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12 LINEAR EDDY MODEL OF TURBULENT
MIXING

Of all the different mixing models that have been used in conserved scalar mixing,
reacting flow, or microphysical applications, none have been successful in provid-
ing accurate and reliable predictions for a wide range of applications. Models are
very often tuned, and therefore applicable to limited configurations and applications.
This is particularly true of finite rate chemical reactions in turbulent environments.
Unfortunately, many of the slower, secondary reactions that occur in hydrocarbon
combustion are critical to the generation of unwanted byproducts (pollutants). In
many other cases the physics are parameterized down to such an extent that little of
the real physical processes that are occuring in a turbulent mixing environment are
realistically treated.

Because the underlying physics of the mixing process is rarely realistically repre-
sented, and because interesting processes are occurring over a wide range of length
scales, models cannot predict the wide range of physical processes that occur. In this
section we will discuss a relatively new approach that has been used with success
to model the mixing and reaction of a scalar quantity (like a chemical species) in a
turbulent flow field. This technique is the Linear Eddy Model and was developed by
Kerstein[1, 2]. It is not a self contained model of turbulence in general, but provides
a very useful and insightful way to look at the turbulent mixing of passive or reacting
scalars. The model as discussed here is strictly a mixing model, in that the statistics
of the velocity field are inputs into the linear eddy model. In the following we will
first discuss basic philosophy of the linear eddy model and the formulation of the
model. We will follow this up with specific applications of the model and discuss how
the model can be set up and implemented to discuss specific issues of technological
relevance. This model, of course, has its own set of limitations which restrict its use
in complex engineering simulations.

12.1 Linear Eddy Modeling Philosophy

The transport of a scalar in a turbulent flow field is governed by the equation:
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In the formulation of the linear eddy model it is recognized that convection and
diffusion which act on the scalar field are two distinctly different physical processes.
As such, they should be modeled separately, with an approach that realistically repre-
sents the physics. These two processes (the third physical process we wish to consider,
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chemical reaction, will be discussed soon) are acting and interacting at all scales of
the flow. Fluctuations in the velocity field cover a range from the integral scale to the
Kolmogorov scale, while the scalar fluctuations span the integral scale to the Batche-
lor scale (or Corrsin scale for Sc< 1). The relationship between the Kolmogorov scale
and the Batchelor (Corrsin) scale is determined by the Schmidt number of the flow as
described earlier. To account for the effects of both stirring and diffusion (and reac-
tion) in a rigorous manner, their effects at all scales of the flow must be realistically
represented. This can be achieved only by resolving all important scales of the flow.
In traditional solution and modeling approaches, this is of course computationally
prohibitive as the computer resources are severely inadequate to treat the full physics
in multiple spatial dimensions.

Now, among the unique features of the linear eddy model is that it’s description
of the scalar field is a high-resolution, one-dimensional representation. Using a one-
dimensional representation then allows for the full range of length and time scales
to be resolved, even for flows with relatively high Reynolds and Schmidt numbers.
The challenge, then, is to develop a model which provides a statistical description of
the scalar field in one-spatial dimension, but is representative of the scalar statistics
in a real three-dimensional flow. This is achieved by developing the model based on
scaling laws representative of high-Reynolds number, three-dimensional flows. This
formulation is discussed next.

12.2 Linear Eddy Model Formulation

As discussed above, the basic idea of the linear eddy approach is to treat separately the
two different mechanisms acting to describe the evolution of a scalar (chemical species)
over a linear domain. The first mechanism we discuss here is molecular diffusion (the
last term in Eq. 12.1). Given a scalar field described on a one-dimensional space,
diffusion can be implemented explicitly and essentially exactly the numerical time
integration of the diffusion equation along the linear domain.
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When chemical reactions are considered, treatment of their source term effect can be
implemented explicitly with the diffusion equation:
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where the functional dependence of the reaction rate, w, on the various chemical
species is assumed known.

The real key to the model is the manner in which turbulent convection is treated.
This constitutes another of the unique features of the model. Convection, or stir-
ring is modeled in a stochastic manner by randomly occurring (subject to certain
rules, of course) rearrangement events of the scalar field along the linear domain at
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intervals dependent upon the flow field conditions. The size of the rearranged region
is also randomly chosen based on the eddy size distribution within the flow. The
determination of these parameters will be discussed in detail.

To help achieve a qualitative and conceptual feel for the rearrangement process
it is instructive to make an analogy of the rearrangement process with the action of
individual eddies acting on the scalar field. The rearrangement events are formulated
so that they reproduce the same effects of eddies acting on the flow. These effects
include a spatial redistribution of the scalar field, an increase in scalar gradients, and
an increase in the surface area differentiating scalar values. The size of the rearranged
domain represents the eddy size, and the distribution of the eddy sizes and frequency
of the events are obtained by using Kolmogorov scaling laws for high Reynolds number
turbulent flows.

The rearrangement events involve the following: 1) the location z is chosen within
the domain and is dependent on the turbulence intensity distribution in the domain.
For a homogeneous turbulence, the location is randomly chosen. 2) the “eddy” size I,
is selected (according to scaling laws, which will be discussed in detail shortly) over
which the rearrangement will occur. 3) A time is selected for the next “event.” 4)
The species distribution in the chosen domain is rearranged.

The particular mapping used is termed the “triplet” map. The details of this
will be described in lecture. Note that this choice of a rearrangement map is not
unique. See class handouts for details. As a side note, it should be recognized that
the functions that are derived below which parameterize the mixing process in the
model must be consistent with whatever mapping process is selected (if something
other than the triplet map may be desired).

In brief summary then, the two steps in the process for the evolution and evalua-
tion of the species field are diffusion, which is implemented explicitly:
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and the rearrangement events, as described above.
To carry out the complete model, the frequency of the inversion events must
be specified, along with the distribution of the eddy sizes. The frequency of the
rearrangement events is accomplished by realizing that the random rearrangement
events produce a random walk of a marker particle on a line. It can be shown that
the diffusivity associated with a random walk is

Dp = %N(x2> (12.5)
where N is the frequency of the events and 2?2 is the mean-square displacement asso-
ciated with each event. For a classical discussion of the statistics of random walks see
Chandrasekar[3]. In its association with turbulent transport, Dy can be interpreted
as the turbulent diffusivity. The rearrangement frequency must thus be chosen so
that the diffusivity associated with the random rearrangement process (the triplet
map in the case considered here) is equal to the physical turbulent diffusivity.
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Consider the motion of a particular particle. If an eddy of size [ is to displace this
particle, the “center” of the rearrangement event must lie within a distance [/2 of
that particle. The frequency of such a rearrangement event is simply N = Al, where A
is a rate parameter. The displacement of any particle by the triplet map will depend
on the location of the particle within the eddy. The mean square displacement of all
particles within the rearranged domain can be shown to be equal to

4
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Plugging expression 12.6 into 12.5 and using N = A, we arrive at
D, =2 AP (12.7)
Y '

In a general turbulent flow there will not be just one length scale, but a wide
range of scales (eddies) ranging from the integral scale , L, down to the Kolmogorov
scale, n. If f(l)dl is the fraction of blocks (eddies) in the range (I, [ 4+ dl) then the
total diffusivity associated with an eddy of size [ is

2
D, = 2—7)\l3f(l)dl (12.8)

The total diffusivity associated with all eddies up to size [ will then be given by

Di(l) = /l %Aﬁf(l)dl (12.9)

To complete the description of the model it is necessary to determine the eddy size
distribution, f(I), and the rate parameter, A under these more general conditions.
This is accomplished by making use of some additional scalings for the diffusivity.
Dimensional analysis yields

12

Dy(L) ~ T (12.10)
T; is a characteristic time scale. This time scale of the turbulence is

T, ~ 5 (12.11)
giving

Dy ~u'L =vRey, (12.12)

The [ dependence of Dy(1) in Eq. 12.9 is assumed to scale as the Reynolds number
based on (:
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or
/l3f(l)dl o 1P = f(l) =l (12.14)

Using the fact that the fraction of block sizes (eddies) between L and 7 is one, i.e,

/L F()dl =1 (12.15)

allows the determination of ¢ in Eq. 12.14. Substituting Eq. 12.14 into 12.15 and
solving for ¢ gives
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Eq. 12.17 specifies f(I). The value of A can now be determined by equating Eq. refdtint
with 12.12:

L2 . [—8/3
I/RGL = /n E)\l mdl
L4/3 _ n4/3
_ » bmr (12.18)
54 7775/3 — [—5/3

Solving for A:
)= 54vRer, (L/n)°3 —1
5 L3 1—(n/L)*3

(12.19)

For high Reynolds number flow, L > 7. The leading order approximation to Eq. 12.19
is

_ 54vRe; <L>5/3
n

A=+ (12.20)

Note that all order one constants that appear in the previous scaling relations are set
equal to one. This completes the basic description of the model.

The model applications to date have strictly been as a one-dimensional descrip-
tion of the mixing process. This allows one to resolve all relevant length and time
scales for flows of practical interest. The model was originally developed to investi-
gate the qualitative mixing properties of turbulent flows. Some important qualities of
this model stem from the fact that the basic physics of turbulent mixing are explicitly
incorporated. Molecular diffusion is treated exactly, and turbulent convection is mod-
eled in a physically reasonable way by the rearrangement event, or eddy turn-over
events. The distinction between molecular diffusion and turbulent convection, even at
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the subgrid scales is crucial to the accurate description of the species field, especially
when chemical reactions or nonlinear microphysics are involved. This distinction is
not made in most turbulent mixing models. This model shares a property with some
other commonly used mixing models such as coalescence-dispersion models, in that
the hydrodynamic field is assumed to be specified in advance. In other words, the
flow field structure is an input to the model, rather than a result of prediction. Even
with this specification, the prediction concerning the mixing of a scalar variable trans-
ported in the turbulent flow field have been difficult to achieve with existing methods.
However, the linear eddy model has the distinction in that the effects of molecular
diffusion and turbulent transport are treated separately and explicitly.

Another important aspect of the linear eddy model is that in its implementation
as described below, it contains no adjustable parameters. All order unity factors in
the scaling relations have been set to one. (Although these can be adjusted to give
the best quantitative fit to data.)

The linear eddy model has recently been generalized to treat a variety of flow
configurations. Below we discuss how the model is implemented and illustrate its
application in studying mixing in various flow configurations.

12.3 Implementation of Linear Eddy

The total number of computational elements along a line must be chosen to resolve
the largest and smallest scales in the flow. We will assume that the domain under con-
sideration is on the order of the integral scale, L. From Kolmogorov scaling the ratio
of the largest to smallest length scales in the flow is approximately L/n = (Re)3/*. If
the Reynolds number is 10*, then this ratio is 1000. By taking six computational ele-
ments to resolve the eddies at the Kolmogorov scale (by use of the triplet map), then
at least 6000 elements are needed to resolve the scalar distribution. Let us chose an
initial scalar field that is equal to 1 in half of the domain, and 0 in the other half of the
domain. The rate of inversion events is given by AL where L is the domain size. For
this example we will also assume periodic boundary conditions in this linear domain.
With time discretized according to the fastest time scales of the flow (remember we
want to explicitly account for turbulent convection by the rearrangement process for
all scales), diffusion is implemented by regularly advancing Eq. 12.4 numerically.

To implement the triplet map, a location for inversion is randomly selected within
the domain. The block size is also randomly chosen, but in such a way as to satisfy the
probability distribution given by f(l). Inversion takes place at intervals determined
by AL. This process is repeated until a desired time has elapsed.

To satisfy the given distribution for [, the block size is chosen as follows: First we
form the cumulative of I. The cumulative, denoted by F (1), is the probability that a
given block size (eddy) will have a linear dimension less than [. Obviously, F'(n) = 0
since 7 is the smallest length scale in the flow, and F'(L) = 1 since all eddies have
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[ < L. The cumulative is given by

Fay = [ fya = 2 ! s
()—/n fdl = gm/n
1 —5/3 —5/3
- (1723 — o3 (12.21)

Solving for [:

[ — {F(Z) (L—5/3 . 77_5/3) + 77_5/3}

Numerically this is implemented by selecting a random number uniformly dis-
tributed in = € [0,1] and using this as a value for F({). [ is then computed from
Eq. 12.22. Choosing a large quantity of random numbers for F'(I) and using them to
determine [ will give the proper distribution for /.

The complete model is implemented as a Monte-Carlo simulation of many indi-
vidual flow field realizations. The statistics are then computed by averaging over the
different realizations. The accuracy of the statistics will of course increase as the
number of realizations is increased.

—-3/5
/ (12.22)

12.4 Applications of Linear Eddy

The model has been successfully implemented in a number of different configurations
including grid turbulence, planar mixing layers, and axisymmetric jets. By varying
the spatial domain over which the inversion events occur and changing the model
inputs (Reynolds number and diffusion coefficient) the mechanisms of mixing in the
various configurations can be studied.

The first application of linear eddy was to study mixing in grid turbulence. The
laboratory equivalent of this simulation has been provided by Warhaft [4] who used
a single heated wire to provide a heat source. The downstream turbulent mixing and
measurement of the temperature statistics were the objective of his experiments. In
the linear eddy simulations, the initial conditions were arranged by setting the value
of the scalar at one grid point to 100 (the point source), and zero else where. Many
of the features of the downstream distribution were predicted well. An interesting
observation of this experiment (and simulation) is that the peak rms scalar fluctuation
did not appear along the centerline of the flow (with respect to the heat source). The
lower fluctuations along the centerline where shown by Kerstein to be due to the
enhanced mixing due to “eddy-diffusion” which is accounted for in the linear eddy
model.

The prediction of the linear eddy model in the early stages of development were
less successful. This was partly attributed to the discontinuous nature of the fluid
motion, necessitated by the one-dimensional model. Never the less, the linear eddy
formulation provides a physically sound description of turbulent mixing. Namely,
molecular diffusion is accounted for explicitly, turbulent mixing is treated by rear-
rangements (triplet map), and by limiting application to one dimension, all relevant
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length and time scales can be resolved. Furthermore, the model contains no ad-
justable parameters. Order one coefficients that appear in the scaling relations are
set equal to one. The purpose of this is at present to study the qualitative features
of turbulent mixing and to provide a mechanistically sound description of turbulent
mixing. In future applications, linear eddy type models will likely find application as
a closure to Navier-Stokes based equations used in predicting turbulent mixing and
reaction in engineering application. In such uses, adjustments of constants may be
necessary to give correct quantitative description.

A second application of the linear eddy model was in studying shear layer mix-
ing. Experimental observations show the thickness of a planar mixing layer (§) grows
linearly in the stream wise direction. The growth of the mixing layer is commonly
characterized by a spreading angle, «, such that o = tan™! §/z. The linear eddy cal-
culation is performed along a transverse line who’s spatial extent then grows linearly
with time. (This spatial growth is an input to the model, not a prediction from the
model - it is determined from the development of the hydrodynamic field.) Another
important observations about shear layer mixing is that the entrainment ratio, F, is
not equal to one. That is, the amount of fluid entrained into the shear layer from
each of the two streams depends on the velocity difference between them. Within the
linear eddy model, the boundaries of the flow in the transverse direction are specified
such that Y7 + Y, =0 and Y7 /Y, = E.

A distinctive character of mixing in shear layers is the development of a preferred
mixed fluid concentration that is independent of the spatial location within the mix-
ing layer (we have discussed this in lecture previously). The mechanisms of mixing
by which this peak occurs was explained in the previous section. The linear eddy
model has been successful in reproducing this character, and in providing a means
of understanding the differences in the pdf concentrations that develop for different
flows and similar flows with different transport coefficients.

The linear eddy model can also be extended in a straight forward manner to
account for chemical reactions. In this case a number of scalar values corresponding
to the different reacting species and their reaction products must be specified. For
the reaction A+ B — C, the evolution of the scalars A, B, and, if desired, C'. Within
each linear eddy cell the species A will evolve governed by:

0A 0?A
T kAB + 52 (11.23)
k is a reaction rate coefficient with units (%) Turbulent mixing is again accounted for
by random rearrangements. An additional input in the reacting case is the Damkd&hler
number, Da, a nondimensional number characterizing the ratio of the reaction fre-
quency to the mixing frequency. The mixing frequency based on the large scale t;, is
U/L,so Da=kL/U.
Subsequent to these first two applications, the model has been applied in a wide
variety of applications including radial and axial descriptions of reacting and non-
reacting jets [5, 6, 7], and homogeneous turbulence with and without mean scalar
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gradient [2, 8, 9]. The model has reproduced most of the known spectral scaling
properties of the scalar field as well as reproduced statistical properties of the flow as
measured from both experiments and direct numerical simulation.

Although the model has been mainly used as a tool to study physics of turbu-
lent mixing,! it is now being used in works to make predictions and provide design
guidelines for real engineering problems [7]. Projects include atmospheric mixing with
application to droplet formation, emission production from combustion processes, in
particular NO production in hydrogen-air combustion, and pollutant formation in
turbulent plumes (smoke stacks). It is interesting to note that these applications all
involve microphysics or chemical reactions where the rate of mixing is crucial to the
determine the physics of chemistry of the process. Also in these applications, many of
the unwanted byproducts (pollution) involve chemical reactions that are slower than
the energy releasing reactions, and don’t participate much in the overall energetics
of the process. In cases where the details of the chemical rates are important, all
existing mixing models fail to provide accurate predictions. This is one area in which
the linear eddy model is expected to make some significant contributions.
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