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10 TURBULENT SCALAR MIXING PROCESSES

Consider a configuration that is initially composed of two distinct and segregated
scalar constituents. These scalar constituents may be differentiated by different chem-
ical composition, different temperatures, contain different trace elements, or any other
scalar marker. The description and ideas of scalar mixing to be discussed in the next
few sections are concerned with the process by which these different constituents mix
at the molecular level to produce a homogeneous mixture and how we attempt to
describe the statistical state of the scalar field throughout its development.

Accurately predicting the amount of mixing that will occur at the molecular level
in a turbulent flow is important in many applications. For example, in combustion
applications, chemical reactions can only take place when the the fluid is mixed at the
molecular level. In waste processing, constituents must interact at a molecular level.
In atmospheric applications, the forces that drive the turbulence can be dramatically
affected as cool and warm air mix at the molecular level. The mechanisms by which
this mixing takes place, and approaches to modeling this process are the subject of
this section. Unfortunately, accurately predicting the amount of molecular mixing
that occurs in turbulent flows is a difficult task. Most models currently being used
simply do not adequately treat this process. As a result, the reliability of predictions
of turbulent flow that require a description of the molecular mixing process must be
assessed on an individual basis. In the following we will discuss some of the physical
mechanisms of turbulent mixing to illustrate the difficulties in accurately modeling
this process.

10.1 Physical Mechanisms of Turbulent Mixing

As mentioned above, by turbulent mixing, we are referring to the process by which
two separate constituents of the flow (different chemical species or scalar constituents
with different values, i.e. temperature, etc.) eventually are brought together and
interact at the molecular level. The governing equation that describes this process is
the convection diffusion equation
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In Eq. 10.1, ¢, represents scalar constituent o and D, is the molecular diffusion
coefficient of constituent «. In this equation, there is no summation over « (only
7). Equation 10.1 describes the two distinctly different physical processes involved in
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turbulent mixing: turbulent stirring (convection), and molecular diffusion. If chemical
conversions are involved, a third process, the chemical reaction rate, involving yet
another physical process must be accounted for. Chemical reaction, of course, can
occur only when molecules interact act the molecular level. Below, we discuss these
different processes.

10.1.1 Turbulent Convection

Consider a turbulent flow field containing two different constituents, initially unmixed.
The action of this flow field on the scalar field is to distort and increase the surface
area of the interface between the two constituents. As a result, the gradients of the
scalar constituents will be increased and the scalar length scale will be decreased.
As a result of this “stirring” process a complex structure of the scalar field evolves.
Stirring has the effect of redistributing the scalar field throughout the flow field.

10.1.2 Molecular Diffusion

Mixing at the molecular level is a diffusion process. The turbulent stirring process
described above acts only to redistribute or convect the scalar throughout the flow
domain. Without molecular diffusion intermixing of separate constituents will not
occur. Communication at the molecular level can only occur through the action of
molecular diffusion. Our macroscopic view of molecular diffusion is a results of the
random motion (Brownian motion) of fluid particles at the molecular level. This
process is most effective in regions of high gradients and acts most effectively at the
smallest scales of the flow. The enhanced mixing properties of turbulence are thus
due to the action of turbulent stirring, which increases the effectiveness of molecular
diffusion by increasing the scalar gradient and increasing the surface area over which
the separate constituents can diffuse.

A little time spent thinking about these two processes will reveal the difficulties
in modeling the mixing process. Namely, the actual diffusion is a small-scale process
which depends critically on the small-scale structure of the scalar field. It cannot be
parametrized easily in terms of the large scale features of the flow. As a result, a
detailed description of the scalar field at the smallest length scales of the flow is, in
principle, necessary if a reliable prediction of turbulent mixing is to be achieved.

10.2 Spectrum of the Scalar Field

Previously we discussed some properties of the turbulence energy spectrum. In par-
ticular, the energy spectrum can be roughly looked at consisting of a wave number
regime characterizing the energy containing eddies, a universal equilibrium regime
(the inertial range) described by the k~5/3 law, and a dissipation range, below the
Kolmogorov wave number. In discussing the spectrum of the scalar field, let us first
define the scalar analogy to the Kolmogorov scale. Recall that the Kolmogorov scale
is the smallest velocity length scale in the flow. Below this scale, viscosity effectively
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damps out inhomogenieties in the flow. Analogously, there is a smallest scalar length
of the flow which can be larger, smaller, or of the same scale as the Kolmogorov scale,
depending on the relative magnitude of the kinematic viscosity to molecular diffusiv-
ity. This is parametrized by the Schmidt number, Sc, defined as Sc = &, where v
is the kinematic viscosity of the fluid, and D is its molecular diffusivity. Below are
some comments regarding the size of the scalar length scale.

For a given flow configuration (i.e., where the integral length and velocity scales,
U and L, are specified), the size of the Kolmogorov scale will depend on the viscosity.
(Recall that earlier we discussed that the viscosity does not determine the amount
of dissipation in a flow, but the scale at which that dissipation occurs.) Similarly,
the smallest scalar length scale will be determined by the molecular diffusivity, D.
Intuitively, for v ~ D, it should be expected that the two scales (velocity and scalar)
will be of the same order of magnitude. For v > D, velocity fluctuations will be
damped out at scales larger than the scalar fluctuations so n > I, for v > D. Similarly
for v < D we can argue that n < [,.

To arrive at an estimate for the scalar length scale consider the scalings implied
by the diffusion equation, I> ~ Dt. First consider the case where Sc > 1 (v > D).
Our region over which we are applying the scale analysis is the smallest scalar length
scale, [,. In this region, the scalar field is subject to the complete range of strain-rate
fluctuations (since [y < 7)) and the appropriate time scale is the Kolmogorov time
scale, 7 = (v/€)'/2. This gives I> ~ D(v/€)'/2. In this regime of Sc > 1 the smallest
scalar length scale is referred to as the Batchelor scale, [g. Then using the expression
for the Kolmogorov scale, n = (13 /¢)Y/* gives

%B ~ (D/v)/* = Sc71/2 (10.2)

Now for small Sc¢ < 1, the above scaling will not be correct. In this case, the
smallest scalar length scale will be greater than the Kolmogorov scale and may extend
into the inertial subrange. The scalar length scale in this case is termed the Obukov-
Corsin scale, l¢. Under this condition, the only parameters describing the scalar field
will be the dissipation and the molecular diffusivity (recall that the viscosity does
not play a role in the inertial subrange). The appropriate time scale in this case is

7 = (D/e)Y2. Using this in our scale analysis results in Io ~ (D3/e)'/%. Multiplying
and dividing this equation by 1 = (v3/€)'/* then gives:

l

<~ (D)t = G (10.3)

n

Besides providing extremely useful information on the structure of the scalar field
(it has implications in numerical simulation, among many other things), this scale
analysis illustrates the importance of carefully specifying the region over which the
scale analysis is conducted and correctly defining the appropriate length, time, and
velocity scales in that domain.

For most gases, the Schmidt number is approximately one, so the smallest scalar
length scales are approximately equal to the Kolmogorov scale. For liquids, Sc can
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be on the order of 10® or greater. In liquids then, the scales at which diffusion
occurs is over an order of magnitude smaller than the smallest hydrodynamic scales.
This illustrates an additional complication associated with predicting mixing and
reaction in liquids. Namely, since the scales at which diffusion is occurring are so
much smaller, the computational requirements to numerically resolve these scales,
and thus accurately describe the mixing process are correspondingly increased.

10.2.1 Spectrum of the Scalar Field, Sc > 1

For Schmidt number greater than 1, the Batchelor scale will be smaller than the
Kolmogorov scale. In the inertial subrange, the velocity and scalar spectrum will
behave similarly. Beyond the Kolmogorov wave number cut-off, velocity fluctuations
cease. Scalar fluctuations beyond this range will be reduced by the strain field, which
below the Kolmogorov scale is (¢/v)*/2. This reduction occurs until the Batchelor
scale is reached. This region of wavenumbers for k,, > k > k;, is termed the viscous—
convective subrange. (The velocity scales are in the viscous range, but the scalar
scales are convective.)

For wave numbers k > k;,, the scalar fluctuations are effectively damped by
molecular diffusion. In this region the scalar fluctuations are rapidly dissipated. This
is called the viscous—diffusive subrange.

10.2.2 Spectrum of the Scalar Field, Sc < 1

For Sc < 1, we have [c > n or k;, < k,. In this case, the diffusive cut-off for the
scalar field will appear in the inertial subrange. This subrange is referred to as the
inertial-diffusive subrange. (Velocity field inertial, scalar field diffusive.)

10.3 Mixing Configurations

In this section we wish to put some of the discussion above into a clearer perspective
by discussing the mixing process in two specific configurations: the planar mixing
layer, and mixing in a homogeneous turbulent flow.

10.3.1 The Planar Mixing Layer

The planar mixing layer is generated when two parallel flow streams of different
velocity come into contact. In the laboratory, this flow is generated by allowing two
streams to come into contact at the end of a splitter plate. This configuration is
approximated in practice when any stream of fluid is injected into another. As a
result of the shear generated at the interface of the two fluids, the flow becomes
characterized by large scale vortex structures that grow and interact with each other
as the flow develops in the streamwise direction. This has been an intensely studied
flow both because it is relatively easy to study in the laboratory, as well as being a
generic configuration for mixing between two streams. We discuss this flow here as



10 TURBULENT SCALAR MIXING PROCESSES 10-5

it illustrates quite clearly the mechanisms involved in the overall mixing process as
outlined above in section 10.1. For this configuration, the mixing process involves:
1) The entrainment of fluid from the two free streams into the mixing region, and
2), mixing of the fluids between the two streams as they come into contact at the
molecular level.

In the laboratory, a useful measure of molecular mixing has been to measure the
amount of chemical product formed when the fluids in the two feed streams consist
of initially nonpremixed chemically reacting species. If the rate of chemical reaction
is fast compared to the local fluid time scales, and since reaction can only occur at
the molecular level, the amount of product formed will give a direct indication of the
extent of molecular mixing.

A series of laboratory studies conducted at Caltech has had as their focus the
mechanisms of mixing in this configuration. In our previous discussions on turbulent
mixing, we have used order of magnitude scaling arguments and shown that for “high”
Reynolds number flows (those commonly encountered in practice) that turbulent
diffusion effects dominated over molecular viscosity. However, experiments directed
at studying the mixing in fluids of different molecular diffusivities (D), or flows with
different Schmidt numbers (Sc = %), have shown important differences.

Comparison of the results of two separate experiments illustrate the unexpected
behavior. In the first of these experiments, Mungal and Dimotakis [1] measured
the chemical product formed in a fast reaction between hydrogen and fluorine. The
hydrogen and fluorine were carried separately in dilute concentrations in the two
streams. Nitrogen was used as the carrier gas and the Reynolds number of the flow
was approximately 10°. Chemical reaction between the two occurred as they mixed
at the molecular level within the shear layer.

In a similar experiment at about the same Reynolds number, Koochesfahani and
Dimotakis [2] measured the amount of product formed for a fast chemical reaction
in water. (Here and in the above paragraph “fast” means that the reaction rate is
essentially instantaneous once the fluids have mixed at the molecular level). The only
substantial difference between these two experiments was that the Schmidt number
of water is approximately a factor of 1000 times greater than that of the nitrogen.
If turbulent diffusion is the dominant factor in the mixing process, this variation in
Schmidt number would be expected to have little effect on the total amount of product
formation. However, it was found that the amount of mixing in the gas experiments
was about a factor of two greater than in the water experiments. Furthermore, the
concentration of the mixed fluid in the water experiments was uniform across the
layer, even though the average concentration of the fluids from the two streams varied
across the mixing layer.

10.3.2 The Broadwell-Breidenthal model for shear layer mixing.

A model developed by Broadwell and Breidenthal [3] provides an interpretation of
these observations. As mentioned above, the path to molecular mixedness can be
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characterized by two processes. In the first stage of the mixing process, fluid is
entrained into the layer by a process characterized by the large scale features of the
flow: an integral length scale L (the thickness of the layer), and a time scale, T7,
given by L/(U; —Us). T}, is the “eddy turnover” time, taken to be the time to reduce
length scales to the Kolmogorov scale, n. Once the length scales have been reduced
to this scale, molecular diffusion (the second step in the process) occurs in a time
scale negligible compared to T}, (i.e., the time to reduce the length scale from L to
7). In this scenario, the time to mix the fluid depends only on T}, and is independent
of Reynolds number or Schmidt number.

During the mixing process, however, diffusion layers will form between the fluid
from the two streams. The thickness of these layers will scale with the diffusion
coefficients, and the strain rate. Dimensional analysis gives w = (D/s)/2, where s is
the strain rate. Assuming that the strain rate is characterized by 1/77, we have

w = (DTy)"? (10.4)

This result is also obtained from a scaling analysis of the diffusion equation. The
time scale for this process is a large eddy turnover time, 7T;. The contribution of
the diffusion layers to the total mixed fluid concentration will then be given by the
surface area of the layer per unit volume multiplied by the layer thickness. If the
surface layer /unit volume is assumed to scale as 1/L, the contribution of the diffusion
layer to the total mixing is proportional to

P ~ (DT /L*)Y? = Pe™'/? = Re™Y/25¢71/2 (10.5)

where Pe is the Peclet number.

After a time t + T}, all fluid that was entrained into the layer prior to ¢ will
have been reduced to the Kolmogorov scale. However, a certain amount of fluid
entrained between ¢ and ¢ 4+ 77, may attain molecular mixing based on Eq. 10.5. The
Broadwell-Breidenthal model can then be expressed as

6, = paRe 2Sc7 V% 4 ¢, (10.6)

where 6, is a normalized measure of the mixed fluid concentration, ¢,, is a constant
that describes the mixed fluid at the Kolmogorov scale, and ¢qRe™/2Sc1/2 represents
the contribution from the diffusion sheets.

A Reynolds number and Schmidt number dependency is apparent in Eq. 10.6
and explains the difference between the mixing experiments in water and air. In
the experiments in air, the Schmidt number is about 1000 times smaller than that
in water, resulting in the higher amounts of mixing observed. In the experiments
of Koochesfahani and Dimotakis the condition ReSc — oo is apparently met, and
mixing is delayed until the entrained fluid reaches the Kolmogorov scale and is then
subject to uniform straining.

The lack of lateral variation in the pdfs of the experiments of Koochesfahani (see
notes from lecture) can also be explained by the arguments given above. For a fluid
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with a high Schmidt number, the amount of mixing in the diffusion sheets will be
negligible (ScRe — o). Under these conditions, significant mixing only takes place
at beyond the Kolmogorov scale. Because there is a delay of ¢ = T}, in mixing once
the fluid is entrained into the layer, it has a chance to become distributed, which can
account for the more uniform peak concentration across the layer. Under conditions
of low Schmidt number, measurable diffusion may take place in the diffusion layers,
allowing for lateral variation in the pdf’s.

The type of behavior we have described here is not consistent with simple gra-
dient transport, and therefore will not be reproduced by turbulence models based
on gradient diffusion. Mixing layer type configurations appear in many applications.
Any time turbulent mixing takes place between two initially segregated fluids, or
heat (or any other scalar) mixes with the surrounding environment, mechanisms as
discussed here can influence the rate of molecular mixing. As we have seen earlier,
even boundary layers show regimes where entrainment and mixing occur as described
above. Later we will discuss a new model that has been developed to try to describe
and provide explanations for the various anomalous features observed in mixing ex-
periments. The key feature of this model is to make an explicit distinction between
the effects of molecular diffusion and turbulent transport.

10.3.3 Mixing in Statistically Steady Homogeneous Turbulence

Another configuration in which the mixing process has been extensively studied is
the decay of scalar fluctuations in a statistically steady, homogeneous turbulent flow.
The initial scalar field consists of initially segregated “marked” and “unmarked” fluid.
As mixing proceeds, the scalar concentration throughout the domain evolves to a
constant value at the mixed fluid concentration. Of interest here are the statistical
details of the scalar field during its evolution from the unmixed to mixed state.

This configuration of a stationary homogeneous turbulent flow is not easy to set
up in the laboratory. As a result most of the data available for mixing in this configu-
ration has been obtained from DNS [4, 5|. In interpreting these data, it is important
to keep in mind that the DNS data is limited to flows with relatively low Reynolds
numbers and Schmidt numbers of order unity. This is a constraint resulting from
finite computational resources. None-the-less, the results have proven very useful in
helping understand the mixing process and in stimulating further studies. Extrapola-
tion of these results to high high Reynolds number flows must be made with caution
however. Some implications will be discussed later.

Results of these simulations have provided interesting information for both theo-
reticians and modelers. Details of the evolution are, of course, important as it is the
goal of model development efforts to incorporate as much of the known physics and
behavior as possible into models that are intended to describe the mixing.

The simulations of Eswaran and Pope focused on two main issues: the effects
of the initial scalar length scale on the evolution of the scalar statistics, and the
functional form of the single-point scalar pdf of the scalar field during its evolution.
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As discussed earlier, the single point pdf provides a complete statistical description of
the one-point scalar statistics. It was observed that the scalar field evolved from an
initially bimodal distribution (representing the two initial unmixed concentration) to
a form approximating a Gaussian distribution centered on the mean mixture fraction.
The asymptotic form of the pdf is important from a modeling point of view as this
behavior should be reproduced by models expecting to provide accurate predictions
of this process.

Although a large amount of data has been produced for this specific configuration,
there is some evidence that the results may not be easily extendable to mixing in high-
Reynolds number flows. [6, 7]. Discussion of this issue is deferred until later.
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