Homework 6 Solutions.

3-27 <i>Complete the following table for</i> H_2O :	3-27	Complete	the following	table for	H,O:
--	------	----------	---------------	-----------	------

T, °C	P, kPa	h, kJ/kg	x	Phase description
120.21	200	2045.8	0.7	Saturated mixture
140	361.53	1800	0.565	Saturated mixture
177.66	950	752.74	0.0	Saturated liquid
80	500	335.37		Compressed liquid
350.0	800	3162.2		Superheated vapor

3-28 *Complete the following table for Refrigerant-134a*:

T, °C P, kPa		v , m^3/kg	Phase description	
-8	320	0.0007569	Compressed liquid	
30	770.64	0.015	Saturated mixture	
-12.73	180	0.11041	Saturated vapor	
80	600	0.044710	Superheated vapor	

3-88 The specific volume of steam is to be determined using the ideal gas relation, the compressibility chart, and the steam tables. The errors involved in the first two approaches are also to be determined.

Properties The gas constant, the critical pressure, and the critical temperature of water are, from Table A-1,

$$R = 0.4615 \text{ kPa·m}^3/\text{kg·K},$$
 $T_{cr} = 647.1 \text{ K},$ $P_{cr} = 22.06 \text{ MPa}$

Analysis (a) From the ideal gas equation of state,

$$V = \frac{RT}{P} = \frac{(0.4615 \text{ kPa} \cdot \text{m}^3/\text{kg} \cdot \text{K})(673 \text{ K})}{(10,000 \text{ kPa})} = 0.03106 \text{ m}^3/\text{kg}$$
 (17.6% error)

(b) From the compressibility chart (Fig. A-15),

H₂O 10 MPa

$$P_R = \frac{P}{P_{cr}} = \frac{10 \text{ MPa}}{22.06 \text{ MPa}} = 0.453$$
 $Z = 0.84$ $Z = 0.84$ $Z = 0.84$

Thus,

$$V = ZV_{ideal} = (0.84)(0.03106 \text{ m}^3/\text{kg}) = 0.02609 \text{ m}^3/\text{kg}$$
 (1.2% error)

(c) From the superheated steam table (Table A-6),

$$P = 10 \text{ MPa}$$

 $T = 400^{\circ}\text{C}$ $V = 0.02644 \text{ m}^3/\text{kg}$

4-25 A piston-cylinder device contains air gas at a specified state. The air undergoes a cycle with three processes. The boundary work for each process and the net work of the cycle are to be determined.

Properties The properties of air are R = 0.287 kJ/kg.K, k = 1.4 (Table A-2a).

Analysis For the isothermal expansion process:

$$V_{1} = \frac{mRT}{P_{1}} = \frac{(0.15 \text{ kg})(0.287 \text{ kJ/kg.K})(350 + 273 \text{ K})}{(2000 \text{ kPa})} = 0.01341 \text{ m}^{3}$$

$$V_{2} = \frac{mRT}{P_{2}} = \frac{(0.15 \text{ kg})(0.287 \text{ kJ/kg.K})(350 + 273 \text{ K})}{(500 \text{ kPa})} = 0.05364 \text{ m}^{3}$$

$$W_{b,1\square 2} = P_{1}V_{1} \ln \frac{V_{2}}{V_{1}} = (2000 \text{ kPa})(0.01341 \text{ m}^{3}) \ln \frac{0.05364 \text{ m}^{3}}{0.01341 \text{ m}^{3}} = 37.18 \text{ kJ}$$

For the polytropic compression process:

$$P_2V_2^n = P_3V_3^n \square \square (500 \text{ kPa})(0.05364 \text{ m}^3)^{1.2} = (2000 \text{ kPa})V_3^{1.2} \square \square V_3 = 0.01690 \text{ m}^3$$

$$W_{b,2\square 3} = \frac{P_3V_3 \square P_2V_2}{1\square n} = \frac{(2000 \text{ kPa})(0.01690 \text{ m}^3) \square (500 \text{ kPa})(0.05364 \text{ m}^3)}{1\square 1.2} = -34.86 \text{ kJ}$$

For the constant pressure compression process:

$$W_{b,3|1} = P_3(V_1 \square V_3) = (2000 \text{ kPa})(0.01341 \square 0.01690)\text{m}^3 = -6.97 \text{ kJ}$$

The net work for the cycle is the sum of the works for each process

$$W_{\text{net}} = W_{b,1||2} + W_{b,2||3} + W_{b,3||1} = 37.18 + (||34.86|) + (||6.97|) = -4.65 \text{ kJ}$$