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Lecture 13: Heterogeneous Nucleation: Effects of Grain Boundaries and 

Surface Defects 

 

Today’s topics 

• Effects of grain boundaries on solid-solid phase transformation: various types of grain 
boundaries. 

• Defects of container wall like pinholes, cavities, cracks, have significant effect on the 
liquid-solid phase transformation, e.g., solidification of metals.  

• For metal solidification in a container, the supercooling temperature required for the 
freezing is dependent on the superheating temperature. Understanding such an 
interesting phenomenon demands consideration of the small cavities within the container 
wall.  These tiny sites serve as catalytic sites for the heterogeneous nucleation and the 
superheating and supercooling temperature is correlated to the size (radius) of the cavity. 

 

About grain boundaries 

• A grain boundary is a general planar defect that separates regions of different crystalline 
orientation (i.e. grains) within a polycrystalline material. 

• Grain boundaries are usually the result of uneven growth when the solid is crystallizing. 
The atoms in the grain boundary will not be in perfect crystalline arrangement. Grain sizes 
vary from 1 µm to 1 mm. 

• Since grain boundaries are defects in the crystal structure they tend to decrease the 
electrical and thermal conductivity of the material.  

• The high interfacial energy and relatively weak bonding in most grain boundaries often 
make them preferred sites for heterogeneous nucleation (precipitation of new phases from 
the solid).  

 
Today’s Lecture: we will learn how to apply the general theory of heterogeneous nucleation as described in 
Lectures 10-12 onto some specific practical cases, e.g., the solidification of metals in a container, where the 
surface defects play important roles in facilitating the nucleation.  
 
Different geometries of grain boundaries: 
Consider a second phase of β precipitates out of the matrix, α. It usually occurs at grain boundaries, which act 
as the nucleation sites facilitating the phase transformation. The potential sites for nucleation include: 1.) Grain 
facets (two grain junctions - faces) 2.) Grain edges (three grain junction - lines) 3.) Grain corners (four grain 
junctions - points)   
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1) At a grain facet: 
 
   
                                        
 
 
 
The angle Ψ can be determined by minimizing surface free energy, or force balance as we learned in Lecture 8. 

           2 γαβ cos(
2
ψ

) = γαα 

 
2)  At the grain edge: along three grain junction  
 

 
 
3)  At four grain corners, —— tetrahedral  

 
 
For Ψ <600, the β precipitate shape takes the following shape depending on the location 
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For 600<Ψ<70.50 

 
 
 
For Ψ>70.50 

 
 
Different geometries have different implications for phase transformation: The second β phase is always 
thermodynamically unstable at grain facet, because the chemical potential is greater under a convex surface 
than under a flat surface (see Lecture 8). For Ψ <600, β phase is stable at grain edges and corners because the 
chemical potential is lower under a concave surface than under a flat surface (see Lecture 8); for 600<Ψ<70.50, 
β phase is stable at grain corners only; for Ψ>70.50, β phase is unstable everywhere inside α-phase, and given 
enough time, will be expelled outside the body onto the surface. 
 
Freezing of a metal in a container: the effect of superheating (imposed) on supercooling required for 
freezing to occur 
 
Most container walls have defects, such as pinholes, cavities, etc. These defects have a significant effect on the 
freezing of a liquid metal. Specifically, if the container is heated to T+, a temperature above the equilibrium 
melting point, TM (i.e., superheating by ΔT+ = T+ - TM), then during the subsequent cooling step, the 
supercooling temperature T- (i.e., the temperature below TM by ΔT- = TM – T- to enable the metal freezing to 
occur) is interestingly dependent on ΔT+.  This phenomenon can be explained by heterogeneous nucleation 
affected by the defects within the container wall.   
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Let’s assume defects be cavities of various radii of cylindrical shape, such that h >> r. 
 
                           
                          α—liquid metal, β—solid metal, δ—container surface 
                          As solid wets the container better than liquid, 
                          i.e., γβδ < γαδ, then the contact angle 

                          cosθ =
αβ

βδαδ

γ
γγ −

  (Lecture 12) 

Above TM,  

• if the cavity contains liquid phase, the free energy is  Gcav(α) = π r2 · h · Gv(α) + 2π r h · γαδ 

• if it is solid phase, the free energy is  Gcav(β) = π r2 · h · Gv(β) + 2π r · h γβδ 

 
where Gv(α) and Gv(β) are the volumetric free energy for the liquid and solid phase, γαβ, γαδ and γβδ are the 
surface energy of the liquid-solid boundary of metal, liquid-container surface, and solid-constrainer surface, 
respectively. 
 
At T>TM,  Gv(α) < Gv(β),  but, γαδ > γβδ, then it is possible to have Gcav(α) > Gcav(β) --- that is, the rest of the 
container have liquid, but the cavity has the solid. 
 
Consider an liquid-solid equilibrium at T in the cavity,  where   Gcav(α) = Gcav(β) 
 
Then   Gcav(α) = π r2 · h · Gv(α) + 2π r h · γαδ  =  Gcav(β) = π r2 · h · Gv(β) + 2π r · h γβδ 

Then,  GV(β) – GV(α) = )(2
βδαδ γγ −

r
= 

r
θγαβ cos2

 

 
Also from Lecture 11,   GV(β) – GV(α) = [SV(β) – SV(α)] (TM – T ) = [ SV(α) – SV(β)] (T– TM) 
                                 
Then,     GV(β) – GV(α) = ΔGv (LS) = ΔSV (LS) (TM – T ) = ΔSV (SL) (T– TM)  
                         

Then,     GV(β) – GV(α) = ΔSV (SL) (T– TM) = 
r

θγαβ cos2
 

Then,     T = TM + 
2 cos

( )Vr S S L
αβγ θ

∆ →
= T+  (superheating due to cavity) 

 
At T+, liquid-solid equilibrium is reached within the cavity. Defining the cavity radius as rc, then we have 

T+ = TM + 
2 cos

( )c Vr S S L
αβγ θ

∆ →
  or   rc = 

2 cos
( ) ( )M VT T S S L

αβγ θ
+ − ∆ →

 

r 

h 
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Thus, for r > rc,  Gcav(α) < Gcav(β) at T+,   liquid in cavity (α phase) 
     for r < rc,  Gcav(α) > Gcav(β) at T+,   solid in cavity (β phase) 
 

 

 
 
 
As the container is cooled farther, spontaneous freezing will occur when the radius of α/β interface (rαβ) reaches 
the critical radius (r*). 
For the solid nucleus (a truncated sphere) shown in the diagram above,  
rαβ sinθ = rc, when rαβ = r* (critical nucleus for freezing to occur), then we have,  r*sinθ = rc  

r* = 
2
( )VG L S

αβγ
−
∆ →

=
2

( )( )V MS L S T T
αβγ

−−
∆ → −

      (see Lecture 10-12) 

 
T – is the temperature needed to cool, at which the freezing occurs inside a cavity of radius of rc. 

Then,  rc = r*sinθ = 
2 sin

( )( )V MS S L T T
αβγ θ

−∆ → −
 

Also, as shown above,  rc = 
2 cos

( )( )V MS S L T T
αβγ θ

+∆ → −
 

Then,    
2 sin

( )( )V MS S L T T
αβγ θ

−∆ → −
=

2 cos
( )( )V MS S L T T

αβγ θ
+∆ → −

 

Then,    θtan=
∆
∆

=
−
−

+

−
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Beyond a certain ΔT+, the required ΔT- becomes constant (θ  0, or fully wetting for the solid on the surface), 
because the heterogeneous nucleation starts to occur on flat container walls. 
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Expt: 


