Lecture 18: Kinetics of Phase Growth in a Two-component System:

general kinetics analysis based on the dilute-solution approximation

Today’s topics:

In the last 2 Lectures, we learned three different ways to describe the diffusion flux of B
atoms across the o/f interface around the j particle, and these three fluxes should be
equal each other.

For the two-component phase transformation (particularly in the case of dilute solution of
B phase dispersed in o phase), growth of the B phase (particle) usually requires long-range
diffusion of B atoms towards to the B particle. In this case, the growth rate can be
determined by two different rate-limiting processes: Interface Limited Growth and Diffusion
Limited Growth. Both of these two processes are temperature dependent --- typically the
growth rate is Arrhenius type with growth becoming very slow at low temperatures.

When rM >> D, then C, = C, --- The growth falls into the diffusion limited case, where
there is very small buildup of B atoms near the 8 particles.

When D >> rM, then C, = C; --- The growth falls into the interface limited case, where
there is large buildup of B atoms near the B particles.

However, in a more general case, rM ~ D, the phase growth is determined by both the
long-range diffusion of B atoms from the a. matrix towards to the (3 particle and the diffusion
across the o/p interface. Today’s topic is to learn how to describe the kinetics of such a
general phase growth.

The following kinetics treatment applies only to the dilute-solution of « phase containing small molar
fraction of S phase, i.e., molar fraction of B (Xg) << molar fraction of A (X,).

In last Lecture, we derived the diffusion flux of B atoms across the o/f interface in 3 equations:
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In a quasi-steady state, all three fluxes J, J’, J”” as deduced above in Egs. (1)(2)(3) are equal,
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First, from M =M(C, -C,), we have
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From this equation we have two limiting cases:
«  When rM >> D, then C, = C, --- The growth falls into the diffusion limited case, where there is
very small buildup of B atoms near the (3 particles.
«  When D >>rM, then C, = C, --- The growth falls into the interface limited case, where there is
large buildup of B atoms near the B particles.

Now let’s deal with the general case, where both the long-range diffusion of B atoms from the « matrix towards
to the f particle and the diffusion across the o/ interface will be considered.

Att =0, before the phase transformation begins, the matrix concentration of B atoms is C;

When the transformation is complete, the matrix concentration of B atoms will be C,.

As assumed at the very beginning, the original a solution is dilute, or the volume fraction of  is much less than
1.0.

Now, we define the fraction transformed, x(t), as

X(t) = VO

= , Vj (t=0) << 1.0
Vﬁ (t=00)

where Vj is the unit volume of § phase.
Now, V(1) (C = Co) = (1 - Vy()(Co - C) (ii)

--- increased # of B atoms within the § phase (particles) equals to the decreased # of B atoms within the o
phase (now with a volume of 1- V(t))

Since Cg >> Cy, and V(t) << 1.0 (the dilute solution assumption)

We have  V(t) Cg = (Co— Cp) => Vj(t) = %
B
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Now, assuming there are ‘n” B particles (of radius of r) per unit volume, then,
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Then, Eq. (ii) >
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Again, Since Cg >> Cy, and V(t) << 1.0 (the dilute solution assumption), we have
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Differentiation of Eq. (iv) with respect to ‘t” leads to
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Also, Differentiation of Eq. (iii) with respect to ‘t’ leads to
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Combining Eqg. (v) and (vi) gives,
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So, we can re-write Eq. (vii) as

4znr’-M(C, -C,)=(C, —Ca)-%

Submitting C, with Eq. (i), we have
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Also with Eq. (iii), we have,
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Now, with Eq. (x), we can re-write Eq. (viii) as
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Substituting “r” with Eqg. (ix), we have
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Now let’s set 2 new parameters
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Then we have
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From this equation, it is not possible to express x as an explicit function of ‘t’. Rather, we can show that ‘t” is an
explicit function of “x’. That is, we can determine the time required for the transformation to progress to a given
extent, in term of fraction transformed, x(t), as defined at the very beginning above.

Set y?=x, then Eq. (xi) can be re-written as
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The “t” can be expressed as
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Where A is a constant

Submitting back with y= x**, we have
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Now, considering the fact: when t=0, x=0,  then we can deduce the value of the constant “A”
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Submitting back “A” into the equation, we have
1 1+ X%+ x 1 2x"*+1, &
= In +/3 tan™ -Z Xii
2(MK DK) [(1 s ] ( DK2)[ ( 7 ) 6] (xii)



Eq. (xii) can be re-written as
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Now consider 2 situations:
If MK, << DK,;, interface transfer much slower than diffusion: slop is = , intercept = J§
1 1
If MK, >> DK;, diffusion much slower than interface transfer: slope is = , intercept = — [;/E
2 2
So, from real experiments:
inter
A negative intercept (— ) indicates diffusion limited growth, and ratio= w: —2«/5;
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A positive intercept (
1

) indicates interface limited growth, and ratio =
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