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5 THE TRANSITION TO TURBULENCE

A study of turbulence is incomplete without some mention of fluid stability and the
transition to turbulence. We have previously noted that transition occurs when the
fluid equilibrium is upset. Although not a topic that will be explored in this class,
here is a brief overview of some ideas and methods used in studying fluid stability.

The study of hydrodynamics stability is a complete area of study and specialization
in itself. The main objectives of this branch of fluid mechanics are to understand
the conditions under which a given laminar flow becomes unstable, and give some
information about the subsequent development of the instability. The development
of instabilities in a laminar flow is the first step towards the transition to turbulence.
In most fluid mechanics applications the ability to control the transition would greatly
increase engineering efficiency and performance. For example, to achieve the lowest
drag around aerodynamic bodies such as aircraft or cars, it is most desirable to
delay transition! Although in the case of airfoil design in extreme operating conditions
“vortex generators” are sometimes used to promote a turbulent boundary layer on
certain areas of the wing. This is because a turbulent boundary layer will not separate
as easily as a laminar boundary layer in an adverse pressure gradient. There is a
tradeoff here to obtain the best overall performance.. It is obviously important to
know when and where transition occurs. In combustion devices, high turbulence
levels promote the mixing of fuel and oxidizer. In supersonic combustion devices,
there are difficulties encountered in obtaining well mixed reactants, as a result of the
stability of these flows. A better understanding of the transition process is necessary
to achieve better combustion performance.

Numerous excellent text books are completely devoted to hydrodynamic stability.
See for example, Drazin and Reed[1], Chandrsekar[2], or Lin [3], to mention only a
few. Here we will briefly touch upon some of the analytic methods, and the type of
information that these analyses yield.

From a historical perspective, the most well known experiment on hydrodynamic
stability was carried out by Osborne Reynolds in 1888. He performed a set of experi-
ments in which he carefully studied the behavior of flow in a pipe by varying different
flow conditions. Specifically, by varying the diameter of the pipe, the velocity of the
fluid, and the viscosity of the fluid, Reynolds found that there was a relationship
between these variables that indicated the transition from a smooth laminar flow, to
a complex turbulent flow. Namely, when the value of V D /v (which we now know as
the Reynolds number) exceeded a particular value, the perturbations began to grow,
and the instantaneous flow structure became very complex. The transition depended
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only on the value of the Reynolds number, and not on the values of the individual
terms.

About the same time Reynolds was performing his careful experiments on the
transition to turbulence in pipe flows, many other investigators were making progress
in the study of hydrodynamic stability. Some of the important scientists studying
this problem were Helmholtz, Rayleigh, Taylor, and Kelvin, among others. Many
types of flow instabilities now carry their names.

Kelvin-Helmholtz Instability Kelvin-Helmholtz instability is the name given to
instabilities that occur when two parallel fluid layers, each with a different ve-
locity and density are in contact with each other. For certain values of the
velocities and densities the interface between the two fluids will begin to os-
cillate, indicating the onset of instability. A special case of this is when the
density of the two fluid layers is the same.

Taylor-Couette Taylor-Couette flow is the flow that occurs between two concentric
cylinders when the outer cylinder is held fixed and the inner cylinder is rotating
at some specified frequency. Many interesting phenomena can be observed in
this type of flow. As the velocity of the inner cylinder increases, the flow becomes
unstable and a new, qualitatively different steady flow arises. Toroidal vortices
form down the length of the cylinder. As the velocity increases further, these
toroidal vortices themselves become unstable. Eventually, a fully developed
turbulent flow results. This type of fluid motion was first studied successfully
by Taylor in 1923 assuming a cylinder of infinite length (thus neglecting end
effects).

Rayleigh-Benard Convection Rayleigh convection refers to the fluid motion that
develops when a stable fluid is heated from below. If we have a fluid of depth
H with a higher bottom temperature than surface temperature, a lower density
will develop at the bottom. If the temperature difference (density difference)
becomes large enough an instability will develop. This particular configuration
can also exhibit a sequence of transitions to other stable flow configurations be-
fore fully developed turbulence occurs. One of these quasi-steady states displays
the formation of counter-rotating convection cells (Benard cells) throughout the
fluid.

The Von-Karman Vortex Street Flow around a cylinder displays a very intricate
vortex pattern as it becomes unstable in the form of a series of offset, counter-
rotating vortex structures. This structure is called the Von Karman vortex
street.

The above descriptions were given to provide a flavor of the various types of flow
fields that can develop as a fluid undergoes transition to turbulence. A number of
tools have been developed to study and predict the behavior of a fluid as it undergoes
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transition to turbulence. Three different analytic methods you should have some
familiarity with are:

1. Linear (normal mode) analysis
2. Nonlinear Analysis

3. Dynamical Systems Approach

The normal mode approach is the oldest and most applied approach in the study
of hydrodynamics stability. It has proven very useful in understanding the initial
development of some rather complex flows. In the remainder of this section we will
illustrate how this approach is used and what type of information it gives us.

5.1 Linear Analysis

The general idea behind linear analysis is to add a small perturbation to a given,
steady flow field. Since the perturbations to the steady flow are assumed small,
quadratic terms in the fluctuating variables are eliminated, resulting in a linear equa-
tion. The equations for these small perturbations are solved to see if they grow or
decay with time. To illustrate this procedure, we first separate the dependent vari-
ables into their steady and fluctuating components:

u; = Uo; + (5.1)

p=po+p (52)

where ug; is the solution to the steady flow, and u; are the perturbations. The
expressions for the velocity and pressure are then inserted into the governing equations
(mass and momentum). Neglecting the nonlinear terms, we are left with the following
linear equations for the velocity perturbations,

ou
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The general approach to handling this equations is the method of “normal modes.”
Random disturbances to the flow field consist of a superposition of many modes.
Because we have linearized the problem, each of these modes, if unstable, will grow
at its own rate. The analysis then, consists of assuming a solution of the form
u; = Y a;exp(w;t). This results in an eigenvalue problem for a;, where w; are the
eigenvalues. If the real part of w; is greater than zero, the perturbations will grow
and the flow is considered unstable. The goal of this type of analysis is to determine
the parameter range in which the flow becomes unstable, and to get some quantitative
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Figure 5.1 Configuration for stability analysis of shear layer.

information about the instability. For example, the flow may be unstable to some
perturbations, and stable for others. Also, the unstable modes will have various
growth rates. This is the type of information we would like to obtain through our
stability analysis.

As an example, let us consider the stability of the parallel shear layer we discussed
above (Kelvin-Helmholtz instability). This flow is very unstable to any perturbations.
Small disturbances can grow rapidly, leading to a complex flow structure. This par-
ticular flow has been studied extensively both in the laboratory, and numerically and
analytically. It is a useful flow for analysis because such shear layers are approxi-
mated in many real flows, and under proper simplification, this is a flow that can be
analyzed in detail. In Fig. 5.1 the configuration for this analysis is shown. The flow
field consists of a mean velocity —1/2U for z > 0, and 1/2U for z < 0. The position
of the interface between the two surfaces is given by n. We will neglect viscosity and
apply a small disturbance u to the basic flow. The perturbation velocities in the two
streams will be identified by u)j and uj, where they each satisfy the incompressible
Euler equations. The subscripts 1 and 2 refer to the upper and lower region of the
domain shown in Fig. 5.1. In these two regions we can also assume the flow is irrota-
tional. With this assumption the velocity can be expressed in terms of the gradient
of a scalar function called the velocity potential:

U2 = V(I)l?g (55)
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Furthermore, the continuity equation for steady flow becomes:
VQCI)LQ - O (56)

where @ is the velocity potential. The boundary conditions for this problem are

Vo, — —%U as z — o0 (5.7)
Vo, — %U as z — —oo (5.8)
Dynamic B.C. p;=p, at z=1 (5.9)
Dynamic B.C.:  Verticalvelocitiesareequalacrosssurface (5.10)

The kinematic condition can be expressed as

= T ot T oz ox T oy oyl (5.11)

= T ot T r on T oy oyl (5.12)

By integrating Euler’s equations for this flow we get

P1 8(131 1 2
(VP = 1
m4—at+2(vl)+ﬂz C (5.13)
and
D2 8(132 1 2
huindo) P = 14
m%—at+2(V2)+gz Cs (5.14)
Applying the dynamic boundary condition at z = 7 gives
8(131 1 2 a(1)2 1 2
—(VP,)” — = — — —(V®y)” — 1
P1 [Cl 5 2 (Vo) gz] P2 [ % 3 (V®:)" — gz - (5.15)

Evaluating the constants at steady state (this relationship must hold for the mean
steady flow as well as the disturbed flow) gives:

) = 22 <C’2——U2>—|— 12 (5.16)
1

Eqgs. 5.5 - 5.15 describe the nonlinear stability of the interface. To look at the
linear stability we consider a small perturbation to the mean state:

=U +u (5.17)
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or, in terms of the velocity potential,

(I)l = U1£K + ¢1 (518)
and
(I)Q = UQ.’II + ¢2 (519)
Linearizing the kinematic boundary condition gives:
8<I>1 877 on
et } . =1 5.20
w,, =gy tw V=4 (5.20)
or
8¢1 377 8¢2
21
9z ot 0z (5:21)

The linearized dynamic boundary condition is (using the given condition that U; =

—1/2U and uy = 1/2U):

1,061, 96 06, 00
p( U5 T o +977> p<U8 + +gn) (5.22)

We also assume that the flow is periodic in space. The solution for the elevation
and velocity potential can then be expressed as a superposition of normal modes.

n(z,y,t) Z A (t) explot + i(lx + my)] (5.23)
I,m=0

o(z,y,t) Z By (t) exp(Fkz) explot + i(lx + my)] (5.24)
I,m=0

These solutions are then substituted into the boundary conditions. The two kine-
matic boundary conditions give:

—kB; =0A— %U@'Al (5.25)
and

—kBy =0cA+ %U@'Al (5.26)
The dynamics boundary condition gives:

o1 |—oB) — gA + %U@‘ZBJ ~ s {—032 _gA-— %UilBg (5.27)

Eqs. 5.25 - 5.27 provide three equations for the three unknowns, By, B, and A. These
equations can be written in matrix form as:

[M][B] =0 (5.28)



5 THE TRANSITION TO TURBULENCE 36

where
A
[B] = | By (5.29)
By
and
o — %Uz'l k 0
(M] = | o+ 3Uil 0 k (5.30)

9lpz = p1)  —pilo = 3iUL)  pa(o + 5iU1)

For any solution to be possible we must have det M = 0:

1 2 1 2
det M = p, <0 _ 5Uu> k+ po <a + §U¢z> k4 Kg(ps— p1) = 0 (5.31)
This equation gives a dispersion relation for o:

0= f(l7 m, U, p1, PQ) (532)

In general, o is a complex number, ¢ = o, + 0y, the real part giving the growth
rate, and the imaginary part giving wave propagation information. If the real part
is greater than zero we will get exponential growth and the flow is unstable. For the
situation above, we get two modes:

1
o Lipp=p1 [P pps 9lp2 —p1) |*

o __L _ _
kU 2 kpa+pr [k (p1+p2)?  KU?(p2+ p1)

(5.33)

The flow will be neutrally stable (o, = 0) if the RHS of Eq. 5.33 is purely imaginary.
This occurs for:

== g(p2 = ) (5-34)

The condition for instability is that the term in brackets in Eq. 5.33 is greater than
zero (o, > 0):

+ k
o1+ 22) ;1p52) 2902 = 1) (5.35)

U? >
Note that o, can never be negative due to the square root in Eq.. 5.33. For a ho-
mogeneous fluid where p; = py we have o = :l:%U so the flow is unstable to any
disturbances. If p; > p, the flow is also unstable, whereas for ps > p;, neutral sta-
bility is possible. However, for large enough [ (short waves), the flow will always be
unstable.
The example above illustrates the use of the normal mode approach for treating
parallel flows. By assuming linear velocity profiles for the mean flow, more complex
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configurations can be studied by applying boundary conditions at each of the inter-
face surfaces. For smoothly varying velocity profiles, the analysis of the differential
equations is not so easy and the equations must be integrated numerically.

A more general approach for incompressible free shear flows is describe the velocity
field by a stream function.

oV
ov

where u and v are the two components of the velocity. It is next assumed that the
stream function of the disturbance, 1, can be given by:

Y(z,y,t) = ¢(y) expli(az — B)] (5.38)

where
_ A 5.39

a= (5.39)
and

B =P +ifr (5.40)
Eq. 5.38 can also be written as:

Y(@,y,t) = ¢(y) explic(z — ct)] (5.41)

In the above notation the sign of the imaginary part of ¢ will then determine if the
small perturbations will grow or decay with time. Inserting Eq. 5.40 for the stream
function in the equation of motion (Eq. 5.4) yields the following equation for the
amplitude of the stream function:

i

1 2 "y v
(U=c)(¢" —a’¢) ~U'd=——0r

« and Re are assumed known. This is then an eigenvalue problem for the amplitude
¢ with the wave numbers ¢ being the eigenvalues. This famous equation of boundary
layer theory and hydrodynamic stability is called the Orr-Sommerfield equation and
was first derived in 1907. It can generally be solved numerically to give information
about when instability will set in. Fig. 5.2 shows a graphical representation of the
solution to the above equation. Of particular interest is the region where c is greater
than zero. In this region all perturbations will grow in time according to linear theory.
Since all wave numbers are usually present in flows of practical interest, instability
will generally set in when the critical Reynolds number is exceeded. The actual shape
of Fig. 5.2 will of course be different for different flow configurations (flow over a flat
plate, flow in a pipe, etc.)

The linear analysis discussed above is very useful in helping us identify flow regimes
where instabilities may set in. Unfortunately, it does not tell the whole picture. Linear
stability cannot answer questions regarding large amplitude disturbances, nor can it
describe the finite amplitude, nonlinear flow that eventually occurs in the transition
to turbulence. To address these issues, other approaches must be taken.

(¢//// - 20[2¢” + 044¢)) (5‘42)
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Figure 5.2 Stability region for boundary layer.

5.2 Non-Linear Analysis

As the linear instabilities develop, they will eventually undergo nonlinear interactions
as the amplitudes of the unstable modes grow. Here we will very superficially mention
some aspects of the nonlinear stability analysis. In the weakly nonlinear analysis we
consider a stream function for the perturbation quantities of the form:

A(t)Y(y) explio(z — ct)] (5.43)

The difference between this and the nonlinear case is the inclusion of a finite amplitude
disturbance, A(t), that takes into account the effects on stability that larger amplitude
disturbances can have. When this expression is substituted into the equations of
motion, the following equation for the amplitude is obtained:

d|A]?

dt
Eq. 5.44 is known as the Landau equation and a; is the Landau constant. ac; rep-
resents the amplifications factor of the linear analysis. Now depending on the value
of a; the effect of a finite amplitude disturbance can either increase or decrease the
growth rate of the linear modes. Eq. 5.44 can be converted to a linear equation for

Al
d|AI"
dt

= ac;|A]* — a;|A* + H.O.T's (5.44)

+ac|A 2 =a, (5.45)
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This equation has the solution:

_ a _ a
|A|72 = ﬁ; + <A02 - 2(;@) exp(—2ac;t) (5.46)
or
2
|A]? = Ay (5.47)
2‘;10_143 + (1 — 2218_143) exp(—2ac;t)

Consider first the case where ac; is less than 0. In the linear case this would correspond
to the case of exponential growth of the initial disturbance. However, in the weakly
nonlinear analysis it can be shown that all perturbations will eventually arrive at some
finite amplitude. If the initial perturbation amplitude is greater than this critical
value it will decrease until this value is reached. This is the supercritical case. On the
other hand, if the value of ac; is positive, and if the perturbation amplitude is greater
than a certain value, perturbations that would be expected to decay in the nonlinear
analysis will grow if a; is less than zero. The amplitude of the initial disturbances
can clearly effect the development of the flow.

5.3 Dynamical Systems

Another approach to studying hydrodynamic stability that has attracted recent at-
tention is the application of the theory of dynamical systems. To introduce this idea
it is informative to consider two different ideas concerning the transition to turbulence
in hydrodynamic systems. These are the Landau-Hopf and Ruelle-Takens theories on
transition. In the Landau-Hopf theory, the transition is seen as a series of bifurcations
that lead to an increasingly more complex flow. As the Reynolds number approaches
a critical value for the flow under consideration, a periodic flow develops. As the
Reynolds number is increased further, this periodic flow itself becomes unstable, giv-
ing rise to additional periodic components of the flow. This process continues until a
very complex, quasi-periodic flow develops.

In the Ruelle-Takens theory, totally chaotic motions are assumed to arise after
only a few bifurcations. Beyond this point the dynamics of the flow are considered
inherently chaotic. An important distinction between the quasi-periodic and chaotic
flows has to do with their dependence on initial conditions. Chaotic (although deter-
ministic) motion is very sensitive on the initial conditions. Two identical flow fields
with only infinitesimal differences in their initial states can exhibit solutions that
rapidly diverge from one another. In quasi-periodic flow, however, a slight change in
the initial conditions would not be expected to have a great effect on the subsequent
fluid motions. Spectral analysis of turbulent flows appears to support the ideas of
Ruelle and Takens.

The dynamical systems approach to studying fluid stability began with the discov-
ery that very simple, low order nonlinear equations can show remarkable properties of
chaotic motions that bear a resemblance to fluid turbulence. In 1963, Lorentz[4] ob-
tained a set of ordinary differential equations by severely truncating a set of equations
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that describe thermal convection. Although having much fewer degrees of freedom
than real turbulence, these equations were parameterized by the important nondimen-
sional numbers that characterize Rayleigh convection. By varying these parameters
in the truncated system of equations, the bifurcation of the solutions to other periodic
solutions, and then totally chaotic motion could be studied.

Although the equations are deterministic, the development of a physical system
governed by them is essentially unpredictable. This is because of their extreme sen-
sitivity to initial conditions. Real phenomena, like the weather, also appear to have
this character. This is why it is essentially impossible to predict the weather more
than a few days in advance. Just pay attention to the weather reports for a while
before you debate this.
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