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2 GOVERNING EQUATIONS

For completeness we will take a brief moment to review the governing equations
for a turbulent fluid. We will present them both in physical space coordinates and
wavenumber (or Fourier) space. The equations describing the motion of a fluid are
simply expressions for the conservation of mass, momentum (F = ma), and energy.
These equations, based on the laws of Newtonian mechanics and Thermodynamics
are generally accepted to provide an exact model of turbulent motion.

2.1 Conservation of Mass

Consider an arbitrary fixed volume in space. The rate at which mass accumulates in
that volume is simply:

Mass accumulation = / / / %dv (2.1)

where v represents the arbitrary volume. This rate of accumulation must equal the
net rate at which mass is flowing into this volume which can be expressed as:

. //A PV - dA (2.2)

where A represents the surface area through which mass is flowing. The minus sign
in front of the integral represents the notation that the area vector is normal to the
surface element and points outward. dA is an elemental area vector, (dA,,dA,, dA,).
The bold characters indicate vector quantities. Note that we could also express dA
as ndA where n is the unit normal (outward pointing) and dA is the magnitude of
the element of area.

Equating Eq. 2.1 and 2.2 gives

//A%dv+/ApV~dA:O (2.3)

Using Gauss’ divergence theorem (see any text on vector analysis) the surface
integral on the rhs of Eq. 2.3 can be expressed as a volume integral. The resulting
equation is:

[ [ [ =0 24)
/// [%+V'W]dv=0 (2.5)

(0)
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Eq. 2.5 is valid for any arbitrary volume, v. This can only be true if the integrand
is identically zero. Thus, the equation expressing the conservation of mass (Continuity
equation) is:

dp

—+V:-pV=0 2.6

5 TV P (2.6)
For an incompressible flow this equation reduces to:

V-V=0 (2.7)

Note that Eq. 2.7 does not imply that the density is uniform throughout the fluid,
only that it is not compressible. As an example consider a mixture of helium and
oxygen at constant temperature and where the Mach number is small. Although
there can be mixing between the two fluid of different density, local volume of fluid
elements is conserved.

2.2 Conservation of Momentum

The conservation equation for momentum is simply a mathematical expression of
Newton’s Second Law, F' = ma, that is stated here for a fixed amount of mass. When
formulated for an arbitrary control volume (allowing for momentum flux across the
boundaries and deformation of the boundaries), use of Leibnitz integration rule or
the Reynolds Transport Theorem, results in an expression that can be stated as: The
rate of change of momentum in an arbitrary volume of fluid is equal to the net flux
of momentum through the surfaces of that volume plus the net forces acting on that
volume. The forces acting will consist both of surface forces and body forces.

Let us consider first the surface forces. The surface forces result from the existence
of a stress tensor. For a Newtonian fluid this stress tensor can be expressed as:

0ij = —P0ij + p Kax + 83:)) -3V V%‘] (2.8)
j i

For an incompressible flow the stress tensor simplifies to:

where S;; is the strain rate tensor and is given by:

1 auz 87,1,]'
% =5 (aa;j - axi> (210)

The surface force acting on an element of surface dA in the x direction is
dfy = 0, - dA (2.11)
or in Einstein index notation (because it’s less ambiguous when dealing with tensors):
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where f; represents the force in the i** direction. Repeated indices represent summa-
tion over that index.

A number of body forces can be acting on the fluid. These may include gravity
forces, Coriolis force (rotation) or electrical or magnetic forces for appropriate con-
ducting fluids. Considering only the gravity force, we have for an element of volume:

dfi = gidv (2.13)

Putting all this together and integrating over our arbitrary volume and surface of
this volume gives:

///v angid“ +//A('0V;>de’41 = ///v gidv + //A 0ijdA; (2.14)

Again applying Gauss’ divergence theorem to convert the surface integrals into
volume integrals and noting that the expression must hold for any control surface, we
arrive at the following equation for the conservation of momentum:

0pVi | OpViVy _ ., 00ij

= PG 2.15
ot " oz, T oa; (2.15)
For an incompressible fluid with constant viscosity this equation reduces to:
ov 1
§+V-vvz——vp+uv2v+g (2.16)
p

For an incompressible fluid, Egs. 2.7 and 2.16 describe the evolution of the tur-
bulent velocity field. With appropriate initial and boundary conditions, this set of
equations could, in principle, be solved for the time development of the velocity field.
In practice, however, there are some obvious difficulties with this. The set of equations
given by 2.7 and 2.16 are a set of coupled, nonlinear, partial differential equations,
with, in the most general cases, complex initial and boundary conditions. As a result,
exact solutions exist only for very simplified conditions, all being for laminar flow.
To solve these equations for problems of practical combustion applications, numerical
techniques must be used. As we will see later, there are also fundamental difficul-
ties with the numerical solution. Approximate methods for the numerical solution of
these equations will be discussed in subsequent lectures.

For the moment let us make some observations about turbulence based on equa-
tion Eq. 2.15 (ignore gravity for the moment). The only source of nonlinearity in
this equation is the convective term. If we ignore nonlinear convection, Eq 2.15 is a
linear equation that simply describes the viscous damping of the fluid. The nonlin-
ear convective term thus provides the mechanism for feeding energy to the various
length scales. Turbulence is a nonlinear process, and we must attempt to understand
and describe these nonlinear interactions if we are to have any hope of dealing with
turbulence.
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2.2.1 Fluid Deformation

In the first section of the notes the velocity gradient tensor, g:?, was introduced
J

to illustrate the decomposition of any tensor into its symmetric and antisymmetric
components. Repeating that decomposition here:

= — — — = 9. .. 2.1
(9.’13]' 2 <@xj * (9.731) * 2 <8ZE] a.’lﬁz) Sl] * RZ] ( 7)

S;; represents a pure straining motion and is called the rate of strain tensor. The
second term, R;;, describes a rigid body rotation. The deformation of a fluid element
can therefore be separated into these two distinctly different contributions. Details
on the nature of these two mechanisms of fluid deformation can be found in most
graduate level fluid mechanics textbooks, e.g.,Panton[1].

2.3 Fourier Transforms

Insight into the behavior and structure of turbulent flow is facilitated by considering
several different viewpoints from which to study it. One convenient space is frequency
or wavenumber space. One approach is to start a theoretical study of turbulence
by transforming the governing equations (Eqgs. 2.6, 2.15) to their counterparts in
wavenumber, or Fourier space. One thing accomplished by this transformation is that
differential operators are turned into algebraic multipliers. From some perspectives,
this results in a simplification in the analysis of the governing equations.

Furthermore, it is often more natural to treat many of the turbulence phenom-
ena in terms of frequencies and wavenumbers. This includes important dynamical
properties such as the kinetic energy and energy dissipation distribution (spectra).
For example, the energy spectra, E(k), yields the energy distribution in the flow as
a function of wavenumber, where small wavenumbers represent the large eddies, and
large wavenumbers represent the small eddies. The Fourier transform decomposes
the velocity (or any dependent variable) field into its component waves of differ-
ent wavelengths. Understanding the interaction of information in the frequency or
wavenumber domain often yields useful information in understanding the physical
domain.

The general definition of the Fourier Transform of a function, f(¢) is

9@) =Wy = [ et (2.18)
and the inverse transform is
F0) = Mgt =2r [ fB)edw (2.19)

The above describes the transform from a time domain to a frequency space. Instead
of looking at the transform from time to frequency, the Fourier Transform can be
defined in terms of a transform from physical space domain to a wavenumber domain:

9k) =S{/0} = [ fexpemax (2.20)
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and the inverse transform is

F) = 57 Hgk)} =2r [ f(x)e™ak (2.21)

2.3.1 Discrete Fourier Transform

Consider a velocity component in a turbulent flow. This variable is in general a
function of both space and time. For a cubic domain with sides of length L, with
periodic boundary conditions the discrete Fourier transform (space to wavenumber
transformation) is defined as:

V(x,t) = (%T) i_ V(k, t) exp (ik - x) (2.22)

The inverse transform is given by:

Vik,t) = i V(x,t) exp (—ik - X) (2.23)

T1,22,L3=—00

For a general flow where L — oo, the integral Fourier transform is defined as above:

V(x,t) = /// V(x,t) exp(—ik - x)dx (2.24)

The derivative of Eq. 2.22 is simply obtained by differentiating the series expansion
term by term:

FT (8%—3» = ikU (k) (2.26)

where FT indicates the Fourier Transform.

2.3.2 Fourier Transform of Governing Equations

The transforms defined above can be applied to the governing equations to give a
set of coupled algebraic equations. The transforms of the linear terms are straight
forward. The treatment of the nonlinear terms is slightly complicated. To obtain the
Fourier transform of the nonlinear convective term, consider a multiplication of the
type W = U,;U; (we will drop the explicit ¢ dependence in the following equations; it
will be implicitly assumed):
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W(z) = > w(k)exp(ikz)

[[kl|<o0

= UU, =

3 U;(k) exp zkx} [ S Ui(k) exp zkx)] (2.27)

[[kll<oo kII<K

In Eq. 2.27 wy will then be given by the convolution sum:

A

wy= > Up)Ujlg) (2.28)

p+q=k,| k|| <oco

Now Fourier transforming Eqs. 2.7 and 2.16 then gives the following;:
k-V(k)=0 (2.29)

<§t+”k2> i > kVi(k)Vilks) — ikip(k) (2.30)

kl +ko=k

At this point a few things can be pointed out from Eqs. 2.29 and 2.30. First,
the nonlinear terms give rise to interactions among a triad a wave numbers k, k1,
and ko such that k1 + ky = k. From Eq. 2.29 it is seen that V(k) must lie in a plane
perpendicular to k since the dot product is zero. (A -B is identically zero if the vector
A is perpendicular to B) The pressure gradient term ik;p(k) is parallel to k since p is
a scalar. Pressure can be eliminated from Eq. 2.30 by taking the dot product of 2.30
with k. Using the incompressibility condition 2.29, the left hand side of 2.30 will be
zero (after taking the dot product). We are then left with:

—iki Y kiVi(ka)Vike) = ikikip(k) (2.31)
ki1+ko=k

Since k;k; = k? (the magnitude of the wave number), we can write the Fourier trans-
form of the pressure as:

plk)=—15 > k; Vi (k1) Va (k) (2.32)
k1+ko=k

Note that we have change the repeated index ¢ to . This is O.K since it is just a
dummy. Now using Eq. 2.32 in 2.30 gives

%)
<8t+yk2>v i > kVi(ki)Vi(ks)

k1 +k2 k

= 2 KVilk)Va(ke) (2.33)

k1 +ko=k
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In most of the literature Eq. 2.33 is usually written in the more compact form:

0 . , . .
(& + uk2> Vikk) = —tka Py Y Vj(k)Va(ks) (2.34)
k1+ko=k
where
P;(k) = 6;; — /<;2] (2.35)

The transformed equations are now a set of algebraic equations for the coefficients
V(k’) Starting with prescribed initial conditions, these equations can be integrated
in time. As we will see, these equations cannot be solved exactly (due to computer
limitations) for general high Reynolds number flow. Although the range of wavenum-
bers k is finite due to viscosity (the sum in Eq. 2.34 is over finite k), we will see in the
next section that the magnitude of the largest wavenumber increases as the Reynolds
number increases. Many recent approaches to turbulence modeling attempt to solve
Eq. 2.34 exactly only for a small range of k, and model the interactions with the
higher wavenumbers. This is the idea of Large Eddy Simulation (keep in mind that
small &k corresponds to large eddies). For now we leave this discussion here.
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