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Lecture 21: Types of Interfaces: coherent, semi-coherent, and incoherent 

 

Today’s topics 

• Basics of the three types of interfaces: coherent, semi-coherent, and incoherent, and the 
major differences between them regarding the chemical and structural (strain) contribution 
to the surface energy: γinterface =γch + γst. 

• Comparison of the phase growth (diffusion kinetics) at the three interfaces. 
• Becker’s model for description of the coherent interface: surface energy is proportional to 

the square of the composition (concentration) gradient: . 

 
 
General consideration of interface (say between a and b phase)  
 
When b particle precipitates from a phase, a new interface forms. For a spherical particle of radius r, the total 

surface energy is the sum of the two sources: surface energy, (i.e., γch contributed by chemical 

bonding at interface), and the strain energy,  (i.e., γst)  --- γinterface =γch + γst  --- see Lecture 11 

where c is elastic constant, and e is the relative strain due to misfit of lattice:  
 

              

Where aa and ab are the unstressed interplanar spacings of the matching planes in the a- and b-phase, 
respectively.   

 
For example for the above dislocation (a type of misfit), if aa = 1.0 Å, ab = 1.2 Å, then e = 20% (i.e. every 5 
continuous planes in the b phase will take a dislocation to accommodate the misfit of the two lattice). However, 
if aa = 1.0 Å, ab = 1.01 Å, i.e., no significant difference between the two phase lattice, then e = 1% (i.e. the 
dislocation density decreases to every 100 planes in the b phase, approaching to the case of coherent interface; 
on the other hand, if the two phases differ dramatically in lattice, say aa = 1.0 Å, ab = 1.5 Å, then e = 50% (i.e., 
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now every 2 continuous planes in the b phase will take a dislocation, very worse for the two phases to match or 
fit, thus falling to the category of incoherent interface.)  for the interface with intermediate e < 25%, usually 
called semicoherent interface.  
 
Coherent interface: see the figure below 

 
A coherent interface arises when two crystals match perfectly at the interface plane so that the two lattices are 
continuous across the interface, as shown in the Figure above.  This can only be achieved if, disregarding 
chemical species, the interfacial plane has the same atomic configuration (orientation, interplane distance) in 
both phases, and this requires the two crystals to be oriented relative to each other in a special way. 
 
One such example: in Cu-Si alloy, a coherent interface can be formed between the hexagonal close-packed (hcp) 
si-rich k–phase and the fcc Cu-rich a–matrix. The lattice parameters of these two phases are such that the 
(111)fcc plane is identical to the (0001)hcp plane --- both planes are hcp, and in this particularly case the 
interatomic distances are also identical.  Therefore when the two crystals are joined along the hcp planes, the 
resultant interface is completely coherent.  
 
Other coherent interface examples:   
GaAs/AlAs,  InAs/GaAs,   Ge/Si 
 
Surface energy of coherent interface:  

• formation of new interface leads to formation of mismatching chemical bond (AA or BB à AB), and 
such chemical contribution is the only source of surface energy for coherent interface: γcoherent = γch  
(since γst is usually negligible) 

• coherent interfacial energy ranges 0 – ca. 200 mJ/m2. For the Cu-Si alloys mentioned above the 
interfacial energy is only 1 mJ/m2. 
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• For very small particles (though still larger than r*), the term of strain energy is smaller 

than the surface energy (chemical contribution), and total interfacial energy is small (due to 

the limited surface area, and thus the limited number of interface chemical bondings), thereby it is 
energetically favorable to maintain coherent. 

 
 
Semicoherent Interfaces: see the figure below 

 
The strains associated with a coherent interface raise the total energy of the system, and for sufficiently large 
atomic misfit, or interfacial area, it becomes energetically more favorable to replace the coherent interface with 
a semicoherent interface in which the disregistry is periodically taken up by misfit dislocations, see the Figure 
above. 
 
Surface energy of semicoherent interface:  

• The interfacial energy of a semicoherent interface can be approximately considered as the sum of the 
chemical contribution and strain (misfit) contribution: γsemicoherent = γch + γst. 

• Semicoherent interfacial energy ranges 200 – 500 mJ/m2.  
• As shown in the Figure above, as the misfit e increases, the dislocation spacing diminishes. For small 

values of e, the structural contribution to the interfacial energy is roughly proportional to the density of 
the dislocations in the interface: γst µ e.  However, γst increases less rapidly as e becomes larger and it 
levels out when e à 0.25. the reason for such behavior is that as the misfit dislocation spacing 
decreases, the associated strain field increasingly overlap and annul each other.   

• When e >0.25, i.e., one dislocation for every four interplanar spacings, the regions of poor fit around 
the dislocation cores overlap and the interface cannot be considered as coherent, now turns to be 
incoherent.  
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Incoherent Interfaces: see the figure below 
When the interface plane has a very different atomic configuration in the two adjacent phases, there is no 
possibility of good matching across the interface. The pattern of atoms may either be very different in the two 
phases or, if it is similar, the interatomic distances may differ by more than 25%.  In both cases the interface is 
defined as incoherent. See Figure below. 
Surface energy of incoherent interface:  

• Incoherent interfacial energy ranges ~ 500 – 1000 mJ/m2, where the structural contribution is really 
large.  

• Very little is known about the detailed atomic structure of incoherent interfaces.  
 

 
 
 
The nature of interfaces and the growth of precipitates: 
 
Diffusion normally occurs by a vacancy mechanism in substitutional solid solutions (see Lecture 6). In the case 
of the formation of a precipitate, a reconstruction of the lattice occurs, where involves the creation and 
annihilation of vacancies, if the interface is semicoherent or incoherent.  However, if the interface is coherent, 
no such vacancies processes involved. 
 
The concentration profile across precipitate/matrix interface for the three different interfaces are shown below: 
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In terms of the interface transfer parameter, M, we have 
 
M (coherent) < M (semicoherent) < M (incoherent) 
 
For incoherent interface, the solute atoms (component of the new b phase) are consumed immediately by 
deposit onto the b phase once they reach the interface, thus resulting in a local concentration Cr to be minimal 
or close to the lowest concentration possible, Ca, that’s the final equilibrium concentration in the a phase. 
Under such a case, the growth of b phase (or moving of the interface) is a diffusion-controlled process, and the 
diffusion flux is proportional to the concentration gradient of solute atoms in the diffusion layer, roughly 
(C0-Ca)/d, where d is the thickness of the diffusion layer. Considering that Ca is the lowest possible 
concentration level, for a given diffusion coefficient, the diffusion flux in the case of incoherent interface 
should be the highest in value, i.e., the incoherent interface moves fastest, while the coherent one moves the 
slowest.  
 
--- this can be understood as an analogy to the case of oil/water interface: when oil droplet (b phase) forms in a 
water matrix (a phase containing small amount of oil), the interface around the droplet represents a typical 
incoherent interface (oil/water don’t like each other). When oil molecules diffuse from the water matrix, 
reaching the droplets, they will migrate across the interface and deposit onto the droplet rapidly (just because 
these oil molecules like to be part of the oil phase, rather than the water phase). In other words, the 
cross-interface diffusion is fast! 
  
Becker’s Model of Coherent Interfaces: 
 
The model is based on the regular solution theory. It is applicable to the coexistence of two phases of identical 
crystal structures provided the interface is coherent. 
 
Consider a binary solution A-B, let there be an abrupt change in composition along some direction as shown 
below (resulting in formation of a new interface). 

 
Consider a lattice site just to the left of the interface, where the probability that it is occupied by an A atom is 
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XA
(1). It has Z’ nearest neighbors on the right hand side, just across the interface. Of these, Z’ XA

(2) are A atoms 
and Z’XB

(2) are B atoms. Thus, the number of AA bonds formed is equal to XA
(1)Z’ XA

(2) and the number of AB 
bonds formed is equal to XA

(1)Z’ XB
(2).  

Similarly, the probability that a site on the left side is occupied by a B atom is XB
(1). Thus, the number of BB 

bond is XB
(1) Z’XB

(2) and the number of BA bonds is XB
(1) Z’XA

(2) 
 
The number of atomic sites/unit area is N 
 

Thus, number of AA bonds/unit area of the interface,  

     number of BB bonds/unit area of the interface,  

     number of AB bonds/unit area of the interface,  

 
If hAA, hAB, and hBB are bond enthalpies, 

H (per unit interface area) =         (1) 

If the interface region (in the original solution) had been of a uniform composition of A and B with 
concentrations: 

 and   

Then:  

number of AA bonds/unit area: ;  

number of BB bonds/unit area:  

number of AB bonds/unit area:  

The corresponding enthalpy/unit area is  

              (2) 

Thus, the excess enthalpy associated with the interface is  
 
ΔH (per unit area) = H – H0 
 
After some algebra, we have  
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    (3) 

 
For coherent interface, the interface energy is the net gain of enthalpy by formation of the interface (no strain 
involved).  
 
So the interfacial energy g = DH, then 

 

Formation of an interface means gain of surface energy that is always positive. So, to have the interface to form, 

we must have . 

In the above equation,                        is a groups of constants, which can be replaced with a 

single constant, k.  

 
Then we have, 

 
It can be further reformatted as, 

 
where d is the thickness of coherent interface, which is usually the lattice spacing “a” for crystalline phases.  
 
                 can be considered as the concentration gradient across the interface 
 
 
Since both k and d in the above equation are constant, we have 

 

For coherent interface, the interface energy γ is proportional to the square of the concentration gradient 
across the interface.  
--- this is Becker’s Model  
 
Please practice with the homework assigned to this lecture. 
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