Absorption
Color
Luminescence
LED device
Band gap
Electronics
Optoelectronics
Photovoltaics, photoelectric, LED, sensors …

Nanofeatures: size, morphology, location, interaction …

Quantum Dots (behind QLED TV)

AFM, STM

Light

Emission wavelength:
- Blue: 460 nm
- Green: 520 nm
- Yellow: 580 nm
- Orange: 620 nm
- Red: 660 nm

Diameter:
- ~3 nm
- 4 nm
- 5 nm
- 6 nm
- 8 nm

NSOM
Lecture 16: Near-field Scanning Optical Microscopy (NSOM)

- Background of NSOM;
- Basic principles and mechanisms of NSOM;
- Basic components of a NSOM;
- Different scanning modes and systems of NSOM;
- General applications and advantages of NSOM.

Some people call it Scanning Near-field Optical Microscopy (SNOM)
Scanning probe microscopies

STM
- Atomic resolution;
 Molecular bonding.

AFM
- Atomic Interaction:
 • Contact mode
 • Non-contact mode
 • Tapping (intermittent) mode
- Other Interactions:
 • Electrostatic mode (scanning electrostatic potential microscope)
 • Magnetic mode
 • Chemical Force mode

NSOM
- Direct correlation between nanostructures and optical properties
 \textit{tunable}

SCM
- (scanning confocal microscope)
 \textit{Single-molecule spectroscopy}
What can NSOM do?

• STM measures electric current, and AFM measures forces, neither deals with light;
• Light is a crucial excitation source in both scientific research and mother nature systems (e.g. photosynthetic system).
• Scientific research fields: absorption, fluorescence, photoinduced electron transfer, light-emitting devices, photovoltaic cells.
Why NSOM?

- Light diffraction limit of conventional optical microscopy: $\lambda/2$, ~ 250 nm. Actually, in real cases, the optical resolution $\sim \lambda$, 500 nm; in contrast, NSOM offers higher resolution around 50 nm (or even < 30 nm), depending on tip aperture size.

- NSOM provides simultaneous measurements of the **topography** and **optical properties** (fluorescence) --- *direct correlation* between surface nano-features and optical/electronic properties.

- This is especially useful for the studying the inhomogeneous materials or surfaces, like nanoparticles, polymer blends, porous silicon, biological systems. Next slide
NSOM imaging:
Direct correlation between size and optical/electronic properties

<table>
<thead>
<tr>
<th>Emission wavelength:</th>
<th>460 nm</th>
<th>520 nm</th>
<th>580 nm</th>
<th>620 nm</th>
<th>660 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter:</td>
<td>~3 nm</td>
<td>4 nm</td>
<td>5 nm</td>
<td>6 nm</td>
<td>8 nm</td>
</tr>
</tbody>
</table>
NSOM imaging:
Direct correlation between locations and optical/electronic properties

NiO₂ particles wrapped in PPV film

Fluorescence quenching by NiO₂ particles

NSOM Operation System: feedback based on AFM
Major components of NSOM

Optical:
- Light source (lasers: CW and pulsed), Fibers, Mirrors, Lenses, Objectives (oil, large NA)
- Photon detectors (Photon-Multiplier, Avalanche Diode)
- Probe (tip)

Mechanical:
- Translation stage, Piezo scanner
- Anti-vibration optical table

Electrical:
- Scanning drivers for piezo scanner
- z distance control (feedback system)
- Amplifiers, Signal processors
- Software and Computer
What is Near-Field?

- requires a nanometer sized aperture (much smaller than the light wavelength).
- A specimen is scanned very close to the aperture.
- As long as the specimen remains within a distance less than the aperture diameter, an image with sub-wavelength resolution (aperture size) can be generated.
- There is a tradeoff between resolution and sensitivity (light intensity) --- aperture size cannot be too small.
What is Near-Field?

- For high spatial resolution, the probe must be close to the sample.
Feedback Mechanism 1: AFM force sensor
Feedback Mechanism 1: AFM force sensor

comments:

• Poor spatial resolution due to the fiber cantilever (reflection and spring constant);

• Damage to sample due to tapping scanning.
Feedback Mechanism 2: Modified AFM

Comments:

- Difficult for optical alignment, two laser beams involved.
Feedback Mechanism 3: Shear Force with Tuning Fork
Feedback Mechanism 3: Shear Force with Tuning Fork
NSOM based on shear force mode

NSOM imaging of cleaned glass

NSOM Lab data
NSOM imaging of cleaned glass
Structure of a NSOM Tip?
Different Operation Modes

- **Illumination** by the tip is probably the easiest to operate and interpret, and gives the most signal. It requires a transparent sample, so is limited for application in many samples like silicons and bio-species.

- **Reflection** modes give less light, and are more dependent on the details of the probe tip, but allow one to study opaque samples.

- The **illumination/collection** mode provides a complement to the **reflection** modes, but the signal contains a large background.
Different Operation Modes

a) illumination, b) collection, c) illumination/collection, d) reflection and e) reflection collection.
Brief History of NSOM

- Ideas started in mid-1980’s;
 Aaron Lewis, M. Isaacson, A. Harootunian, and A. Murray, *Ultramicroscopy* 13, 227 (1984); --- even before the AFM concept got proposed and proven in 1986 by Gerd Binnig (Nobel prize in 1986)

- Technology developed in 1990’s;
 Cited 1863 times as of Oct. 30 2022
 Cited 2532 times as of Oct. 30 2022
 Eric Betzig was a PhD student of Aaron Lewis at Connell.

- Prototype commercial available since 2000’s
The Nobel Prize in **Chemistry** 2014

“for the development of super-resolved fluorescence microscopy"

Eric Betzig

NSOM
Lecture 16-19

Stefan W. Hell

William E. Moerner

SCM
Lecture 20-22
Nine Nobel Prizes have been awarded for work completed at Bell Laboratories.
Eric Betzig developed NSOM at Bell Lab

https://www.bell-labs.com/about/history/innovation-stories/super-resolved-fluorescence-microscopy/#gref
Eric Betzig developed NSOM at Bell Lab

“Because of Bell Labs' history and the brilliance of everyone around me, I felt like I was on probation from the time I got there. Two years in, I wrote in my self-evaluation that if I didn’t have a breakthrough in the next year, they wouldn’t need to fire me because I would quit.”
— Eric Betzig

https://www.bell-labs.com/about/history/innovation-stories/super-resolved-fluorescence-microscopy/#gref
• 1983, B.S. in Physics from Caltech,
• 1988, Ph.D. from Cornell, with Aaron Lewis (initiator of concept of NOSM, and founded Nanonics Imaging Ltd, a NSOM manufacturing company)
• 1989, joined AT&T Bell Labs, invented NSOM to image single molecules in 1993
• 1994, tiring of academia and the uncertainty of the corporate structure of Bell Lab (to be spun off AT&T to form Lucent Technologies), he quitted both, becoming a house husband.
• 1996, became VP of R&D of his father’s machine company in Ann Arbor, where he developed Flexible Adaptive Servohydraulic Technology (FAST). After spending millions of dollars on development, he sold a total of two devices which did not allow him to achieve commercial success. “Commercial failure of the technology left me unemployed and looking for new directions.”
• 2002, returned to the field of microscopy by founding a firm known as New Millennium Research, in Okemos, Michigan. Inspired by the work of Mike Davidson and his fluorescent proteins, he developed photoactivated localization microscopy (PALM), a method of controlling fluorescent proteins using pulses of light to create images of a higher resolution than previously thought possible. In the living room of his old Bell Labs collaborator, Harald Hess, they developed the first optical microscope based on this technology. They built their first prototype in less than two months, gathering widespread attention.
• 2005, joined HHMI’s Janelia Farm Research Campus as a group leader to work on developing super high-resolution fluorescence microscopy techniques.
• 2010, he was offered the Max Delbruck Prize, but he declined it, allowing Xiaowei Zhuang to receive the award.
• 2014, jointly awarded the Nobel Prize in Chemistry along with Stefan Hell and William E. Moerner.
• 2017, joined the faculty of UC Berkeley
Quick Looking back: Home Build NSOMs
New versions of NSOM

• 4 companies over the world produce good NSOM systems.
• The picture shows the model of Veeco Aurora III (DI, Thermomorphic).
• Veeco is now part of Bruker
 This one is based on shear force feedback.
Commercial NSOM: Nanonics MultiView 2000

Pictures taken from Nanonics

Aaron Lewis: Founder, was a professor at Cornell, Ph.D. advisor of Nobel Laureate Eric Betzig
Commercial NSOM: Witec ALphaSNOM

- Cantilevered probe
- Aperture
- Probe Mounting
- Pictures taken from Witec
Shedding light on NSOM

Years ago, NSOM had a slow start. Now, scientists are taking full advantage of its technological edge over other scanning probe techniques.

Cheryl M. Hamis

It took patience and hard work. Now, finally, researchers are seeing some sunshine break through what was once a cloudy beginning for near-field scanning optical microscopy (NSOM). Paul Fortier of the University of Texas-Austin (UT-Austin) is among a group of analytical chemists who have a deep respect for this tool and see it as a technique ripe with potential, ranging from chemistry to physics.

NSOM, or SNOM, is steadily finding an important place in analytical chemistry, and company representatives are enthusiastic about its future in nanotechnology. Experts describe it as a bridge between atomic force microscopy (AFM) and optical microscopy: "The great thing about NSOM is that it gives you topographic information online with optics. This is something people could never do in the past," says Aaron Lewis of Nanonics, who in the mid-1990s led a group of researchers at Cornell University that published the first papers on the applications of NSOM.

Lewis still recalls a grant administrator at British Petroleum who in 1982 wrote him a letter that all but dismissed NSOM when the technique was still in its infancy. "The research you describe certainly meets the 'fundamental criterion,'" wrote the administrator, "but I have had some difficulty in imagining an outcome of sufficient magnitude to justify the involvement." Wish that, the administrator told Lewis's group that the research didn't qualify for funding.

"Many people in those days were not even taught that near-field optics could, in fact, be anything," recalls Lewis, who now teaches applied physics at Hebrew University in Jerusalem. "Now with all this nanotechnology revolution, people are looking deeper and deeper into how you look at light, how you concentrate light, how you analyze light, [and] how you manipulate light in very small domains."

Researchers and company representatives recall that during the early to mid-1990s, when NSOM instruments started appearing in laboratories, the technique presented many challenges.
Optics in the Nano-World

S. W. Koch and A. Knorr

Applications of optical microscopy are generally limited by the standard resolution limit set by the wavelength of visible light. The invention of near-field scanning optical microscopy (NSOM) first enabled this limit to be overcome, opening up many systems, from physics to biology, to investigation by optical microscopy. NSOM offered greatly improved spatial resolution compared with conventional optical microscopy, and the use of tunable excitation sources allowed basic spectroscopic information to be obtained. On page 2224 of this issue, Guest et al. (1) report the next major step forward in this field. The authors describe a technique that combines the high spatial resolution of NSOM with the high spectral resolution of coherent nonlinear optical spectroscopy.

Optical measurements at the nanometer scale require a light source with an illumination spot in the nanometer range. For visible-light frequencies, where the wavelength is a few hundred nanometers, conventional optical microscopy fails because the resolution is restricted to half the wavelength of the used light (2). To overcome this problem, the light must be localized in a spot with a diameter much smaller than the wavelength of the light. Ideally, the spot should have nanometer-scale dimensions. This can be done by applying small apertures (3).

The price for this high resolution is that the character of the light changes drastically when it propagates through the aperture. The localization of the light waves results in the formation of evanescent waves, which have an imaginary wave number and decay exponentially in space (in contrast to conventional light waves, which propagate freely). The intensity of an evanescent wave thus decays rapidly as the distance from the aperture increases. Therefore, the aperture has to be close to the object, often only a fraction of the wavelength away. This is the regime of near-field optics.

NSOM techniques have many applications in solid state physics, where substantial efforts are made to design electronic devices with features on the nanometer scale. Electrons can be confined in nanometer-scale structures, called quantum dots (4). In these structures, the matter-wave properties of the electrons are changed drastically because the spatial confinement of the electrons approaches the de Broglie wavelength. Their electronic and optical properties therefore differ qualitatively from those of the bulk material.

The atomic landscape encountered by electrons in a quantum dot can be mapped and analyzed with tunneling spectroscopy.
Fabrication of NSOM Tip: *chemical etching*
Fabrication of NSOM Tip: *mechanical pulling*
Major applications of NSOM: *highly adaptable to be integrated with other spectroscopy methods*

- Ultrahigh resolution OPTICAL Imaging
- Spectroscopy
 - Nearfield Surface Enhanced Raman Spectroscopy
 - Local Spectroscopy of Semiconductor Devices
- Modification of Surfaces
 - Subwavelength photolithography
 - Ultra High Density data storage
 - Laser Ablation
- Nearfield femtosecond studies
Extended NSOM system spectral and optical imaging

NSOM/SCM

Laser

Tuning Fork in feedback with lock-in amplifier

Sample Scanning Stage

Microscope objective

3x3 μm, Z-scale 0-2.8 nm

NSOM Tip

core

cladding

coating

500 nm

Laser

(Only for SCM)

Beam Splitter

Dichroic Beam Splitter

Notch Filter

Long-pass Filter

Flipper Mirror

Polarizer or Band-pass Filter

APD Detector II

APD Detector I

CCD
The platform allows AFM, STM, NSOM, and confocal optical spectroscopy (Raman and fluorescence imaging).
Typical examples of NSOM research

- Quantum size effect for semiconductor nanocrystals;
- Self-organized nanostructures: thin film dewetting, phase separation;
- Self-assembly or self-alignment: nanospheres, nanorods, nanowires;
- Heterogeneous biological systems: cells, proteins, enzymes, membranes;
- Real optoelectronic devices: solar cells, optical switches, LEDs;
- Imaging single-molecules (research of SMS was initiated by NSOM);
- High resolution studies of charge transfer in DNA and polymer chains.

To be discussed in the coming lectures ...
Nanoparticles: a unique manifestation

- Semiconductor nanospheres represent one of the most attractive nanostructures, and have a wide variety of applications in optoelectronics, magnetics, and biological applications.
- The size of nanoparticles can be tuned between individual molecules and the bulk counterparts.
- The nanosphere remains the same crystalline structure as the bulk crystal, but it shows unique size dependent physical and chemical properties, so called *quantum size effect*. See next slide.
- Conventional spectroscopy measurements of nanoparticles require uniform size distribution of the particle system, which is normally hard to attain.
- However, NSOM measurement removes such a need by focusing on only one particle a time.
Quantum Size Effect of Semiconductor Materials

1. As particle decreases in size, the bandgap increases, approaching the energy difference between LUOM and HOMO for the individual molecules;

2. For fluorescent semiconductor materials, like CdS, the different bandgap leads to different emission wavelength;

3. By making different sizes of the particles, people can tune the emission color across the whole visible region.
Organic Semiconductor Nanocrystals: \textit{Q}-effect

- less papers on \textit{organic} nanoparticles, while \textit{thousands} on \textit{inorganic} counterparts.
- Why?

\begin{itemize}
 \item CdSe \textit{Non-fluorescent} \rightarrow \textit{fluorescent} \rightarrow \textit{fluorescent}
 \item \textit{Inorganic Nanoparticle} \rightarrow \textit{Organic Nanoparticle}
\end{itemize}
Emission shift of PTCDI molecules upon crystal formation

Quantum size effect is expected for the transition state between the two.

NESMI Lab data
Tuning Emission of PTCDI materials

Free molecules \(\rightarrow\) crystals

NESMI Lab data
Typical NSOM Examples: Muscle Tissues

NSOM probe over area of investigation

Shear force topography

NSOM res = 100-150 nm
Typical NSOM Examples: Single-Molecules Embedded in Polymer Films

Images courtesy of Dr. Dan Higgins and Prof. Dr. Paul Barbara
Department of Chemistry, U of Minnesota
Revealing double strands of DNA: *flourescence dye YOYO-1 only combines with the double-strand*

It might be difficult to distinguish between single and double strands of DNA by topography imaging. But combination of fluorescence with NSOM provides a powerful way to do this.

<table>
<thead>
<tr>
<th>Shape Image</th>
<th>Fluorescent Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Scheme A</td>
</tr>
<tr>
<td>D</td>
<td>Scheme B</td>
</tr>
</tbody>
</table>

Fig. 2. Distinction between Single-Strand DNA and Double-Strand DNA Using SNOM/AFM

A strict distinction between single-strand and double-strand DNA was made possible for the first time by comparing the obtained shape and fluorescence data.

Explanation of the figure:

- *A* is the DNA shape image. It shows that the height of DNA (I) is 0.25 nm, that of DNA (II) is 0.14 nm and DNA (I) is wider than DNA (II).
- *B* is the fluorescence image captured at the same time as *A*. It shows the fluorescence image of only DNA (I).
- *C* and *D* are schematic diagrams of *A* and *B* respectively. The fluorescent dye (YOYO-1) combines only with the double-strand DNA. In consequence, it can be estimated that DNA (I) presenting the fluorescence image is the double-strand DNA and DNA (II) without the fluorescence image is the single-strand DNA.
NSOM imaging in water: an approach to living cells

Near-field Scanning Optical Microscopy (NSOM) in Water

Surface Topography

NSOM Image

Patterned Aluminum on Glass Slide under Water

Line Profile Measurements
NSOM imaging of living cells
Some limitations (disadvantages) of NSOM

- Practically zero working distance (for objective) and an extremely small depth of field (for tip).
- Extremely long scan times for high resolution images or large specimen areas.
- Very low transmissivity of apertures smaller than the incident light wavelength --- low intensity of incident light for excitation, a problem for weak fluorescent molecules.
- Only surface features can be imaged and studied.
- Fiber optic probes are somewhat problematic for imaging soft materials due to their high spring constants, especially in shear-force mode.
Near-field Scanning Optical Microscopy (NSOM)

NSOM/SCM

- Tuning Fork in feedback with lock-in amplifier
- Sample Scanning Stage
- Microscope objective

Laser
- (Only for SCM)

CCD

Beam Splitter

Polarizer or Band-pass Filter

Dichroic Beam Splitter

Notch Filter

Long-pass Filter

Flipper Mirror

APD Detector I

APD Detector II

NSOM Tip

- core
- cladding
- coating

Image

3x3 μm, Z-scale 0-2.8 nm