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4 STATISTICS OF THE FLOW

Owing to the complexity of turbulent flows, they are generally studied using tools of
statistical analysis. For engineering design purposes there is no conceptual problem
with this, as it is seldom necessary to know all the details of the turbulent velocity
field. The efficiency of a device such as a heat exchanger, mixing vessel, or combustor
will be measured by its average performance over time. For most engineering pur-
poses we therefore generally neglect the details of the turbulence and work only with
averages.

From the point of view of gaining physical understanding of turbulent flows, it
is also often convenient to describe the flow in terms of it’s statistical properties. A
description of the flow in wavenumber space is also often more informative than in
terms of raw data. In the following, we will define and interpret some of the more
commonly used single and multi-point statistics and use these statistics to describe
different aspects of the flow.

4.1 Mean Values

The simplest statistical property is the mean, or first moment. In section ?? we de-
fined the expectation of a random variable and the higher-order single point moments
by using the probability density function. In laboratory experiments or in the use of
numerically obtained data, the mean value of a random variable at a particular spatial
location can be obtained by averaging the long time measurement of that variable:

G 1im = [ st (4.1)

where ¢ indicates the mean value of the random variable ¢. This time average only
makes sense if Eq. 4.1 is independent of ¢, and independent of T for large T (i.e., the
integral converges). In such a case we would call the flow a “statistically steady,” or
a “stationary” process.

In a flow configuration where Eq 4.1 does not converge, either an “ensemble” or
“volume” average must be used to describe the mean flow behavior. The volume
average is defined as:

vol— 00 ’UOl

¢ = lim i/lgb(x)dxdyalz (4.2)

where the integration is now performed over a volume, vol, at one instant in time.
Equation 4.2 only makes sense when the statistical properties do not depend on spatial
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position. The ensemble average is defined as:

¢ = lim —> ¢(z) (4.3)

In Eq. 4.3 the summation is over a number of samples, IV, taken at the same location
x, at the same time, ¢, for N different realizations, or experiments. For a stationary
process, the averaging defined by Eq. 4.1 and 4.3 are the same. This is called the
“ergodic hypothesis.”

4.2 Higher Order Moments

The n'" order central moment, defined earlier using the pdf, can also be computed
from

(¢—a)" (4.4)
Assuming, of course, that the averaging process indicated by the overline is properly
defined and converges.

A hierarchy of moments can be defined which describe the statistical state of a
random variable (the velocity field being one of the random variables in a turbulent
flow). Mathematically, the turbulent velocity field is generally treated as a random
variable with a mean and fluctuating component. Letting ¢’ represent the fluctuating
component of the random variable, the random variable ¢ can be expressed as

$=0+¢ (4.5)
or, for the velocity field
u; = U; + u; (4.6)

After the mean value, the next most important statistical property of turbulence
is its second central moment, or variance.

var(6) = (9 — 9)° (47
This measure of a random variable gives a quantitative measure of how large the
variations from the mean value can be expected to be. In the terminology of tur-
bulence, we often speak of the turbulence intensity, which is just the square root of
the second central moment, or the root mean square of the velocity fluctuation,v/u2.
As it’s name implies, the value of this term gives a measure of the intensity of the
turbulence.

The third central moment is called the skewness. This gives a measure of the
symmetry of the probability distribution (see below) of the random variable. For
a perfectly symmetric distribution, the skewness is zero. Continuing this hierarchy;,
the fourth central moment, or kurtosis, gives a measure of how fast the probability
distribution goes to zero. A large kurtosis would indicate that values of the random
variable, far from the mean value exist with higher probability than lower kurtosis
functions.
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4.3 Two-Point, Time Statistics

The moments defined above are single point moments. That is, they contain only
information about a random variable at a point. In a turbulent flow, it is important
to have some statistical measure of spatial information about the flow. For example,
to draw conclusions about length scale information, two point statistics are needed.
The autocorrelation function is the correlation between velocity components at two
different times, defined by w(t)u(t + 7). The normalized correlation function, the
autocorrelation coefficient,p(T) is defined as

u(t)u(t + 1)
) — 4.8
ol = (48)
Note that p(0) = 1. Also, from Schwartz’s inequality, p(7) < 1 for all 7 # 0.
The correlation tensor is often used to define an integral scale of turbulence:

L, = /0  o(r) dr (4.9)

L, gives an estimate of the time interval over which the velocity component u is
correlated.

The spatial correlation tensor, R;; gives the correlation between velocity com-
ponents at two different spatial locations and has an important interpretation in
turbulent flows. It is defined by

Ry(r) = w(x)u;(x + 1) (4.10)

To describe the various scales of spatial motion in a turbulent flow it is more in-
structive to work with the Fourier transform of the correlation tensor rather than the
correlation tensor itself.

By (k) = # JJ[ B exp(=ikc -y (4.11)

®,;(k) is appropriately called the spectrum tensor or spectral density as it represents
the contribution of a wavenumber, k, to the value of R;;. In other words, ®;;(k) gives
wavenumber distribution of the correlation tensor. Each wavenumber & corresponds
to a physical space structure with a wavelength of 27 /k.By use of the inverse transform
we have:

Ry(r) = / / ®;; exp(ik - )dk (4.12)

Of particular significance is the sum of the diagonal components, R;(r), for r = 0.
For this case we have

Rii(0) = u? + ul + u3 (4.13)
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which is twice the kinetic energy. Setting r = 0, we can write Eq. 4.12 as

%Rii(O) - %///(I)(k)dk

_ /0°° E // <I>ii(k)da] dk (4.14)
_ /OOOE(k:)dk

where

B(k) = % [[ @ty (4.15)

E(k)dk represents the contribution to the kinetic energy at a wavenumber of k in a
spherical shell, o, of thickness dk and is called the three dimensional energy spec-
trum. Integration of E(k) over all k gives the total kinetic energy. With an eddy
of a particular size, [, associated with a wavenumber of certain magnitude, k, the
energy spectrum, F(k), can be interpreted to give the distribution of energy among
the different eddy sizes. As discussed above, the contribution of a wavenumber k
corresponds to a structure with a wavelength of 27 /k. The energy of and eddy of size
27 /k is therefore proportional to kE(k). A large portion of the theoretical work on
turbulent flows (including modeling) is concerned with the description of energy in the
wavenumber spectrum and the transfer of energy among the different wavenumbers
and frequencies.

4.4 Homogeneous and Isotropic Turbulence

A simplification in the mathematical treatment of turbulence comes about if we con-
sider a flow in which the statistical quantities are independent of space. A turbulent
flow with this property is call “homogeneous”. In a homogeneous turbulent flow, the
correlation tensor given by Eq. 4.10 is independent of position, x, but still depends
on the vector r. If, in addition, the statistics are independent of orientation, the flow
is considered “isotropic”. In an isotropic flow, the correlation tensor depends only on
the magnitude of r, and is independent of direction.

Most of the turbulent flows we are interested in are neither completely isotropic
or homogeneous. However, much of the analysis and theory of turbulence has been
formulated for isotropic turbulence. This results primarily from the complexity of the
nonlinear governing equations which prevents detailed analysis to be performed. In
the case of homogeneous isotropic turbulence, the equations simplify significantly. As
a result, these simplified flows have been studied in some detail. Fortunately, though,
there are regimes within the turbulence spectrum where it becomes increasingly likely
that the flow can be treated as homogeneous and isotropic. In the next section (5)
we will discuss how the turbulence structure is affected by vortex stretching. As the
vortex structures (eddies) are broken down to smaller scales, and as the time scales
associated with these structures decrease, a loss of any preferred orientations to mean
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shear is expected. At small enough length scales, it is then often assumed that the
turbulence is isotropic. This is very important for many of the turbulence closures
which are presently being studied. Some of the implications of this will be pointed
out later.

The terminology fully developed turbulence is sometimes used to describe the state
of the flow at length scales small enough that the information about the large scale
motions or energy input mechanisms have been lost.

Turbulent flows are always unsteady and the flow at a particular point fluctuates
intensely. However, the statistical behavior of a turbulent flow often does not change
appreciably with time. A statistically steady or stationary turbulent flow is one who’s
statistics are approximately constant in time.



