

2( , )

.

err err

err err s

err

e x y

ATAN y xθ φ

α θ φ

= +

= − − −

= −

 (47) 

From Figure 5 it can be seen that the polar state equations now become  

α
u

e

O

φs
θ

yerr
ya

sxerr
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s

φerr

φs
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ys

φs

xglobal

yglobal

φa

 
Figure 5:  Path error coordinates. 
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cos cos

sin sin

.
sin sin

e u s

u s
e e

cu s u
e e

α θ

α θ
θ

α θα

= − +

= −

= −−

 (48) 

Again it is desired to use Lyapunov stability techniques to show the convergence 

of the path following system.  For path following, the positive definite and radially 

unbounded candidate Lyapunov function   

 ( )2 2 2
1 3

1 1
2 2

V k e kα θ= + +  (49) 

is chosen.  In the point stabilization case, the state e was not included in the Lyapunov 

function, yet it was shown that it would converge to zero.  In the path following case the 

logic used to show the convergence of e would not apply because of the s  terms in (48), 

therefore all three states are included in the candidate Lyapunov function. 

The time derivative of the candidate Lyapunov function becomes much more 

complex in the path following case because of the extra terms in the state equations 

 
( ) ( )

( )

1

3

cos cos sin sin

sin sin .

V k e u s uce u s
e

k
u s

e

α
α θ α θ

θ
α θ

= − + − − +

− − +
 (50) 

If the control inputs u and c are chosen to be 
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1

2 1 3 2

cos
cos cos

sin sinsin sin

d d d

k e s
u

k k k k ss
c

e e u u e u e

θ
α α

θ α α θ θα θ
α α

= +

= + + − −
 (51) 

then the time derivative of the candidate Lyapunov function reduces to 

 2 2 2
1 1 3

0k e k k α− − ≤  (52) 

which is negative semidefinite.  Although this choice for the velocity and curvature 

control laws looks promising, it has two major flaws: the u term in (51) will become 

unbounded as α  approaches /2π± , and the c term will become unbounded as α  

approaches zero.  A saturation function may again be imposed on u to inhibit the control 

variable from becoming unbounded when α  approaches /2π± .  The unboundedness of 

the c control variable is not as easily overcome since this variable will become 

unbounded as α  approaches zero, the value that the controller is trying to stabilize to.  

This problem may be solved by using an approach similar to that suggested by 

Tayebi [20] for a related system.   First, the polar representation of the robot kinematics 

shown in Figure 4 may be changed into a signed polar representation as shown in Figure 

6 (A).  By a signed polar representation it is meant that the polar error distance variable e 

is represented by both positive and negative values.  The value of e is defined as positive 

in the right hand half plane and negative in the left hand half.  The angle θ  is also 

changed so that it is always measured from the abscissa and therefore is always contained 

in the set [ ]2, 2π π− .  The polar error coordinates are now found from the Cartesian 

error coordinates by 
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2 2

2( , )

err err

err err s

e x y

ATAN y xθ φ

= +

= −
 (53) 

where the angle α is now defined using equation (46) in the Left Hand Plane (LHP) as 

 err

a s

α θ φ

θ φ φ

= +

= + −
 (54) 

where, 

 a sα θ φ φ= + −  (55) 

and in the Right Hand Plane (RHP) as 

 err

a s

α θ φ

θ φ φ

= +

= − +
 (56) 

where, 

 .a sα θ φ φ= − +  (57) 

An example of the signed polar representation for a posture located in the third quadrant 

is shown in Figure 6 (B).  The path following state equations of the system using the 

signed polar approach become 
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cos cos

sin sin

sin sin
a s

e u s

u s
e e

u s
e e

α θ

α θ
θ

α θα φ φ

= −

= − +

= − + + −

 (58) 

for the LHP and  

 

cos cos

sin sin

sin sin
a s

e u s

u s
e e

u s
e e

α θ

α θ
θ

α θα φ φ

= −

= − +

= − + − +

 (59) 

for the RHP.   

−θ x
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u
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+e

α=θ−φerr
+e

s

−θ

+θ

−θ

(A) (B)  
Figure 6:  Signed polar representation of robot kinematics.  (A) Polar variable 

definitions. (B) Example posture description. 
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A coordinate transformation is now introduced to place the state equations in a 

form more suitable to Lyapunov analysis.  The control variables c1 and c2 are introduced 

where 

 
1

2 a s

c u s

c φ φ

= −

= −
 (60) 

Upon substitution of (60) into (58) and (59) the system state equations become 

 ( )

( )

1

1

21

cos cos cos

sin sin
LHP

sin sin

e c s s

c s s
e e

c s s c
e e

α θ α

α θ
θ

α θα

= − +

= − + +

= − ++ +

 (61) 

 ( )

( )

1

1

1 2

cos cos cos

sin sin

sin sin
.

RHP

e c s s

c s s
e e

c s s c
e e

α θ α

α θ
θ

α θ
α

= − +

= − + +

= − + + −

 (62) 

Now with the state equations in this form we can use the positive definite, radially 

unbounded quadratic candidate Lyapunov function 

 ( )2 2 2
3

1
.

2
V e kα θ= + +  (63) 

  The time derivative of (63) is  
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1
1

3 1 3 3
2

sin sin
LHP cos cos cos

sin sin sinsin

c s
V ec es es

e e
k c k s k ss

c
e e e e

α α α α
α θ α

θ α θ α θ θα θ
α

= − + − −

+ + − − +
 (64) 

 

1
1

3 1 3 3
2

sin sin
RHP cos cos cos

sin sin sinsin

c s
V ec es es

e e
k c k s k ss

c
e e e e

α α α α
α θ α

θ α θ α θ θα θ
α

= − + − −

+ − − − +
 (65) 

Although (64) and (65) look quite formidable, provided the control variables are chosen 

as 

 1
1

cos
cos cos

k e s
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α α

= − + −  (66) 
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the time derivative of (63) reduces to 

 2 2 3
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θ θ
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for the entire plane.  Again, it is desired to show that (69) is negative definite for 

asymptotic stability.  It is easily seen that the first two terms in (69) are negative definite, 

but the last term is inconclusive.  The path velocity s  may be chosen as  

 
( )4

sin
des
s k e

s
θ

θ

−
=  (70) 

where dess  represents the desired velocity of the path, s is the actual velocity of the path, 

and k4 is a positive constant.  Hence, the desired robot posture s, and velocity s  are now 

dependent on the system error states.  Utilizing the definition in (70) the time derivative 

of the Lyapunov equation (69) now becomes 

 
2

2 2 2 3
1 2 3 4

.des
k s

V k e k k k
e

θ
α θ= − − − +  (71) 

In the path following case the dess  term may be a function of time.  Consequently, 

the system is no longer autonomous as in the point stabilization case.  Hence, stability 

techniques for nonautonomous systems must be used. 

If the control variable c1 in (66) is substituted into (61) the state equation for e is 

obtained as 1e k e= − , which will decay exponentially to zero without crossing zero.  This 

implies that the ( ) ( (0)) 0sign d sign d t= ∀ ≥ .  If the condition is imposed that in order 

to track a path in the forward direction e(0) < 0, and to track a path in reverse motion  

e(0) > 0, then ( ) ( (0))dessign s sign d= − .  It now may be determined that there is a β , such 

that  
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 ( ) ( )2 2 2
1 2 3 4

, , , ,V e k e k k k V eθ α α θ β θ α≤− − − ≤−  (72) 

where β  can be chosen as 

 1 2 42inf( , , )k k k  (73) 

where inf denotes the infimum, or the greatest lower bound.  Hence, the origin of the path 

following system is exponentially stable.  From (66) and (70) the limits 
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may be ascertained. 

In the path following case, the control variable c2 may grow unbounded as e tends 

to zero.    This may be overcome by letting the control variable c1 be 
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where ε is a positive constant that may be chosen based upon the particular robot system.  

Systems with large perturbations or drift will require a larger value of ε to ensure the 

control variable c2 does not become unbounded. 

The velocity and curvature of the robot may be found from the control variable c1 

and c2 from the definition for c1 and c2 in (60) 
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 (76) 

where cpath is the curvature of the path at s.  Thus it is necessary to know cpath along with 

xs, ys and φs at each s shown in Figure 6. 

As in the point stabilization case nonideal initial conditions will require the 

extension of u and c in (76).   The stability of the extension performed in the point 

stabilization case holds, and the state equations for the actual velocity and curvature may 

be taken as 
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a u ad d

a c ad d

u u k u u

c c k c c

= + −

= + −
 (77) 

where ud and cd are the desired velocity and curvature output from the controller in (76) 

and ua and ca are the actual measured feedback velocity and curvature.  

Point Stabilization Using the Signed Polar Approach 

One benefit of the signed polar formulation is that it may be used for path 

following and point stabilization.  In the point stabilization case, ( ) 0, 0sdes
s t φ= = , and 

we set k4=0.  The system now reduces to the autonomous or time-invariant case.  Given 

that ( ) 0
des
s t = , the time derivative of the Lyapunov function in (69) reduces to 

 2 2
1 2

V e k k α= − −  (78) 
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and it can be seen from LaSalle’s theorem [30] that e, α , and α  tend to zero as time 

tends to infinity.  The control variables c1 and c2 in (66) become 
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and utilizing the fact that the state equation for α in (61) is, 
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it may be seen that  

 1 3
2 1

LHP
sin c k

c c
ee
θα

→ →  (84) 

 1 3
2 1

sin
RHP

c k
c c

e e

θα→− →−  (85) 

and therefore 
3

sin 0k θ θ→ →  as t → ∞ .  Thus, θ  tends asymptotically towards zero. 

It is now desired to show the boundedness and convergence of the control 

variable c2.  From (84) it may be seen that the boundedness and convergence of c2 are 

dependent on the ratios 
e
θ  and 

e
α .  Again, we know from substituting the control variable 

c1 in (66) into (61) that the state equation for e is obtained as 1e k e= − , which decays 

exponentially to zero.  Hence, the convergence rates of θ and α must be greater than that 

of e to guarantee the boundedness of 
e
θ  and 

e
α .  

The rates of convergence of the system states may be studied by linearizing (using 

small angle assumptions) the system state equations in (61) which become 
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 (86) 
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for the entire plane.  From the linearized state equation for e in (86), it can be determined 

that e converges to zero as the exponential of 1k t− .  Therefore, if the real part of the 

dominant pole of the subsystem  

 1

1 3 2

0 k

k k k

θθ
αα

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦
 (87) 

is λ− , θ  and α  will converge to zero at a rate equal or greater than exp( )tλ− .  If the 

values for the gains k1, k2, k3, are chosen as 

 
1 3 1 3 2 1 3

1 3 1 2 1 3

0, 0 2 (1 ),

0, 1 2 2

k k and k k k k k

or

k k and k k k k

> > ≤ < +

> > < <

 (88) 

 then the values of θ  and α  will converge faster than e, and the control variable c2 will 

asymptotically converge towards zero. 

The velocity and curvature may be found from (76) as in the path following case.  

The extension for nonideal initial conditions performed in the previous cases again holds, 

and the state equations for the actual velocity and curvature may be taken as 

 
( )
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a u ad d

a c ad d

u u k u u

c c k c c

= + −
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 (89) 

where ud and cd are the desired velocity and curvature output from the controller in (76) 

and ua and ca are the actual measured feedback velocity and curvature. 



 

 

CHAPTER V  

EXPERIMENTAL PLATFORM 

The point stabilization and path following controllers developed in Chapter IV 

were tested on the Partially Compliant Test Robot at the University of Utah, Figure 7.  

The Partially Compliant Test Robot (PCTR) consists of two differentially driven axle 

modules connected by a flexible frame module.  The PCTR is constructed of commonly 

available components and illustrates how the CFR concept lends itself to simple, easy to 

manufacture designs [17].  The axles are constructed of commercially available structural 

aluminum extrusions.  The flexible frame module connecting the axles is a single piece of 

flat spring steel, which is bolted to each axle forming a clamped joint.  Each of the axles 

has a machined bearing block with two miniature ball bearings to support the wheel 

assemblies.  A 24-volt dc gear motor independently drives each of the wheels with wheel 

positional feedback being provided by optical encoders (Figure 8).  Power can be 

 
Figure 7:  University of Utah partially 

compliant test robot 
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supplied to the PCTR from on-board batteries, or a stationary power supply.  For all of 

the experiments in this work, the stationary power supply was used.  For more details on 

PCTR design and construction see [17].  A table of PCTR components and parameters 

may be found in Appendix B. 

Control of the PCTR is performed using a dSPACE 1103 digital signal processor 

(DSP).  The control algorithms developed in Chapter IV were created in Simulink®  and 

compiled and loaded onto the DSP using Real Time Workshop® .  Experiments were 

controlled and data recorded using ControlDesk® .  Commands are sent to each of the 

wheels as voltage signals from four digital to analog outputs on the DSP.  These voltage 

control signals are amplified by servo amplifiers mounted on the aluminum structural 

elements.   Encoder feedback is read as digital signals on the DSP.  For all of the 

experiments, in this study, the DSP ran at a speed of 1 kHz.  At this speed, the digital 

implementation can be considered analog, because the control frequency is significantly 

higher than the system dynamic frequencies, which are on the order of a few Hz. 

 
Figure 8:  PCTR configuration and components. 
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System Characterization 

Before the control methods developed in Chapter IV may be implemented, the 

PCTR robot system must be characterized and low-level wheel controllers developed to 

ensure control inputs and actual wheel response match as closely as possible. 

The low-level wheel controller system model can be represented by the system 

diagram shown in Figure 9.  The Desiredω  signal is calculated from the current robot 

posture by the control algorithms developed in Chapter IV.  This signal is compared with 

the Sensedω  signal calculated from the encoder feedback.  The error between these two 

signals is the input to the controller GC.  The control output is then sent from the DSP to 

the robot represented by GP. The absolute wheel position, Θ , is sensed by the encoders 

and measured by the DSP.  This signal is filtered, to smooth out the digital encoder 

signal, and differentiated to determine the measured wheel angular velocity, Sensedω , to be 

compared with the desired wheel angular velocity Desiredω . 

The first step in developing the low-level wheel controller is to characterize the 

robot plant GP.  Many of the parameters necessary to find a transfer function 

characterization of GP using traditional system modeling techniques would be very 

difficult to determine for the PCTR.  Specifically, determining the coulomb and viscous 

friction and the rotational moment of inertia for each wheel by calculation would be very 

GC GP

GFs

+-

ω Sensed
Filtered

Feedback

errorω Desired Plant Input Θ Actual

Encoder
Feedback

 
Figure 9:  Low-level wheel controller system diagram 
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difficult.  Many assumptions would have to be made that would likely lead to 

considerable error.  Because of this, it was decided that the best method for determining 

the plant transfer function would be through experimental means. 

If the system in Figure 9 is reconfigured to match a desired wheel angular position 

response DesiredΘ , instead of a desired wheel angular velocity Desiredω , then the system 

diagram is modeled as shown in Figure 10.  The filter, GF, is no longer necessary for 

position control because the feedback signal is not differentiated and a smooth signal is 

thus not as critical.  The controller gain, KC, is simply a proportional gain imposed by the 

controller.  All other system gains are included in the plant transfer function GP.  These 

include the amplifier gain, motor gain, gear ratio gain, etc.  This method will prove to be 

convenient because, like other previously mentioned system parameters, these gains are 

difficult to quantify and vary for each wheel. 

The closed loop transfer function for the system shown in Figure 10 is 

 .
1

Actual C P

Desired C P

K G

K G

θ

θ
=

+
 (90) 

 It is assumed that the plant, GP, is of the following open loop form  

KC GP+-
ΘDesired error Plant Input ΘActual

Encoder
Feedback

 
Figure 10:  Plant system diagram. 
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which matches the form of a typical damped mass motor system.  Substituting (91) into 

(90) and simplifying reveals the following closed loop system transfer function 
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Inspection of equation (92) shows that it closely resembles the response of a second order 

system.  Setting (92) equal to a second order response, the following relations can be 

developed 
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Rearranging (91) into the following form 
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it can be seen that if KC, c, and nω  are known, then the open loop transfer function GP 

may be found. 

The value of KC may be chosen so that the response of the system is under 

damped.  The values ς  and nω  may then easily be found from the system response using 

the familiar second order response equations for percent overshoot, P.O., and time to 

peak, Tp. 
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 (95) 

Each of the PCTR wheel controllers was given a step input and the percent 

overshoot and time to peak of the response was used to find ς  and nω , with KC = 20.  

These responses can be seen in Figure 11 compared with the second order system model 

response generated using the ς  and nω  that were found.  The time to peak, percent 

overshoot, ς , nω , and plant transfer function for each of the wheels is displayed in Table 

2.  It can be seen from Figure 11 that the second order system response matches each of 

the wheels measured responses quite well. 

As an added reassurance that these plant transfer functions were accurate, an HP 

Dynamic signal analyzer was utilized to find the roots of the system.  The signal analyzer 

provided a swept sine input from 0.25 Hz to 5 Hz for each of the four wheels.  One of the 

wheel encoders was used for position feedback to the DSP, and the DSP then provided a 
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Figure 11:  Step response for each wheel of the PCTR robot.  Actual 

measured responses are compared with 2nd order model response. 
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voltage signal to the HP Dynamic Signal Analyzer.  The DSP was necessary to convert 

the digital encoder feedback signal to an analog feedback signal that could be input into 

the analyzer.  The HP Dynamic Signal Analyzer created a Bode Plot from the robot 

response and used a curve fit to determine the roots of the system.  Several tests were 

performed because of difficulty in obtaining consistent results.  It is believed that this is 

due to differences in each of the wheel systems that caused the robot to rotate in circles 

and deflect the frame during the tests.  The average of the tests showed roots at 0 and 

11.8− .  This compared favorably from the roots found using the step input of 0 and –12.6 

to -15.1.  Because of the difficulty in obtaining consistent results from the signal 

analyzer, the roots obtained from the step input were used. 

Filter Design 

The next step in developing the low-level wheel controller in Figure 9 is to find a 

suitable transfer function for the filter, GF.  The filter is necessary to smooth out the 

wheel angular position output from each of the optical encoders.  This output, upon 

magnification, resembles a staircase because the encoders provide a signal that is 

Table 2:  Response values of PCTR robot to a step input and individual wheel plant 
transfer functions.  KC=20 

 
Wheel Tp, sec P.O. ζ ωn, rad/sec GP 

Left Front 0.322 13.2% .542 11.61 2

6.7396
12.5852s s+

Right Front 0.293 13.2% .542 12.76 2

8.1409
13.8318s s+

Left Rear 0.315 13.8% .533 11.79 2

6.9502
12.5681s s+

 

Right Rear 0.298 10.6% .581 12.96 2

8.3981
15.0595s s+
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incremented by 500 counts per revolution.  Each count of the encoder represents a step of 

approximately 0.7 degrees, or approximately 1 mm translation.  The signal is 

differentiated to find the wheel angular velocity, and this differentiation is unbounded 

due to the steps in the signal.  Thus, a filter is necessary to smooth the signal before it is 

differentiated.   

A second order filter was used, with 1ς =  for convenience, and the cutoff 

frequency fω  chosen to attenuate the signal at the desired range.  The encoder feedback 

steps are more pronounced as velocity decreases because there are less revolutions of the 

wheel, and correspondingly less encoder steps per unit of time.  Hence, it is desired to 

have the cutoff frequency as low as possible to combat this effect at low velocities.  The 

cutoff frequency must not be chosen too low, or the system delay caused by the filter will 

have a significant impairment on controller performance.   Consequently, it becomes a 

balancing act to have the cutoff frequency low enough to attenuate the encoder signal 

jumps at low speeds without causing too significant of a controller delay.  

In the point stabilization case, encoder signal attenuation at low speeds proved to 

be the most critical.  Tests were run on the PCTR and it was observed that vibrations 

seemed to be induced, by the encoder feedback signal, as the robot decelerates as it nears 

the origin beginning at a velocity of approximately 0.03 m/s.  Consequently the target 

velocity for attenuation was chosen to be 0.03 m/s. Using the wheel radius and encoder 

counts per revolution this velocity can be converted by the equation  

 

.03 /
.073

500 / 32.7 .
2

w

v m s
r m

f counts rev Hz

ω

ω
π

= =

= =
 (96) 



55 

 

into a target frequency of 32.7 Hz.  It was chosen to have a cutoff frequency one tenth of 

the target frequency so that significant attenuation would be achieved at the target.  This 

corresponds to 3.27 Hz, or an fω  of approximately 20.5 rad/sec.  Using fω  of 20.5 

rad/sec in the second order filter 
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 (97) 

it can be seen in Figure 12 that the filter has a drop off of 40 dB/decade after the cutoff 

frequency, and the attenuation at the target frequency of 32.7 Hz is –40 dB.  This was 

found to be acceptable on the PCTR robot system for point stabilization. 

For the path following case, delay caused by the filter proved to be more critical 

than encoder signal smoothness.  Generally the desired path velocity will be much faster 

than the 0.0 to 0.03 m/s critical low-end velocity range experienced in the point 

stabilization case.  Thus, the robot will generally not be traveling inside the critical low-

end range and an extremely low filter cutoff frequency is not necessary.  The delay 

caused by an extremely low filter cutoff frequency also proved to cause instability as the 

path error approached zero.  Therefore it was desirable to use a much higher cutoff 

frequency than for the point stabilization case.  It was found to be quite effective to use 

the desired path velocity as the target attenuation velocity.  The filter cutoff frequency 
f

ω  

may then be found using the same methodology as for the point stabilization case. 
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Controller Design 

The final step in designing the low-level wheel controller is developing a 

controller, GC, which will give the system in Figure 9 the desired response.    Ideally, it 

would be desired to have the system type as high as possible.  The input to the wheels 

from the path generators developed in Chapter IV will be similar to a ramp or parabola 

type input.  Hence, a type one system would have at a minimum some constant error and 

for more parabolic inputs a constantly growing error.  A type two system would have at a 

minimum zero error, and at a maximum a constant error.  Therefore it is desired if 

possible to have a type two system, or in other words two free integrators.   

 
Figure 12:  Filter Bode diagram.  Shows attenuation at cutoff frequency 

f
ω , 

and the target frequency. 
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The system transfer function GP and the filter transfer function GF were input into 

the Matlab®  SISO design tool to find an appropriate controller for the system.  The GF 

used for the filter had a cutoff frequency optimized for the point stabilization case to 

ensure a conservative design.   The plant by itself has a free integrator, but this is 

canceled out by the differentiation in the feedback loop.  It was thus attempted first to 

find a controller with two free integrators to make the closed loop system type two.  It 

was also desired to have the percent overshoot, and settling time as low as possible while 

maintaining a phase margin of at least 45  to maintain the system dynamic performance 

given uncertainty [33]. 

  It was found that the best response obtained from a controller with two free 

integrators was with two poles at 0, and zeroes at –2.5, -14.1, and –17.8.  The root locus 

of the system may be seen in Figure 13 (A).  It can be seen from the root locus that there 

is a vertical asymptote at approximately –9 on the real axis.  This asymptote draws the 

roots from the real axis to increasing imaginary values as gain increases.  Because of this, 

as the gain is increased to make the roots more negative and decrease the settling time, 

they also have a larger imaginary component increasing the percent overshoot.  The best 

response obtained, with the poles and zeroes above, was a settling time of approximately 

0.74 seconds, and a percent overshoot of approximately 35%.  The Bode diagram of the 

system with this controller can be seen in in Figure 13 (B) and the step response of the 

system may be seen in Figure 14.  It was determined that the percent overshoot of this 

controller is much too high and could lead to system vibrations.  The settling time of the 

response is also much too slow and deemed not acceptable.  

A controller with just one free integrator was studied next.  Again using the SISO  
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(A) Root Locus 

 

 
(B) Bode Diagram 

 
Figure 13:  System with two controller poles at 0 and zeroes at –2.5, -14.1, -17.8 
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Tool, it was determined that the best response was obtained with a single pole at zero and 

a zero at –11.  The Root locus of this response can be seen in Figure 15.  This root locus 

also has asymptotes at 60± °  leading the poles to higher imaginary values as gain is 

increased, but with a proper choice of the gain KC the percent overshoot is approximately 

5% and the settling time is 0.329 seconds.  This response is much better than the 

controller with two free integrators and was deemed acceptable. 

It was decided that the settling time and percent overshoot benefits of this 

response outweigh the steady state error characteristics of the controller with two free 

integrators.  Thus, a PI controller with a root at zero and pole at –11 was used.  This 

leaves the system as a type one system.  The value of KC was chosen so that each of the 

wheels had a similar time response and overshoot.  The gain KC was chosen as 95.7 for 

 
Figure 14:  Step response with two controller poles at 0 and 

 zeroes at -2.5, -14.1, -17.8. 
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the left front wheel, 88.6 for the right front, 93.0 for the left rear, and 95.2 for the right 

rear wheel.  The Bode diagram of the system with this controller can be seen in Figure 16 

(A), and the step response of the system may be seen in Figure 16 (B).  

In the path following case, as mentioned above, the filter cutoff frequency 
f

ω  

may be chosen much higher than in the point stabilization case.  This greatly reduces the 

amount of delay induced in the system by the filter, and allows higher controller gains to 

be chosen resulting in improved time responses of the system.  Hence, in the path 

following case the controller gain should be optimized for the expected range of desired 

path velocities 

The following linear equations for KC may be used to find an appropriate gain 

 
Figure 15:  System root locus with controller pole at 0 and zero at -11. 
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(A) Bode Diagram 

 

 
(B) Step Response 

 
Figure 16:  System with controller pole at 0 and zero at –11, KC of 95.7. 
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for a given desired path velocity assuming fω  has been chosen for the same desired path 

velocity.   

 

1683 45.2

2076 26.2

1632 44.0

2581 17.7

LF

C
RF

LR

C
RR

desC

des

desC

des

K s

K s

K s

K s

= +

= +

= +

= +

 (98) 

These equations were developed by fitting a linear curve to the optimum gain at a 0.03 

m/s target velocity and a 0.3 m/s target velocity.  The controller was implemented in 

Simulink® using the equation with the following form 
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K s
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s
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CHAPTER VI  

SIMULATION AND EXPERIMENTAL RESULTS 

The validity of the point stabilization and path following controllers developed in 

Chapter IV was tested in simulation and experimentally on the PCTR robot.  The control 

algorithms were realized using Simulink®  models, which could be run in simulation or 

compiled and loaded onto the dSPACE®  DSP.    

Indiveri Style Point Stabilization Simulation  

The Indiveri style point stabilization controller was tested in simulation for 

several different initial conditions to evaluate its performance in the parking problem.  As 

is shown Figure 17 and Figure 18, the controller does indeed generate smooth natural 

looking paths of bounded curvature.  The paths proceed in forward motion, as required, 

and are free of cusps.   

The extension of the controller dynamics performs well as is shown in Figure 19 

(A).  The curvature and velocity of the simulated robot converge well to the desired 

curvature and velocity output by the controller, and the entire system converges to the 

origin.  The polar states also converge well to zero as shown in Figure 19 (B).  The only 

item of concern is shown on the right in Figure 19 (A), where it is shown that the 

curvature control variable breaks down and becomes unstable as time gets large.  It is 

believed this is due to machine precision error as the polar states become very small.   
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(A) φ0=0 

 

(B) φ0=π/2 

Figure 17:  Simulation of CFR Indiveri style point stabilization controller paths.  Initial 
conditions e0=3 meters, and k1=0.3, k2=2, k3=2.9, ku=0.75, kc=0.25, u =0.3. 
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(A) φ0=π  

 

(B) φ0=3π/2 

Figure 18:  Simulation of CFR Indiveri style point stabilization controller paths.  Initial 
conditions e0=3 meters, and k1=0.3, k2=2, k3=2.9, ku=0.75, kc=0.25, u =0.3. 
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(A) Desired velocity and curvature ud and cd compared with actual 
 velocity and curvature ua and ca 

 

(B) Polar states e, θ, and α. 

 
Figure 19:  Simulation of CFR Indiveri style point stabilization controller control 

variables and states.  Initial conditions e0=3 meters and k1=0.3, k2=2, k3=2.9, ku=0.75, 
kc=0.25, u =0.3, for θ0=π/4, φ0= -π/2. 
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Notice that the instability occurs well after the simulated robot’s velocity has vanished 

and the robot is essentially at the origin.  Hence, this instability in the curvature due to 

machine precision may be easily overcome by setting the control variables to zero when 

the desired velocity becomes less than some small value. 

Indiveri Style Point Stabilization Experimental Results  

The experimental results of the Indiveri style point stabilization controller showed 

excellent coherence to the simulation results presented above.  Results of the two tests 

presented in Figure 20 show that the PCTR stabilizes to the origin as predicted.  

Simulation results are not shown in Figure 20, because they are essentially coincident 

with the experimental results.  

The major challenge faced in implementing the controller was that the controller 

proved to be especially sensitive to perturbations near the origin.  All real world systems 

will have perturbations introduced into the system from unmodeled disturbances.  The 

controller extension performed in Chapter IV guarantees the system will still stabilize to 

the origin in the presence of small perturbations.  Problems occur as the robot approaches 

the origin though, because of the way the control variable cd is defined.  Equation (26) 

may be rewritten in the form  

 
2 3

1 sin
sin

d
c k k

e
α

α θ α
α

⎛ ⎞⎟⎜= + + ⎟⎜ ⎟⎜⎝ ⎠
 (100) 

where it may be seen that as the polar state e tends smaller, it will act to make the control 

variable cd larger.  In Chapter IV the constants k2 and k3 were chosen to guarantee that the 

states θ  and α  would diminish faster than e, which will guarantee that cd will tend to  
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(A) θ0=π/4 

 

(B) θ0=5π/4 

Figure 20:  Experimental data collected on PCTR robot utilizing Indiveri style point 
stabilization controller.  Initial condition e0=3 meters, φ0=0, and k1=0.3, k2=2, k3=2.9, 

ku=0.75, kc=0.25, u =0.3 φ0= -π/2. 
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zero as the robot approaches the origin.  This approach was verified in simulation, and it 

was seen that cd tended to zero until computer precision error caused the variable to 

become unstable.  This occurred well after the robot had reached its destination.  In real 

world systems such as the PCTR, perturbations in the system will always cause some 

finite value of θ  and α .  Hence, it is no longer guaranteed that cd will tend to zero as the 

polar state e tends to zero.  In fact, it was observed that cd does become quite large as the 

robot approaches the origin.  This effect causes the robot to vibrate to the point of 

becoming unstable near the origin. 

One major contributor to the perturbations that cause this instability is the encoder 

feedback.  As discussed in Chapter V, the encoder feedback is a digital signal that 

resembles a staircase where each count of the encoder represents a step of approximately 

0.7 degrees.  The signal is differentiated to find the wheel angular velocity, which has the 

effect of magnifying the steps in the signal.  Each jump of the encoder feedback causes a 

small jump in the value of θ  and α  and a corresponding jump in the control variable cd.  

These jumps become magnified as e diminishes, hence the vibration induced near the 

origin.  To compound the problem, the encoder feedback steps are more pronounced as 

velocity decreases, because there are fewer revolutions of the wheel, and correspondingly 

less encoder steps per unit of time.  From the definition of ud in (23) the velocity 

exponentially decreases as e diminishes near the origin. 

To minimize the vibrations induced at the origin, the filter cutoff frequency fω  

was chosen as low as feasible, as discussed in Chapter V.  This ensures as smooth an 

encoder feedback signal as possible.  The controller gains kc and kv were also chosen to 
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be very low.  This ensures that the system response to any large cd is very slow, and 

prevents the vibrations from growing unbounded as fast. 

As a subject of future research, gain scheduling would likely improve the system 

performance.  Small gains and a low filter cutoff frequency could be utilized at low 

velocities to minimize vibration.  At higher velocities the gains and cutoff frequency 

could be switched to allow for improved system performance. Efforts are also currently 

under way to develop a dynamic controller that should improve performance by 

considering the complete system dynamics including the frame element. 

In addition to selecting a low filter cutoff frequency and gains, a region was 

defined near the origin that upon entry of the PCTR robot into the region, the control 

variable cd becomes zero.  Therefore, once the robot enters this region, it ceases to try and 

diminish the states θ  and α  and only seeks to diminish e.  This region will therefore 

prevent chatter near the origin if the robot can successfully enter the region.  For the tests 

conducted on the PCTR shown in Figure 20, this region was defined as a 5 cm by 5 cm 

square area centered vertically at the origin and horizontally to the left of the origin.  In 

consequence of defining this region, it is guaranteed only that the robot will stabilize 

within this square, but it was observed that generally the robot would stabilize to within 1 

cm of the origin or less.  The velocity and curvature of the PCTR for a stabilization 

maneuver are shown in Figure 21 (A).  It can be seen that the robot enters the region at 

approximately 18 seconds, at which point cd is set to zero.  The polar states are presented 

in Figure 21 (B).  Note that θ  and α  do not converge completely to zero because of the 

square region.  Figure 22 shows snapshots of the PCTR performing a parking maneuver 

at different stages in time.  
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(A) Desired velocity and curvature ud and cd compared with actual 

 velocity and curvature ua and cd. 

 

(B) Polar states e, θ, and α. 

Figure 21:  Experimental control variable and state data collected on PCTR robot 
utilizing Indiveri style point stabilization controller.  Initial conditions e0=3 meters, 

θ0=5π/4, φ0=0, and k1=0.3, k2=2, k3=2.9, ku=0.75, kc=0.25, u =0.3 φ0=0. 
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Figure 22:  Robot snapshots.  (A) t=0, (B) t=3, (C) t=5, (D) t=12 sec., for k1=0.3, k2=2, 
k3=2.9, ku=0.75, kc=0.25, u =0.3, e0=1.8 meters, θ0=7π/8, φ0=0.  Simulation and 

experimental wheel paths are essentially coincident. 
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Tayebi Style Point Stabilization Simulation 

The modified Tayebi style point stabilization controller was tested in simulation 

for several different initial conditions to evaluate its performance in the parking problem.  

As shown in Figure 23, the controller generates smooth natural looking paths of bounded 

curvature similar to the Indiveri style point stabilization controller.  Unlike the Indiveri 

controller, the paths do not all proceed in forward motion.  Some paths may even reverse 

motion during the maneuver as shown in Figure 24.   

 The extension of the controller dynamics again performs well as is shown in 

Figure 25.  The curvature and velocity of the simulated robot converge well to the desired 

curvature and velocity output by the controller, and the entire system converges to the 

origin.  Figure 25 also shows that the polar states converge well to zero. 

The controller also has the disadvantage that the control variable c1 becomes 

unbounded as α  approaches /2π± .  This proved to cause problems if the initial 

condition for α  of the simulated robot was near /2π± ; thus no plots were generated in 

this region in Figure 23 and Figure 24.  It may be possible to impose a saturation function 

on c1, to prevent the variable from becoming unbounded, but this was not performed for 

this work.  The Tayebi style point stabilization controller was not tested experimentally 

on the PCTR.  

Path Following Simulation 
 

The modified path following controller developed in Chapter IV was tested in 

simulation for several different path types to evaluate its performance in path following.  

Figure 26 and Figure 27 show the simulated robot tracking a line, circle and sine wave 

that were chosen as representative paths to show the ability of the controller.  More
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(A) φ0 = 0 

 

(B) φ0=π/2 
 

Figure 23:  Simulation of CFR Tayebi style point stabilization controller paths.  k1=0.5, 
k2=1.5, k3=3, k4=0, ku=0.75, kc=0.25.  
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Figure 24:  Simulation of CFR Tayebi style point stabilization controller path.  Initial 

conditions e0 = 3 meters, θ0 = 0, π/4, 3π/8, -π/4, e0 = -3 meters, θ0 = 0, -π/4, -3π/8 and k1 = 
0.5, k2 = 1.5, k3 = 3, k4 = 0, ku = 0.75, kc = 0.25, for φ0 = π/4.   
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(A) Desired velocity and curvature ud and cd compared with 
 actual velocity and curvature ua and cd 

 

(B) Polar states e, θ, and α.   

Figure 25:  Simulation of CFR Tayebi style point stabilization controller control variables 
and states.  Initial conditions e0 = -3 meters, θ0 = π/4, φ0 = 0, and k1 = 0.5, k2 = 1.5, k3 = 3, 

k4 = 0, ku = 0.75, kc = 0.25. 
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(A) Line with initial error of xerr= -0.2 meters, yerr = -0.25 meters, φerr = 0, dess = 0.2 m/s. 

 

(B) Sine wave of 1 meter pk. to pk. amplitude and 2π/3 period, initial error xerr= -0.1 
meters, yerr = -0.1 meters, φerr=-1 radian, dess =0.05 m/s. 

 
Figure 26:  Simulation of CFR path following controller tracking a line and sine wave. 

k1 = 0.5, k2 = 1.5, k3 = 3, k4  = 0.5, ku = 2, kc = 1.   
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(A) Circular Path 

 

(B) Polar states e, θ, and α. 
 

Figure 27:  Simulation of CFR path following controller tracking one meter radius circle. 
Initial error xerr = 0.2 meters, yerr = -0.1 meters, φerr = 0, dess = 0.1 m/s and k1 = 0.5, k2 = 

1.5, k3 = 3, k4 = 0.5, ku = 2, kc = 1. 
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complicated paths could easily be built out of these basic paths types.  It can be seen from 

the line tracking that the simulated robot will converge to the path even in the presence of 

significant initial error.  The simulated robot tracks changing path curvature well in the 

case of the sine wave.  Figure 27 illustrates that the polar error states quickly converge to 

zero as expected. 

Path Following Experimental Results  

The experimental results of the modified path following controller developed in 

Chapter IV showed excellent coherence to the simulation results presented above.  

Results of the two tests presented in Figure 28 and Figure 29 show that the PCTR follows 

the paths as predicted.  Simulation results are not shown in the figures, because they are 

essentially coincident with the experimental results.  

Like the experimental implementation of the Indiveri Style point stabilization 

controller, the major challenge faced in applying the controller proved to be sensitivity to 

perturbations near the moving origin.  Equation (66) may be rewritten in the form  

 

3 1 3
2 2 1

3 1 3
2 2 1

Left Half Plane

sin sin1
sin sin sin

Right Half Plane

sin sin1
sin sin sin

k c k s
c k c s s

e

k c k s
c k c s s

e

θ α θ α
α α α θ

α α

θ α θ α
α α α θ

α α

⎛ ⎞⎟⎜= − + + + + − ⎟⎜ ⎟⎟⎜⎝ ⎠

⎛ ⎞⎟⎜= − + + + − ⎟⎜ ⎟⎟⎜⎝ ⎠

 (101) 

where it may be seen that as the polar error state e tends smaller, it will act to make the 

control variable c2 larger.  As in the point stabilization case, perturbations in the system  
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(A) Line with initial error of xerr= -0.1 meters, yerr = -0.1 meters, 
 φerr=0, dess =0.1 m/s, ε=0.07 meters. 

 

(B) Sine wave of 1 meter pk. to pk. amplitude and 2π/3 period, initial error xerr= -0.01 
meters, yerr = -0.01 meters, φerr= 0, dess =0.05 m/s, ε=0.1 meters. 

 

Figure 28:  Experimental data collected on PCTR robot tracking a line and sine wave.   
k1=0.5, k2=1.5, k3=3, k4=0.5, ku=2, kc=1.  
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(A) Circular path. 

 

(B) Polar states e, θ, and α. 
 

Figure 29:  Experimental data collected on PCTR robot tracking one meter radius circle.  
Initial error of xerr=0.2 meters, yerr= -0.1 meters, φerr=0, dess = 0.1 m/s, ε = 0.1 meters.  

k1=0.5, k2=1.5, k3=3, k4=0.5, ku=1, kc=1. 
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will always cause some finite value of θ  and α , which causes vibrations as the robot 

approaches the moving origin.   

This problem may simply be solved, in the path following case, by diminishing 

the control variable c1 as in (75) when the polar error state e ε< .  It was found for the 

experiments conducted on the PCTR that letting 7 10 cmε = −  is sufficient.  This 

implies that, after sufficient time, the robot will follow the path with a maximum e ε= . 

Figure 29 shows the polar error states for the tracking of a circular path.  Note that e, θ  

and α  do not converge completely to zero because c1 is diminished when e ε< . 

The error characteristics of the wheel controllers can be see in Figure 29 (A).  As 

the robot proceeds around the circular path, error builds due to the tracking ability of the 

type one wheel controllers as discussed in Chapter IV.  This causes the wheels to 

gradually drift out of the desired pure bending alignment.  This provides further 

motivation for the implementation of gain scheduling or a dynamic wheel controller to 

help alleviate this error. 



 

 

CHAPTER VII  

CONCLUSIONS 

There are many attractive advantages to the CFR robot platform.  The simple 

hardware design lends itself well to the concept of modular, multipurpose robotics with 

the ability to be mass-produced.  The greatest challenge in the novel concept has been the 

increased complexity of the robot kinematics and control compared to traditional mobile 

robot designs.  Utilizing the equivalent kinematic formulation and control designs 

developed herein, the CFR concept proves that it is a viable design that may be controlled 

accurately in simulation and practice.  

The equivalent kinematic formulation greatly reduces the complexity of the 

vehicle kinematics, allowing the vehicle to be controlled by the posture of a single point 

located at the center of the robot.  This permits the kinematics to be described in a fashion 

similar to less complex vehicles, while ensuring the most efficient steering maneuvers, 

maximizing mobility, and minimizing required traction forces for improved towing 

capacity.    

The CFR may be accurately controlled in the point stabilization and path 

following cases.  Utilizing the equivalent kinematic formulation and describing the robot 

kinematics through polar state variables, time invariant, global exponential 

asymptotically converging control laws were developed for the posture stabilization 

problem.  Using this same polar representation, a control law was developed for both the 
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path following and posture stabilization case.  These control laws may be extended to 

compensate for nonideal initial conditions and system drift. 

The control laws perform well in both simulation and experimentally on the 

CFTR, provided actions are taken to account for real world perturbations near the origin. 

The trajectories generated are smooth and meet the desired requirements of the equivalent 

curvature based model.  The experimental results matched the simulated results well and 

show that the performance of the robot may be easily predicted.   

The CFR concept is still in its infancy, and there remain many areas for 

improvement in control of the platform.  Further investigation needs to be conducted into 

the Tayebi style point stabilization controller to see if the requirement for 2α π≠ ±  

may be removed.  This would allow a single control law to be used for both the path 

following and posture stabilization problems for all initial conditions.  The robot would 

benefit from an improved wheel controller that takes into account the dynamics of the 

entire system, including the compliant frame.  Curvature feedback could be improved 

through the use of strain gauge sensors on the compliant frame element to ensure the 

desired pure bending condition is maintained.  Despite the need for future investigation, 

this thesis has shown that the CFR concept is a viable design for mobile robots that may 

be controlled easily and efficiently.  Most of all, it has shown that the CFR concept 

warrants further research and attention in the future.    



 

 

APPENDIX A 

ALTERNATE DERIVATION OF CONTROLLER EXTENSION 

Based upon the Lyapunov function,  

 ( )2 2
2

1
2

V kα θ≡ +  (102) 

Indiveri suggests the use of the control law 

 
( )

1

2 3

: sat e,

sin sin

u k e u

c k k
e e e

γ

α θ α α
α

=

= + +
 (103) 

which are smooth time functions that asymptotically drive the state ( , , )e θ α  towards the 

origin.  The parameters k1, k2, and k3 > 0 are constant gains and ( )1
sat e,k u  is a positive 

continuous saturation function that prevents the proportional control input u to grow 

larger than some upper bound.  The controller dynamics may be extended and written as 

a cascade system of the form 

 

( , , , , )
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( , )

a

a d
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α θ=

=

=

 (104) 



86 

 

where ud and cd are the desired velocity and curvature relations established by equation 

(103), and ua and ca are the actual measured feedback velocity and curvature. We then 

perform a change of coordinates, 

 

.

a d

a d

Y y

U u u

C c c

=

= −

= −

 (105) 

where U and C are error states for our desired velocity and curvature.  The transformed 

system becomes,  

 

( , , , , )

( , , , , )
d d

a d

a d

Y f e U u C c

F e U C

U u u

C c c

α θ

α θ

= + +
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 (106) 

After applying the feedback, 

 
( )

( )

a u ad d

a c ad d

u k u u u

c k c c c

= − +

= − +
 (107) 

where ku and kc are positive constants,  the closed-loop system becomes, 

 

( , , , , )

u

c

Y f e U C

U k U

C k C

α θ=

= −

= −

 (108) 
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Thus, U and C are exponentially stabilized.  As time goes to infinity, U=0 and C=0, and 

the system formulation becomes,  

 
( , , , 0, 0)

( , , , , )
d d

Y y F e

f e u c

α θ

α θ

= =

=
 (109) 

which is asymptotically stabilized about the origin as  Bacciotti [31] Theorem 19.2 

shows.  In summary, substituting uD and cD into (107) and combining with (15) the polar 

state equations of the compliant framed mobile robot now become,  
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APPENDIX B 

SYSTEM PARAMETERS 

 

 

Table 3:  Partially compliant test robot parameters 

Parameter Value 

Frame Element  

Length, l 0.368 m 

Height 0.051 m 

Thickness 0.5 mm 

Axle Half Width, a 0.343 m 

Wheel Radius, rw 0.076 m 

Robot Mass 9.53 kg 
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Table 4:  Partially compliant test robot component information. 

Component Manufacturer Model Miscellaneous 

Motors Maxon 
F-Series 2140-

937-22-116-050 

R=44.6 Ω 

KT=55.2 mNm/A 

Kn=173 rpm/V 

Amplifiers Advanced Motion Controls 10A8  

Amplifier 

Mounting Cards 
Advanced Motion Controls MC2X510  

Encoders Agilent Technologies HEDS-5540 A12 500 CPR 
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