

TH	ERMODYNAMICS TOOLB	ОХ
Models of Working Substances •Ideal or perfect gas •Real gas •Incompressible substance •Phase-change fluids •Mixtures	Concepts and Definitions •Properties (intensive, extensive) •System (boundary, open, closed) •Surroundings	Second Law •An isolated system will tend to a state of equilibrium •Certain processes are possible, others are not
	Conservation Laws •Energy is conserved (First Law) •Mass is conserved •Momentum is conserved	
Universal / Accumulation form: initial	Balance Equation for Any Extension Accumulation = transport + generation $= \begin{bmatrix} \text{amount} \\ - \begin{bmatrix} \text{amount} \end{bmatrix}_{+} \begin{bmatrix} \text{amount} \\ \end{bmatrix}$	ve Property
$\begin{bmatrix} \text{amount} \end{bmatrix} \begin{bmatrix} \text{amount} \end{bmatrix}$ Rate form: $\begin{bmatrix} \text{rate of} \\ \text{change} \end{bmatrix} = \begin{bmatrix} \text{rate of} \\ \text{transp} \end{bmatrix}$	$\begin{bmatrix} \text{rate of} \\ \text{ort in} \end{bmatrix} - \begin{bmatrix} \text{rate of} \\ \text{transport out} \end{bmatrix} + \begin{bmatrix} \text{rate of} \\ \text{generation} \end{bmatrix} - \begin{bmatrix} \text{rate of} \\ \text{transport out} \end{bmatrix}$	[rate of consumption]
lesson 1		

U.S. Energy Flow Trends – 2002 Net Primary Resource Consumption ~103 Exajoules

Source: Production and end-use data from Energy Information Administration, *Annual Energy Review 2002.* *Net fossil-fuel electrical imports.

**Biomass/other includes wood, waste, alcohol, geothermal, solar, and wind.

June 2004 Lawrence Livermore National Laboratory http://eed.llnl.gov/flow

One Physicist's View of Thermodynamics

 Thermodynamics is a funny subject. The first time you go through it, you don't understand it at all. The second time you go through it, you think you understand it, except for one or two points. The third time you go through it, you know you don't understand it, but by that time you are so used to the subject, it doesn't bother you anymore.

Arnold Sommerfeld 1868 – 1951 Mathematician and physicist

lesson 1

lesson 1

C. An exan	onle of what we mean by conservation of energy (cont.)	
(Borrowed from Richard Feynman's, <u>The Character of Physical Law</u>)		
So we have a number for all the numb	a mathematical formula and a set of rules for calculating r each of the many different kinds of energy. If we add up ers, they always give the same total.	
The conserv consequentl we cannot d can define a different forn calculations.	ation of energy is purely mathematical and is y abstract. No one knows why energy is conserved and efine energy. But we don't need to know because we mathematical formula and a set of rules for all of the ns of energy and this allows us to make useful	

