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Lecture 27: Diffusion of Ions: Part 2: coupled diffusion of cations and 

anions as described by Nernst-Planck Equation 

 

Today’s topics 

• Continue to understand the fundamental kinetics parameters of diffusion of ions within an 
electrically neutral system (liquid or solid), including diffusion coefficient, diffusion flux, and 
compare these parameters with those we previously developed for the neutral systems of 
atoms or molecules, aiming to see how the electrostatic potential established with the ions 
affect the diffusion kinetics.  

• Further understanding of the harmony diffusion of A-ions and the counter ions (B-ions) for a 
neutral system of AaBb: how to deduce the Nernst-Planck equation, and understand the 

coupled (in harmony) diffusion coefficient, . 

• Local internal electrical field, as defined as E=dF/dx, can be built up if the diffusion coefficient 
of A and B ions are different, that is DA ≠ DB. 

  
 
In last lecture: 
We learned how to deduce the diffusion flux for ions, specifically the A-ions and B-ions for a neutral system 
AaBb, which can be, for example, a salt like CaCl2 (a=1, b=2) dissolved in a medium (e.g., water), where it 
dissociates into free ions: one cation Ca2+, and two anion Cl-, diffusing in the aqueous medium.    
 
The process of dissociation of AaBb is usually referred as ionization, as written as 

𝐴!𝐵" ⇌ 𝑎𝐴#! + 𝑏𝐵#" 
 

where Zc and Za are the valences of A-ion (cation) and B-ion (anion) respectively.  

Note that Zc>0 but Za<0, and . 

The potential around an individual ion is now consisted of both the regular ‘chemical potential’ (as marked as µ) 
and the ‘electrical potential’ (as marked as F) built up by the electrical charge; and this combined potential is 
usually referred as ‘electrochemical potential’ as marked as “h”. Here for the A and B ions, we have: 

 and  

Diffusion of AaBb (actually A and B ions) in the medium is regarded as a coupled diffusion of AaBb wherein ‘a’ 
number of cations move in harmony with ‘b’ number of anions, so as to maintain electroneutrality within the 
system (in other words, no electrostatic potential created, otherwise the free energy will increase).  
 
For the “coupled (harmony) diffusion” as assumed above, we have derived the diffusion flux for A and B ions: 
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   (1) 

 

   (2) 

 
Where the DA and DB are the diffusion coefficient of A and B ion, respectively, and C is the concentration of the 
dissolved salt AaBb.  
 
 
From the two equations above, we have 

,  

or , as indeed consistent with the ‘coupled’ diffusion flux of A and B ions as discussed above, 

where the diffusion of A is in harmony with (or neutralized by) the diffusion of B. 
 

also considering the electroneutrality of AaBb, we have , where Zc>0, Za<0 

then we have,  

defining  

This implies that when ‘a’ A-ions and ‘b’ B-ions move in harmony, it is as if one AaBb molecule moves.  Now 
let’s understand this harmony through the following treatment.  
 
Recalling the assumption we made for the ionization equilibrium, which remains during the diffusion: 

𝐴!𝐵" ⇌ 𝑎𝐴#! + 𝑏𝐵#" 

That means,  

Where is the chemical potential of AaBb. Note that AaBb is electrically neutral. 

Differentiating the above equation,     (3) 
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Again, considering  

We can have  and , where is a positive integer. 

For example: for salts like KCl, CaCl2, =1; for salts like MgSO4, = 2.  
Thus, timing the both side of Eq. (3) with , we have 

 

Or,     (4) 

The left-hand side is the term in parenthesis [] in equations (1) and (2).  
 
Substituting Eq. (4) into Eqs. (1) and (2), we have 

 

Or,    

    (5) 

 
The same way, we have,  

      (6) 

 
now     

      

With  

Then,     (7) 

 
The same way, 

      (8) 
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Now, from Eqs. (7) and (8), we have indeed seen that 

  

--- again, when ‘a’ A-ions and ‘b’ B-ions move in harmony, it is as if one AaBb molecule moves. 

so,     (9) 

 
Let’s write 

         (10) 

The above is known as the Nernst-Planck equation. is the diffusion coefficient of AaBb in the medium 

under consideration. It is apparently related to the individual ionic diffusion coefficients, can thus be regarded 
as a parameter reflecting the ‘coupled’ diffusion of A and B ions. 
 

Taking as defined in Eq. (10), the diffusion flux for AaBb in general can be given by 

                 (11) 

          
concentration  mobility  force 

 

Where , , , as defined above, respectively.  

 
Considering two extreme conditions: 

• if  DA>>DB,  

• if  DB>>DA,  

 

Let us now return to the equation for the potential gradient  given by the equation we developed in last 

lecture, 
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     (12) 

 
For dilute solution of AaBb as assumed above, we have 

 

 

The above assumption is not completely true, even for dilute solutions. However, we will use it for simplicity. 
 
Then, 

 

 

 

So,   Eq. (12) can be re-written as 

 

     

 Remember ,   so, ,   

 Substituting both Zca and Zab into the above equation, we have 

 

 
The local electrical field (E) is given by  

 

This is a local internal field, not measurable.  If DA=DB, there is no internal electrical field. 

! !

" #

" #

! "
# ! A "

# ! A "

B B& D A & D (B B) B)
B) * & D A & D (

µ µ
⋅ +Φ

= −
+

! !"# "#$ %! ! " ! ! "# A B # A CBµ µ µ= + = +

! !"# "#$ %! ! ! ! ! !" # $ " # B$µ µ µ= + = +

! "# A B #C
#' ( #'
µ

= ⋅

! !" # $ "B
"C ' "C
µ

= ⋅

! !

" #

" #

! "
# ! A "

# ! A "

B B& D A & D (B B) B)
B) * & D A & D (

µ µ
⋅ +Φ

= −
+

! !

" #
$ %

! " # A A

! " # A

B C # B C D ( ) *!
+ B C # B C D , *-

+
= − ⋅ ⋅

+

!" !α= − !!" #α= !" # #$α= !" # !#α= −

! !

" # $
% &

! " "

# ! A "

AB C C D () )#
)* + C A + C B , - )*

α −Φ
= − ⋅ ⋅ ⋅

+

! !

" # $
% &

! " "

# ! A "

AB C C D E) )#*
)+ , C A , C B - . )+

α −Φ
= − = ⋅ ⋅ ⋅

+


