Circle one: I am in ME EN 2300 CH EN 2300

Name Key

Do not plug in any numerical values until they are required to carry the analysis further.

#1 (20 Points) Consider an insulated room that has a uniform temperature, T. At some time, a 100 W light bulb and a 1500 W hair dryer are turned on. How much has the energy content of the room changed one minute after the light and hair dryer have been turned on? State any assumptions.

 $\Delta E = Q_{in}$ $Q_{in} = \dot{Q}\Delta t \quad (Eq. 2.37)$

So
$$\triangle E = Q\Delta I$$

= $1600 \frac{J}{\text{sec}} \times 60 \text{ Sec} =$

960 KJ

Write 1st law 5

Q correct 5

DE= OAt 5

All correct 5

#2 (20 Points) The force required to push in a piston increases with distance as $F=Cx^2$

C is an appropriately dimensioned constant. What is the total work done in moving the piston from x = 0 to $x = x_1$? Express your answer in terms of C, x_1 , and any other constants or values as appropriate.

#3 (30 points) Water at 25°C flows out of a 10 cm diameter pipe at a velocity of 10 m/sec. If a device is designed to convert all the kinetic energy of the exiting water into work, what is the maximum power output of the device?

$$M = SVII$$

So Max powere = $\frac{1}{2}SAV^3$
 $A = 77R^2 = 77D^2 = 77.1^2 = .0079$
 $A = 77R^2 = 77.1^2 = .0079$

So max power =
$$\frac{1}{2}997\frac{kg}{m^3}(.0079)m^2\frac{10^3}{5ec^3}\frac{kgmm}{5ec^2}\frac{m}{5ec}$$

$$KE = \frac{1}{2}mV^2$$
:
 $KE = \frac{1}{2}mV^2$:
 $= \frac{1}{2}mV^2$
 $= \frac{1}{2}mV^2$

