

		rteingeruu		0100
4. Genera	ation of electricity	y		
a. Ste pro	eam power plant duce about 90%	s operating on of the electric	the Ra	inkine cycle sumed in the
b. En for	ergy sources for year 2000, utilition	net electricity es only)	genera	ition (data for
	Fuel	kWh x 10 ⁹	%	
	coal	1697	56.3	
	nuclear	705	23.4	
	gas	291	9.65	
	hydro	248	8.23	
	petroleum	72	2.39	
			0.07	
	other	2	0.07	
	other	2	0.07	

VII. Power and Refrigeration Cycles 4. Sample calculations for coal-fired, 1000 MW_e, steam power plant (cont.) Heat supplied to boiler by combustion, Q_H $\eta_{th} = \frac{\dot{W}_e}{\dot{Q}_H} = 0.40$ $\dot{Q}_H = \frac{\dot{W}_e}{\eta_{th}} = \frac{1000 \times 10^6 W}{0.40} = 2.5 \times 10^9 W$ Heat rejected to surroundings, Q_L $\dot{Q}_H - \dot{Q}_L - \dot{W}_e = 0$ $\dot{Q}_L = \dot{Q}_H (1 - \eta_{th}) = 0.60 \dot{Q}_H = 0.60 (2.5 \times 10^9) = 1.5 \times 10^9 W$ Hesson 22

VII. Power and Refrigeration Cycles

d. Sample calculations for coal-fired, 1000 $\rm MW_{e},$ steam power plant (cont.)

How much coal must our plant burn?

The overall efficiency is defined as (Lesson 13 & Eqn. 2-43)

$$\eta_{overall} = \frac{\dot{W_e}}{\dot{m}_{fuel} \bullet HHV}$$

For an overall efficiency of 36%,

$$\dot{m}_{fuel} = \frac{\dot{W}_{e}}{\eta_{overall} \bullet HHV} = \frac{1000 \times 10^{6} \, \text{J/s}}{(0.36) 12,000 \frac{Btu}{lbm} 1055 \frac{J}{Btu} 2.2046 \frac{lbm}{kg}}$$
$$\dot{m}_{fuel} = 99.5 \frac{kg}{s} = 13,800 \frac{lbm}{min} = 6.58 \frac{ton}{min} = 3,460,000 \frac{ton}{yr}$$
lesson 22