Improved Accuracy and Runtime of IC Power Supply Noise Simulations through Multi-Phase and Voltage Controlled Resistor Analyses

2011 MICRON SENIOR CLINIC UNIVERSITY OF UTAH

TEAM MEMBERS

E. Michal Peterson Thomas White Travis Fiehler Lavander Begay

ADVISORS

Tim Hollis Ken Stevens

Presentation Overview

- Project Motivation/Background
 O Importance to Micro-Electronics
- Project Description
 - o Multi-Phase Analysis
 - Voltage Controlled Resistor (VCR) Substitution
- My Contribution
 - Tool Flow and Process Design

Micro-Electronics

- Consumer Electronics Market is Growing
 - Persistent demand for more gadgets
 - More demand for performance
 - More new technology required

• Higher Frequencies

• Lower Power

Non-Ideal = Decreased Circuit Performance

- Non-Ideal Power Supply
 - Parasitic effects
 - Ringing
 - o Noise
- Circuit Responds Negatively
 - Effects timing
 - Effects speed

Circuit Complexity Challenges

- Requirement for SPICE Simulation
 - Circuit size and complexity make behavior predictions impossible
 - SPICE simulations can give insight as to circuit function

- Industry "Gold Standard"^[4] Insufficient
 - Large/complex Hspice simulations unmanageable
 - New simulation strategies must be employed

Attempts to Rectify the Problem

- Industrial Attempts
 - o HSIM^{plus} (Synopsis), Voltage Storm (Cadence), Totem (Apache)[3]
 - All Sacrifice Some Accuracy for Speed/Lower Memory Demand

- Current Project
 - Testing Simulation Methods for Viability
 - Open Loop Methodology Multi-Phase Analysis
 - VCR Substitution Methodology

Project Proposal

A Description of Two-Phase Analysis

Phase 1:

Run time-domain simulation with all circuitry in place and capture circuitspecific currents into and out of the supplies

Phase 2:

Apply extracted currents to full Power Delivery Network and capture static and dynamic voltage changes

Multi-Phase Description

• Multi-Phase Analysis

• Extension of two-phase strategy to an open loop

Multi-Phase:

Take measured voltages from applied circuitry currents to PDN, and apply them as the power supply to the circuitry. Repeat as necessary.

Voltage Controlled Resistor

- Similar to Two-Phase As Well
 - Rather than replace circuitry with current source, replace it with VCR

Initial Problems to Solve

• Tool Design

- Both VCR and Multi-Phase are new techniques
- Tools to perform these analyses need to be created

Decisions to be Made

- Simulator for base simulations
- How the process should flow
- Which data is important
- How to implement the data as inputs

Base Simulator

• HSpice:

- Industry "Gold Standard"
- <u>The</u> simulator to use

• Why?

- Much more precise, but takes longer to run
- File outputs are much easier to work with

• Files:

- o .lis: text output; can command to contain signal data
- .tr0: binary output; contains data for all signals

Summary of Results

3064	(a)	-30.0000m	-20).0000m	- 10	0.0000m		0.	
3065		+		+		+			+
3066	Θ.	-578.225u-+	+	+	+	+	+ -		a+
3067	10.0000p	-615.882u +	+	+	+	+	+		a+
3068	20.0000p	-927.340u +	+	+	+	+	+		a+
3069	30.0000p	-968.210u +	+	+	+	+	+		a+
3070	40.0000p	-2.557m +	+	+	+	+	+	а	+
3071	50.0000p	-3.652m +	+	+	+	+	+	а	+
3072	60.0000p	-4.948m +	+	+	+	+	а		+
3073	70.0000p	-6.101m +	+	+	+	+	a +		+
3074	80.0000p	-7.581m +	+	+	+	+ a	+		+
3075	90.0000p	-8.321m +	+	+	+	+ a	+		+
3076	100.0000p	-8.705m-+	+	+	+	+-a	+ -		-+
3077	110.0000p	-9.545m +	+	+	+	+a	+		+
3078	120.0000p	-9.455m +	+	+	+	+a	+		+
3079	130.0000p	-10.420m +	+	+	+	a+	+		+
3080	140.0000p	-10.774m +	+	+	+	a+	+		+
3081	150.0000p	-10.995m +	+	+	+	a+	+		+
3082	160.0000p	-10.973m +	+	+	+	a+	+		+
3083	170.0000p	-11.093m +	+	+	+	a +	+		+
3084	180.0000p	-10.921m +	+	+	+	a+	+		+
3085	190.0000p	-10.433m +	+	+	+	a+	+		+
3086	200.0000p	-10.074m-+	+	+	+	a	+ -		-+
3087	210.0000p	-9.862m +	+	+	+	a	+		+
3088	220.0000p	-9.598m +	+	+	+	+a	+		+
3089	230.0000p	-10.554m +	+	+	+	a+	+		+

91 + 680.0000P 1.205 690.0000P 1.203 700.0000P 1.202 92 + 710.0000P 1.201 720.0000P 1.200 730.0000P 1.215 93 + 740.0000P 1.210 750.0000P 1.208 760.0000P 1.208 94 + 770.0000P 1.205 780.0000P 1.203 790.0000P 1.201 95 + 800.0000P 1.199 810.0000P 1.197 820.0000P 1.197

- New SPICE Simulation Strategies Beneficial to Circuit Design
- New Simulation Strategies Require New Tool Designs to Work
- HSpice Allows Tools to be Crafted Using its Outputs
- My Contribution Was to Design and Create the Tools
- Tools Created that Made Multi-Phase and VCR Analyses Possible

Questions?

• Contact:

e.michal.peterson@utah.edu

• References:

- [1] MMX, "Motorola Xoom Tablet | Uncrate", http://www.uncrate.com/men/gear/laptops/motorola-xoom-tablet/ - accessed 3/2011
- [2] Ziff Davis Inc., "Verizon removes Skype http://www.geek.com/articles/mobile/verizon-removes-skype-video-from-htc-thunderbolt-20110218/ accessed 3/2011
- [3] Hollis, T., "University of Utah Senior Clinic 2009-2010". [PowerPoint Presentation]. April 10, 2009.
- [4] Synopsis Corporation, "HSPICE",
- http://www.synopsys.com/Tools/Verification/AMSVerification/CircuitSimulation/HSPICE/Pages/default.aspx accessed 3/2011
- [5] 2009-2010 Micron Clinic Team, "Evaluation of Integrated Circuit Power Supply Noise with Two-Phase Analysis", April 2009
- [6] Perrott, M.H. "CAD Tools of Michael H. Perrott and former students", http://www.cppsim.com/download_hspice_tools.html, accessed 3/2011

Goals for Multi-Phase Approach

- Separation of Single Simulation
 - Replace internal die with varying current source
- Less Accuracy/Shorter Run Times
 - Single iteration
- More Accuracy/Longer Run Times
 - Multiple iterations
 - Determine if converging
- Simple Circuits Combine to Form Larger

Multi-Phase Method Introduction

- HSIM^{plus} versus HSpice
 - HSIM^{plus}: faster run times [1]
 - HSpice: more accuracy, industry standard [1]
- HSpice for All Multi-Phase Simulations
- Circuits Simulated [1]
 - Four-Inverter Circuit
 - 16-bit Adder
 - 8-bit Multiplier
 - o 4-stage, 8-stage, 16-stage Fibonacci Sequence

Multi-Phase Implementation

• First Phase Captures Rail Currents

• From: Ideal Current Source

ICC POWER 0 PULSE(0 50U 1N 2N) ISS GND0 IDEAL PULSE(0 5U 1N 2N)

• To: PWL Current Source

ICC POWER 0 PWL(0. -102.682U 10.0000P -5.885M + 20.0000P -4.712M 30.0000P -4.715M 40.0000P -4.627M + 50.0000P -4.361M 60.0000P -4.197M 70.0000P -4.420M + 80.0000P -4.343M 90.0000P -4.364M 100.0000P -4.506M + 110.0000P -4.428M 120.0000P -4.523M 130.0000P -4.453M + 140.0000P -4.541M 150.0000P -4.529M 160.0000P -4.617M + 170.0000P -4.630M 180.0000P -4.688M 190.0000P -4.584M + 200.0000P 1.440M 210.0000P -290.962U 220.0000P 145.015U + 230.0000P -262.599U 240.0000P -218.916U 250.0000P -269.011U + 260.0000P -250.744U 270.0000P -256.273U 280.0000P -368.764U + 290.0000P -134.614U 300.0000P -294.786U 310.0000P -58.754U + 320.0000P -139.628U 330.0000P -62.595U 340.0000P 14.458U + 350.0000P 14.801U 360.0000P -65.145U 370.0000P -7.115M + 380.0000P -4.079M 390.0000P -4.566M 400.0000P -4.477M + 410.0000P -4.285M 420.0000P -4.356M 430.0000P -4.323M + 440.0000P -4.303M 450.0000P -4.363M 460.0000P -4.450M + 470.0000P -4.365M 480.0000P -4.531M 490.0000P -4.552M + 500.0000P -4.490M 510.0000P -4.570M 520.0000P -4.585M + 530.0000P -4.606M 540.0000P -4.627M 550.0000P -4.464M + 560.0000P 1.471M 570.0000P -259.729U 580.0000P 104.648U + 590.0000P -375.821U 600.0000P -253.673U 610.0000P -372.869U + 620.0000P -418.878U 630.0000P -322.744U 640.0000P -280.595U + 650.0000P -175.229U 660.0000P -69.271U 670.0000P -130.621U + 680.0000P 18.685U 690.0000P 61.544U 700.0000P -35.062U 10311 730 00000 10

Original Combined Circuit Setup

- Baseline Circuit Problems
 - Mutual inductances [2]
 - Floating nodes
 - Modeling signals difficult
 - Signal voltage levels too low
 - Power voltage levels too low
 - Power voltage nodes vary

Revised Baseline HSpice Circuit

- Baseline Circuit Changes
 - Inputs/outputs to capacitance loads
 - Power nodes connected together
 - Ground nodes connected together
 - Signals inputs internal
 - Signal outputs to capacitance loads

- Original HSpice Baseline Simulation (Orange)
- Original Circuit Multi-Phase 1st Iteration (Green)
- Revised HSpice Baseline Simulation (Blue)

Multi-Phase Intermediate Results

- Current Source Not Suitable Circuit Replacement
- Second Phase Modification Needed:
 - Capacitor load for power node
 - Capacitor load for ground node

- Revised HSpice Baseline Simulation (Orange)
- Multi-Phase 1st Iteration (Green)
 - Single Coupling capacitor of 100pF

- Revised HSpice Baseline Simulation (Orange)
- Multi-Phase 1st Iteration (Green), Single 100pF Capacitor
- Multi-Phase 2nd Iteration (Blue), Single 100pF Capacitor

Simulation Times for 4-Inverter Circuit

• With Single Capacitor

	Inverter (in seconds)						
	REAL TIME	USER TIME	SYSTEM TIME	LEVEL			
HSIM ^{plus}		44.30					
HSpice Package + Die	20.77	19.29	0.08	10			
End of Iteration 1	16.32	15.21	0.09	10			
End of Iteration 2	23.05	22.66	0.07	10			
End of Iteration 3	21.46	21.06	0.12	10			
End of Iteration 4	22.18	21.76	0.1	10			
End of Iteration 5	24.66	23	0.11	10			
End of Iteration 6	24.85	24.4	0.1	10			
End of Iteration 7	25.9	24.37	0.1	10			
End of Iteration 8	25.17	24.74	0.1	10			
End of Iteration 9	27.14	25.68	0.1	10			
End of Iteration 10	29	28.53	0.11	10			

- Revised HSpice Baseline Simulation (Orange)
- Multi-Phase 1st Iteration with Capacitor (Green)
- Multi-Phase 1st Iteration with Circuit (Blue)

- Revised HSpice Baseline Simulation (Orange)
- Multi-Phase 1st Iteration (Green) with Circuit
- Multi-Phase 1st Iteration (Blue) with Capacitor

Revised Second Phase Circuit • Problem: VCC 1.2V • Large Circuits Do Not Simplify • Solution: Measure VCC Here Varying ICC ┥┝ • Replace single cap for (from die simulation) entire circuit **0**V • Predictions: °^ ∠_| | • Longer run times, Ideal 1.2V VSS 0V VSS OV Varying ISS more to calculate (from die simulation) Measure VSS Here • Waveforms Closer to **Baseline Values** ψ VSS OV

- Revised HSpice Baseline 4-Inverter Simulation (Orange)
- Revised 4-Inverter Multi-Phase 1st Iteration (Green)
 - Circuit included in second phase

- Revised HSpice Baseline 4-Inverter Simulation (Orange)
- 4-Inverter Multi-Phase 1st Iteration (Green) with Circuit
- 4-Inverter Multi-Phase 10th Iteration (Blue), with Circuit

- Revised HSpice Baseline Simulation (Orange)
- Multi-Phase 1st Iteration with Circuit (Green)
- HSIM^{plus} Revised Baseline Simulation(Blue)

Simulation Times for 4-Inverter Circuit

• With Capacitance Network

	Inverter (in seconds)					
	REAL TIME	USER TIME	SYSTEM TIME	INTERVAL (ps)		
HSIM ^{plus}		44.30				
HSpice Package + Die	20.77	19.29	0.08	10		
End of Iteration 1	38.06	36.68	0.1	10		
End of Iteration 2	49.35	47.12	0.09	10		
End of Iteration 3	46.1	45.34	0.08	10		
End of Iteration 4	49.76	49.76 45.36 0.1		10		
End of Iteration 5	53.89	46.57	0.07	10		
End of Iteration 6	47.23	46.37	0.06	10		
End of Iteration 7	47.93	46.4	0.08	10		
End of Iteration 8	47.93	93 46.4 0.08		10		
End of Iteration 9	End of Iteration 9 49.52		0.07	10		
End of Iteration 10	46.01	45.07	0.05	10		

Simulation Times for Other Circuits

• With capacitance network

----- ((

	Adder (in seconds)					
	REAL TIME	USER TIME	SYSTEM TIME	INTERVAL (ps)		
HSIM ^{plus}		164.07		10		
HSpice Package + Die	78.05	76.7	1.13	10		
Capacitive Circuit 1	153.2	145.57	0.44	10		
Capacitive Circuit 2	198.65	193.3	1.6	10		
Capacitive Circuit 3	221.96	218.34	1.83	10		

)) ------

	Multiplier (in seconds)					
	REAL TIME	USER TIME	SYSTEM TIME	INTERVAL (ps)		
HSIM ^{plus}		158.92		10		
HSpice Package + Die	132.14	131.08	0.87	10		
Capacitive Circuit 1	166.88	160.81	0.89	10		
Capacitive Circuit 2	189.54	186.52	1.64	10		
Capacitive Circuit 3	196.1	193.39	1.36	10		

Simulation Times for Other Circuits

• With capacit

tance network		Fibonacci 4-stage (in seconds)						
		REAL TIME USER TIME		SYSTEM TIME	INTERVAL (ps)			
	HSIM ^{plus}		161.8		10			
	HSpice Package + Die	117.83	117.05	1.1	10			
	Capacitive Circuit 1	222.62	209.28	1.8	10			
	Capacitive Circuit 2	218.26	218.26	1.17	10			
	Capacitive Circuit 3	240.19	236.9	1.35	10			

	Fibonacci 8-stage (in seconds)						
	REAL TIME USER TIME SYSTEM TIME INTER						
HSIM ^{plus}		235.44		10			
HSpice Package + Die	200.4	199.5	0.45	10			
Capacitive Circuit 1	344.65	342.28	1.48	10			
Capacitive Circuit 2	654.23	632.29	2.65	10			

	Fibonacci 16-stage (in seconds)					
	REAL TIME	INTERVAL (ps)				
HSIM ^{plus}		408.47		10		
HSpice Package + Die	321.16	314.21	1.2	10		
Capacitive Circuit 1	1142.47	1138.84	1.23	10		
Capacitive Circuit 2	2848.44	2839.49	6.22	10		

Baseline Simulations Time Comparison

I I I I I I I I I I I I I I I I I I I			/			a	
		4-INVERTER					
HSIMplus Precision	Level 0	Level 1	Level 2	Level 3	Level 4	HSpice	
MOS evaluations	18,176	18,208	18,208	18,208	21,632		
Time (in seconds)	20.696	20.684	20.706	20.766	43.958	19.29	

		16-BIT ADDER					
HSIMplus Precision	Level 0	Level 1	Level 2	Level 3	Level 4	HSpice	
MOS evaluations	488,008	485,562	544,118	543,272	1,959,856		
Time (in seconds)	164.43	164.32	168.47	164.53	343.5	76.7	

	8-BIT MULTIPLIER					
HSIMplus Precision	Level 0	Level 1	Level 2	Level 3	Level 4	HSpice
MOS evaluations	7,447,602	7,450,026	7,526,926	7,461,290	10,113,416	
Time (in seconds)	298.03	294.91	303.61	294.08	621.24	131.08

Baseline Simulations Time Comparison									
		4-S	TAGE FIBONA	ACCI					
HSIMplus Precision	Level 0	Level 1	Level 2	Level 3	Level 4	HSpice			
MOS evaluations	2,115,926	2,121,662	2,193,106	2,233,582	7,450,784				
Time (in seconds)	161.33	163.87	164.3	160.91	350.48	117.05			
						1			
		8- S	TAGE FIBONA						
HSIMplus Precision	Level 0	Level 1	Level 2	Level 3	Level 4	HSpice			
MOS evaluations	5,801,828	5,794,150	5,926,943	6,006,732	20,997,664				
Time (in seconds)	227.73	226.36	230.58	227.69	495.74	199.5			
						1			
		16-9	TAGE FIBON	ACCI					
HSIMplus Precision	Level 0	Level 1	Level 2	Level 3	Level 4	HSpice			
MOS evaluations	22,216,158	22,667,222	22,017,499	22,584,616	74,063,680				
Time (in seconds)	405.72	408.4	409.02	407.29	940.17	314.21			

Conclusions

- Current Source Not a Simple Circuit Drop-in Replacement
- Single Capacitance:
 - Time decreased for single iteration
 - Multiple iterations converged to HSIM^{plus} values
 - Multiple iterations for larger circuits diverged
- Capactance Network:
 - Time increased dramatically for single iteration
 - Performance increased compared to single capacitance

• Contact:

thomas.white@utah.edu

• References:

[1] 2009-2010 Micron Clinic Team, "Evaluation of Integrated Circuit Power Supply Noise with Two-Phase Analysis", April 2009

[2] Hollis, Tim, "University of Utah Senior Clinic 2009-2010". [PowerPoint Presentation]. April 10, 2009.

Recreating Currents Using Voltage-Controlled Resistors

- Two-Phase Model
- Voltage-Controlled Resistor (VCR)
- Current Generating Circuit
- Simulation Results

Two-Phase Analysis

Vcc

I_{Ckt}

<u>Phase 1:</u> Run time-domain simulation with all circuitry in place and capture circuit-specific currents into and out of the supplies

- Shorter Simulation Time
- Reasonably Accurate
- Overestimation of Power Supply Noise

Voltage-Controlled Resistor

- Resistance changes with an applied Control Voltage (Vc)
- Transistors are too complicated

VCR Model

• Voltage-Controlled Voltage Source

•
$$Vvcr = I \cdot RRES \cdot Vc$$

 $http://www.ecircuitcenter.com/circuits/vc_resistor1/vc_resistor1.htm$

Green = Current

Model Problem

- Dependent Source • $Vvcr = \mathbf{I} \cdot R \cdot Vc$
- $Vvcr = V \cdot Vc$
- Set FCOPY = 1A
 RRES = 1Ω

•
$$Vvcr = 1 \cdot Vc$$

Orange = Inverter current Green = VCR current Max percentage error: 8.5% Average percentage error: 0.15%

Orange = Multiplier current Green = VCR current Max percentage error: 71% Average percentage error: 0.18%

Timing Comparison

Circuit Simulated	Circuit		VCR		Current Source	
	CPU Time	Total Time	CPU Time	Total Time	CPU Time	Total Time
Inverter	.76 s	1.08 s	.07 s	.273 s	.07 s	.256 s
16-bit Adder	7.97 s	8.31 s	.08 s	.347 s	.08 s	.273 s
16-bit Multiplier	27.8 s	28.89 s	.137 s	.44 s	.08 s	.327 s
Fibonacci 4	40.64 s	41.69 s	.107 s	.353 s	.077 s	.293 s
Fibonacci 8	91.6 s	95.46 s	.1 s	.363 s	.08 s	.305 s
Fibonacci 16	229.5 s	231.7 s	.12 s	.393 s	.08 s	.313 s

Conclusion

- Replace current source with VCR
- Designed Current Generation Circuit
- VCR accurate for simple waveforms
- Further experimentation is required

Questions?

Contact Information:

Travis.Fiehler@utah.edu

References: [1] T. Hollis, "University of Utah Senior Clinic 2010-2011," Micron Technology, Boise, Idaho, 2010.

[2] "Voltage-Controlled Resistor,"http://www.ecircuitcenter.com/circuits/vc_resistor1/vc_resistor1.htm. Accessed: 3/28/2011

Alternate Two Phase Model Using VCR Measurements and Analysis

Overview

- Alternate Two-Phase VCR Method
- Simulation Flow
- Initial Configuration
 - Sensitivity of Varying Resistance And Capacitance
 - Results
- Revised Configuration
 - Results
- Practical Configuration
 - Results
- Comparison with Multi-Phase Results
- Simulations Runtimes
- Future Considerations
- Conclusion

Two-Phase VCR Introduction

- Use the VCR in Two-Phase Method
- Compare with HSPICE
 - Simulation Runtimes
 - Accuracy
- Circuits created by last year's Micron Team: [1]
 - Four-Inverter
 - 16-Bit Adder
 - 8-Bit Multiplier
 - o 4-Stage Fibonacci
 - 8-Stage Fibonacci
 - o 16-Stage Fibonacci

Baseline HSPICE Simulation

- Provides the standard for comparisons
- Reduce mutual inductance by placing capacitors at all pins excluding power and ground pins

[2]

Sensitivity to Varying Resistance

Green- 100 ohms Purple- 1k ohms Blue-3k ohms

Green- 1fF Purple- 100 pF Pink- 1 mF

Yellow- HSPICE Simulation

Blue- Inverter Simulation

Yellow- Baseline HSPICE Simulation Green – 16 Stage Fibonacci Simulation

Problems with Initial Setup

- Power and Ground Rails are too messy
- No single capacitor value to correctly model circuit's capacitance
- Most circuits modeled required modification to VCRs

Yellow- Inverter HSPICE Simulation Blue- Inverter Revised Simulation

Yellow- HSPICE Simulation Blue- 16 Stage Fibonacci Revised

Revised Configuration Results

- Cleaner Power and Ground voltage waveforms
- Pretty accurate compared to HSPICE results
- Still required circuit modifications

Blue- End of 1st Iteration 4-Stage Fibonacci

Purple-Revised 4-Stage Fibonacci Results

Green- End of 1st Iteration Results

Yellow- HSPICE Results

Practical Configuration

• Determined that VCRCC voltage was effecting the voltage swings

• Switched Polarity of VCR1

Green- Universal Results

Yellow- HSPICE Results

Yellow- 4-Stage Fibonacci Universal Results G

Green- HSPICE Results

Practical Configuration Results

• No modifications were needed from circuit to circuit

- Still some inconsistency remained with Inverter results
 Phase shifts at the from 0 to 400 ps
 - Can not match voltage swings throughout the simulation
- Not as accurate and slower than HSPICE baseline
- Simulation runtimes were same to the initial configuration

Simulation Runtimes

Initial Configuration

	Real	User	Sys
Inverter	15.52	15.1	0.07
Adder	78.61	78.13	0.11
Fib 4	95.67	44.92	0.1
Fib 8	115.41	114.73	0.1
Fib 16	161.75	161.19	0.14
Multi	53.88	53.39	0.09

Revised Configuration

	Real	User	Sys
Inverter	21.69	20.58	0.1
Adder	110.2	109.14	0.7
Fib 4	135.9	135.9	0.44
Fib 8	692.75	690.62	0.73
Fib 16	549.17	548.17	0.63
Multi	149.53	148.17	0.83

Comparison with Multi-Phase Results

Revised Configuration

	Real	User	Sys
Inverter	21.69	20.58	0.1
Adder	110.2	109.14	0.7
Fib 4	135.9	135.9	0.44
Fib 8	298.33	300.29	0.73
Fib 16	549.17	548.17	0.63
Multi	149.53	148.17	0.83

End of 1st Iteration of Multi-Phase

	Real	User	Sys
Inverter	38.06	36.68	0.1
Adder	153.2	145.57	0.44
Fib 4	472.62	469.28	1.8
Fib 8	344.65	342.28	1.48
Fib 16	654.89	612.88	4.6
Multi	254.66	236.15	0.83

Comparison with HSPICE Runtimes

Revised Configuration

	Real	User	Sys
Inverter	21.69	20.58	0.1
Adder	110.2	109.14	0.7
Fib 4	135.9	135.9	0.44
Fib 8	298.33	300.29	0.73
Fib 16	549.17	548.17	0.63
Multi	149.53	148.17	0.83

HSPICE Simulation Package + Die

	Real	User	Sys
Inverter	20.77	19.29	0.08
Adder	78.05	76.7	1.13
Fib 4	117.83	117.05	1.1
Fib 8	200.4	199.5	0.45
Fib 16	321.16	314.21	1.2
Multi	132.14	131.08	0.87

Future Considerations

- Integrating the VCR model into the Multi-Phase simulation method
- Work on replacing each transistor within each circuit with a VCR and analyze the effects
- Run our work through HSIM^{plus} and compare with results taken with HSPICE

Group Conclusions

- Successful Scripting for accurate data points
- Multi-Phase Conclusions:
 - Complicated capacitance values = much slower run-times
 - Multiple iterations resolved to the wrong values
- VCR Creation Conclusions:
 - Able to reproduce simple currents
 - Able to replace current source
- Two-Phase VCR Method
 - Accurate but not as fast as HSPICE
 - Required circuit modifications
 - Despite universal configuration, still failed

Any Questions?

References:

- [1] 2009-2010 Micron Clinic Team, "Evaluation of Integrated Circuit Power Supply Noise with Two-Phase Analysis.", April 2009
- [2] Tim Hollis, "University of Utah Senior Clinic 2009-2010". [PowerPoint Presentation]. April 10, 2009
- [3] "Voltage Controlled Resistor", January 2011 <http://www.ecircuitcenter.com/circuits/vc_resistor1/vc_resistor1.htm>

Contact Info:

Lavander Begay lbegay_2001@utah.edu