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1 INTRODUCTION

It is reasonable to describe turbulence in fluids as “random” or “chaotic” behavior
(motion) of the fluid that cannot be described exactly. The majority of flows found in
nature and in engineering applications are turbulent. Turbulence has a large influence
on the transport properties of the flow and other engineering applications, and is
thus a subject that has drawn a significant amount of attention. It may therefore
seem surprising, that although most flows of practical engineering importance are
turbulent, a rigorous definition of turbulence is difficult to formalize. It is sometimes
even difficult to agree, particularly when discussing two-dimensional or low-Reynolds
number flows, as to whether a particular flow is turbulent or not. Fluid turbulence
can be an intimidating subject to get involved with. Discussion range from the very
mathematical, to the very qualitative and conceptual - with plenty of disagreement
among the “experts”.

Despite this, several definitions of turbulence have been formulated. Some are:

“Turbulence is an irreqular motion which in general makes its appearance in fluids,
gaseous or liquid, when they flow past solid surfaces or even when neighboring streams
of the same fluid flow past or above one another.” (G.I. Taylor quoted from von
Karman.[1])

“Turbulent fluid motion is an irreqular condition of flow in which the various quan-
tities show a random wvariation with time and space coordinates, so that statistically
distinct average values can be discerned. (Hinze, [2].)

Turbulence is a three-dimensional time-dependent motion in which vortex stretch-
ing causes velocity fluctuations to spread to all wavelengths between a minimum de-
termined by the viscous forces and a mazimum determined by the boundary conditions
of the flow. It is the usual state of fluid motion except at small Reynolds numbers.”
(Bradshaw, An Introduction to Turbulence and its Measurement.”)

The study of turbulence can lead to emotional and tense debates. These re-
sult from different schools of thought and different emphasis on what is important.
Although many of the ideas which lay the foundation for much theoretical and model-
ing work are not new, advances in modeling and understanding are continually being
made, helping to keep debate alive.

In this course we will begin by discussing some general features concerning the
nature and physics of turbulent flow. We will first approach this on a very qualitative
level where some of the important physical and statistical properties of turbulence will
be introduced. A large part of the class will be devoted to studying and discussing
models of turbulent mizing processes. It will be important to understand exactly
what we mean by mizing and the distinction we make between the effects of turbu-
lence on momentum transport and on scalar mizing. These ideas will be emphasized
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throughout the class.

We will treat turbulence as a continuum phenomenon - meaning that the length
and time scales of the flow field are significantly larger than the length and time
scales that describe the microscopic molecular processes. As such, it is widely agreed
that the Navier-Stokes equations, along with appropriate equations expressing con-
servation of mass and energy provide an exact description of the turbulent flow field.
When boundary and initial conditions are properly specified, these equations provide
an exact description of the flow. In practice, it is not possible to generate solutions
to these equations as they are a set of simultaneous, nonlinear partial differential
equations to which no solution has been found for the general case. These equa-
tions are, however, the starting point for most analytical and numerical approaches
to treating turbulence. It is assumed for this course that you are familiar with these
equations. Although exact solutions are rare, you should feel comfortable with the
physical interpretation of the terms in these equations. After a review of the mathe-
matical notation we will be using, a brief derivation and review of the equations will
be provided.

These notes are a supplement to material presented in class and reading out of the
assigned text. No single text book can cover the range of current research topics and
applications in turbulent flows. The assigned text for this class is “Turbulent Flows,”
by S. B. Pope.|[3]. Several texts, collections, and individual papers must be consulted
to obtain an in-depth view of any particular area. Throughout the course a list of
such references will be provided. These include some classical texts such as Tennekes

and Lumley,[4] and Hinze.[2] Some texts focusing on modeling for applications in
CFD include Wilcox([5] and Rodi[6].

1.1 Tensor Notation

To deal with the mathematics associated with turbulent flow, a reasonable working
knowledge of Cartesian tensors is necessary. Although this can get to be a pretty
messy topic, what you need to know in order to work the equations and relationships
encountered in fluid mechanics is pretty easy. Some of the notation is summarized
below.

A vector is a quantity having both magnitude and direction. One way of repre-
senting a vector or a vector operation is by the use of “Einstein” index notation. For
example, the velocity vector, V. = ¥ = (u,v,w) can be written as (u,us,us) = u;.
Similarly, the coordinate vector x or & can be written as z; = (x1, T2, x3). This illus-
trates the first property of index notation: if an indezx ( say, i) appears only once in
a term, it is a “free” index and can represent any allowed value for that indez.

A commonly encountered vector quantity is the gradient of a scalar. This is
written as
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In tensor notation this is

99
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Vo = (1.2)
It is important to keep in mind the physical interpretation of these symbols. The
gradient simply represents the rate of change of some scalar property (like tempera-
ture, pressure, chemical species concentration, etc.) in space. Since it is a vector, the
gradient has, of course, both magnitude and direction. Large values represent rapid
changes, while small values indicate fairly uniform conditions.

Another property of tensor notation is that repeated indices represent summation
over that index. For example the vector dot (or scalar) product is defined as

A-B-= albl + Clgbg + Clgbg = aibi (13)

Similarly the divergence of a vector is defined as

. 6@1 ('9@2 aag o 80,2‘

The divergence of a vector has a particularly significant importance in fluid dynamics.
The divergence of the velocity field, gg?, represents the volumetric rate of change of
a fixed mass of fluid. For an incompressible fluid, V - V = 0.

A tensor quantity, like the strain rate would be represented by a double index:

. 81111 auj
S = (&Tj + (93%) (1.5)

Two commonly used tensors with special significance are the Kronecker delta
tensor, d;;, and the permutation tensor, €;;; These tensor quantities are defined by:

5y = 1, if i=j,

— 0, if i#j. (1.6)
and
€ir = 0, if any 1,7, k are equal
1, if i, J, k are cyclic clockwise (1.7)
= —1, if 1, 7, k are cyclic counterclockwise

As an example, €11, = 0 for any Kk, €193 = €931 = €312 = 1, and €397 = €313 = €133 =
—1. The delta tensor is also referred to as the ”substitution” tensor as a result of
the following property: a;d;; = a;. In general, in an expression operated on by 9d;;,
the effect is to replace any occurance of 7 by j (or vice versa). This also is useful in
manipulating formulae in tensor notation. Another useful property is the following
relationship between the delta tensors and the permutation tensor:

€ijk€ilm = 5jl5km - 5jm5kl (1-8)
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This is also very useful in manipulating formula written in tensor notation.
The use of the permutation tensor makes for a compact notation for expressing
the vector cross product:

i i k
B, B, B,

Using tensor notation and remembering repeated indices indicate summation over
that index, Eq. 1.9 can be written as

CZ' == eijkAjBk (110)

The vorticity vector, w;, is defined as the curl of the velocity field. Using vector
symbols and tensor notation it can be written in either of the two following forms:

w=VxV (1.11)
or
ou
Ww; = Ez‘jka—; (112)
J

Convince yourself that this is so.

This is basically all you will need to know. The notation throughout the class
will be somewhat inconsistent in that we will switch back and forth between index
notation and the use of symbolic operators (V, V., VX, etc.). This is just because
we will use whatever comes easiest for any particular case. Make sure and familiarize
yourself with the equivalent notations given in Eqgs. (1.9, 1.10 1.11 and 1.12).

1.1.1 Symmetric and Antisymmetric Tensors

Recall that any second order tensor can be decomposed into a symmetric and antisym-

metric component. For example, take the velocity gradient tensor,%. It’s symmetric
J

S;; and antisymmetric [;; components are:

1 auz 87,1,]'
S”“i(amj+'am> (1.13)

1 (Ou; Ouy

Ry = = L2 1.14

S;; is the rate of strain tensor and R;; is the rotation tensor. Both will play roles in
subsequent developments.

By their nature, the tensor product of a symmetric and antisymmetric tensor is
Z€ero:

By this definition note that
(9uz-
j

(Show this)
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1.2 Scale Analysis

Since exact solutions to the governing equations of fluid motion exist only in the most
simplified cases, various types of approximate analysis is used to study the behavior
of turbulent flow. In particular, many relationships can be derived based on order
of magnitude estimates. These types of relationships will prove extremely useful in
both the interpretation of turbulence phenomena and in the development of models
to describe the effects of turbulence. The analysis used to generate the approximate
relationships is termed scale analysis. Below we first illustrate its use by an example,
then set down a few rules for its application.

A typical example of the use of scale analysis is in determining the time for a point
source of a particular chemical constituent to diffuse across a certain distance. (This
example and the following discussion is based on a presentation of this by Bejan.[7].

Consider a room with a linear dimension L. At one end of the room, a chemical
with molecular diffusivity D is released. We wish to use scale analysis to determine
the time for the chemical to diffuse across the room. The equation governing this
process is the diffusion equation

oC 02C

The first step in the scale analysis process is to estimate the order of magnitude of
the terms in Eq. 1.17. First we write

8_0 AC
ot t,

(1.17)

(1.18)

This expression can be interpreted as “the scale over which the concentration changes
(134

in a time ¢ is AC. The notation ~ can be read as “scales as” or “scales like,” or “is
of the same order of magnitude.” Similarly, the rhs of Eq. 1.17 can be expressed as

0*C AC

Daxiaxi ~ D—L2 (1.19)
If Eq. 1.17 holds, the lhs is equal to the rhs, therefore we have:
AC AC
~D—— 1.2
P 72 (1.20)
or
L2
~— 1.21
to~ 5 (1.21)

This result will compare well with exact solutions. Although we are not able to
get quantitative results with this type of approximate analysis, the trends are correct
- if the analysis is applied correctly. In applying this analysis, the following must be
kept in mind:
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1. Carefully define your spatial domain over which your analysis is to be per-
formed. If you have spatial derivatives in an equation to which you wish to
apply scale analysis, clearly state the domain over which that change occurs.
On the other hand, if a time scale is given, make sure to carefully specify that.
Each application will be different, so carefully specifying these parameters is
important. You will see many different examples of this in these notes.

2. Consider an equation that consists of several terms:
A+B=C+D (1.22)

In this case we obviously have lhs ~ rhs. Now if o(A) > o(B) and o(C) > o(D)
then A ~ C. In other words, the order of magnitude of a sum is the order
of magnitude of the dominant term. The notation o(A) reads “the order of
magnitude of A” and o(A) > o(B) reads “the order of magnitude of A is greater
than the order of magnitude of B.”

3. For a product, A = BC, the order of magnitude is equal to the product of the
order of magnitude of the individual terms:

o(A) ~ o(B)o(C). (1.23)

Similarly, for a quotient, we have o(A) ~ o(B/C) ~ o(B)/o(C).

1.3 The Probability Density Function

Since turbulence is often characterized as “random” fluid motions, it is often most
useful to characterize a turbulent flow by its statistics, rather than by it’s detailed
instantaneous structure. In a short while, we will discuss some of the many different
statistical properties of turbulent flow. The purpose of this section is simply to
introduce the idea of the probability density function.

When treating any function as a random variable, its value can only be specified
with a certain probability. The complete statistical description of a random variable is
given by its probability distribution at n points of space-time. The one point probability
density function, or pdf, of a random variable ¢ provides the complete statistics of a
random variable at an individual point in space. It is defined as

po(z)dx = probability that ¢ has a value between x and = + dx (1.24)

An immediate result of this definition is
/ p(z)de =1 (1.25)

since the probability of ¢ taking on some value between —oo and oo is 1. Since
this is a one point pdf, multi-point correlations of information regarding length-scale
information cannot be obtained at this level of description.
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Figure 1.1 a. A hypothetical probability density distribution of the random variable
¢. b. The cumulative distribution of ¢.

The mean or expectation of the random variable is easily expressed in terms of
the pdf:

o(z) = /_O:O zp(z)dz (1.26)
while the second central moment is
var(@) = [ (o = 3)ple)do (1.27)

A hierarchy of higher order moments and second moments can be similarly defined.
The cumulative distribution is defined as

T

P(z) = / p(z) do (1.28)
(Note that we are using the lowercase letters to denote the pdf, and upper case letters
to denote the cumulative distribution.) P(z) is a monotonically increasing function
of . From the definition of p(z), we have P(—o0) = 0 and P(c0) = 1. In Fig. 1.1
the pdf and cumulative are illustrated schematically.

The cumulative distribution will prove to be useful later in the course when we
wish to generate a series of random numbers that satisfy a particular pdf. Briefly,
this is done as follows: Given a pdf, compute the cdf as described above. If the
cdf can be expressed analytically, express the random variable ¢ as a function of
the cdf. Then by choosing a random number uniformly distributed between P(—o0)
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and P(00), and using it in the resulting expression for ¢ = f(P(x)), a sequence of
random numbers can be generated to give a random variable ¢ that satisfies ps(x).
If an analytic expression for P(x) cannot be obtained, the procedure to generate the
random variable can be accomplished numerically.

For a more thorough discussion, see the text (Pope, pp. 37-53).
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