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Abstract

This study aims to develop an engineering solution to breath tests using an electronic nose
(e-nose), and evaluate its diagnosis accuracy for silicosis. Influencing factors of this technique were
explored. 398 non-silicosis miners and 221 silicosis miners were enrolled in this cross-sectional
study. Exhaled breath was analyzed by an array of 16 organic nanofiber sensors along with a
customized sample processing system. Principal component analysis was used to visualize the
breath data, and classifiers were trained by two improved cost-sensitive ensemble algorithms
(random forest and extreme gradient boosting) and two classical algorithms (K-nearest neighbor
and support vector machine). All subjects were included to train the screening model, and an early
detection model was run with silicosis cases in stage I. Both 5-fold cross-validation and external
validation were adopted. Difference in classifiers caused by algorithms and subjects was quantified
using a two-factor analysis of variance. The association between personal smoking habits and
classification was investigated by the chi-square test. Classifiers of ensemble learning performed
well in both screening and early detection model, with an accuracy range of 0.817-0.987. Classical
classifiers showed relatively worse performance. Besides, the ensemble algorithm type and silicosis
cases inclusion had no significant effect on classification (p > 0.05). There was no connection
between personal smoking habits and classification accuracy. Breath tests based on an e-nose
consisted of 16x sensor array performed well in silicosis screening and early detection. Raw data
input showed a more significant effect on classification compared with the algorithm. Personal
smoking habits had little impact on models, supporting the applicability of models in large-scale
silicosis screening. The e-nose technique and the breath analysis methods reported are expected to
provide a quick and accurate screening for silicosis, and extensible for other diseases.

1. Introduction

Pneumoconiosis is one of the most common occupa-
tional diseases in China and other developing coun-
tries [1]. Though prevention methods have been
applied for many decades, it remains a critical prob-
lem worldwide, especially in construction and min-
ing [2, 3]. The total number of reported occupational
cases in China was 97 500 by 2018, and 90% of the
cases were pneumoconiosis [4]. This kind of disease

© 2022 IOP Publishing Ltd

affects drastically the patients’ quality of life, causing
breathing difficulties and even death. A study in the
United States showed that during 1999-2018, a total
of 43 366 decedents aged >15 years had pneumoconi-
osis listed on their death certificates [5]. And bey-
ond that, pneumoconiosis is incurable, latent, and
has a delayed progression [6], leading to difficulty
in intervention when detected at a late stage. Hence,
early detection is critical to suppress pneumoconi-
osis, which can be achieved through regular and
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targeted screening [7]. Silicosis is a typical case of
pneumoconiosis, characterized by nodular fibrosis of
the lungs [8]. At present, the diagnosis of silicosis
mainly relies on pulmonary function tests along with
medical imaging technologies like x-ray imaging and
computerized tomography scanning. However, early
manifestations of silicosis are not apparent in medical
images; diagnosis of early stage silicosis requires mul-
tidisciplinary expertise of specialized pulmonolog-
ists, radiologists, and pathologists [9, 10]. Moreover,
the heterogeneity of dust exposures and intrapul-
monary depositions results in pulmonary structural
variations as well as difficulties in image recogni-
tion [2, 11]. Biopsies with tissue analysis are capable
of yielding a clear diagnosis and disclosing potential
lesions, but this is an invasive method that may lead
to complicated procedures and severe complications
in some cases [12]. Clearly, current diagnostic tech-
nologies are not suitable for convenient, high volume
screening of silicosis, especially for early cases. There-
fore, it is imperative to develop a new technology that
is capable of silicosis screening and early detection for
massive population.

In recent years, respiratory analysis has shown
the potential for minimally (or non-) invasive disease
detection by monitoring the volatile organic com-
pounds (VOCs) excreted from human breath or skin
emanation [13—15]. VOCs in the expired breath are
believed to give information about general metabolic
conditions and, particularly those of the lung [16]. In
the past two decades, with the continuous improve-
ment of modern analytical technologies, electronic
nose (e-nose) has been developed and shown great
potential in quick diagnosis of diseases via breath-
prints [17-19]. E-noses based on varying sensor
materials have been studied for breath tests with the
aim to detect different types of disease such as can-
cers [20, 21], chronic obstructive pulmonary disease
[22], breast cancer [21], etc. On one hand, sensors
that respond to specific biomarkers were developed,
like graphene-based sensors designed for known con-
centrations of acetone for diabetes diagnosis [23].
On the other hand, the sensor array that makes a
multidimensional response to the target gas can dis-
tinguish the breath pattern of different populations
using supervised classification algorithms [22]. How-
ever, few studies have been performed on pneumo-
coniosis thus far. In 2018, Yang et al performed breath
tests using an array of polymer sensors to detect
asbestosis and achieved an accuracy of 70.0% in the
validation set [24], which suggested the feasibility
of developing a respiratory diagnostic method for
pneumoconiosis. This study was theoretically sup-
ported by Yang’s previous research on the breath bio-
marker exploration of pneumoconiosis [25]. Despite
this technique’s promising application, there are some
challenges and pitfalls in the clinical application of e-
nose on breath analysis, like limited number of test
participants, lack of standardization, environmental
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interference, and technical issues of the e-nose regard-
ing noise, reproducibility etc [26]. It is recognized
that these factors hinder its application in medical
surveillance or screening, and need to be addressed
by exploring new e-nose with alternative sensors. A
number of studies have been conducted on breath
tests proposing a series of standardized requirements,
but few of them have been verified in large cohorts or
practically use in pneumoconiosis [19, 27].

In this paper, an exploratory study was conduc-
ted on an e-nose consisted of 16 nanofiber sensors for
silicosis diagnosis through breath tests. Objectives of
this study are to (a) verify the e-nose system along
with a homemade breath sample processing device,
and apply it to silicosis screening in miners, espe-
cially to early stage detection; (b) investigate the per-
formance difference between screening models and
early detection models by including silicosis cases
in various disease stages; (c) evaluate the impact of
algorithms and personal smoking habits on classific-
ation, and explore other influencing factors.

2. Materials and methods

2.1. Subject recruitment

Participants were local gold miners in the region of
Yantai City of Shandong Province, China. A total
of 619 subjects, including 398 non-silicosis miners
and 221 silicosis miners, were recruited, and their
breath samples were collected and tested during three
onsite visits made in October, November and Decem-
ber 2019. All the participants took health examina-
tions at Shandong Gold occupational disease hospital,
and their demographic information was collected
simultaneously through structured questionnaires.
Exclusion Criteria were: (a) Involving with other
occupational exposure, such as welding; (b) Hav-
ing had a lung lavage or any other form of lung
surgery; (c) Having autoimmune diseases, cancers,
chronic inflammation, or endocrine, metabolic dis-
eases. Clinical diagnosis of silicosis and classification
of health status of the participants were performed
by a panel of three experienced physicians according
to the National Diagnosis of Occupational Pneumo-
coniosis (Criteria Code: GBZ 70-2015).

Ethical review: The study conforms to the Declar-
ation of Helsinki and has little harm or health risk
to the participants. Involvement in the study imposes
no additional burden on the participants in clin-
ical practice. The sampling and testing protocol we
adopted was approved by the Research Ethics Com-
mittee of Xuzhou No. 1 Peoples Hospital (No. xyyll
[2020]69). All participants were informed of the col-
lection process and signed written informed consent.
One potential benefit to subjects participating the
study is that their breathprints generated from the
testing may provide them with some health inform-
ation regarding risk of silicosis or progression of the
disease. For the general public, the outcome of the
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Figure 1. A flow diagram of sample processing and testing.

study may help eventually develop a point-of-care
and non-invasive tool for quick screening of silicosis,
especially at the early stage, which remains challen-
ging to be diagnosed at the moment.

The sample size was evaluated based on equations
(1) and (2), among which the larger size number
would be adopted. According to similar diagnostic
models reported in the literature [24, 28], 95% sens-
itivity, 85% specificity, statistical significance level of
0.05 and 5% allowable error were substituted into
equations. The calculations showed that a sample size
of at least 196 subjects would suffice in this study.

ZE oy *Pse* (1= Pec)
52

(1)

Nge =

lefoz/Z #Psp * (1= pp)

5 )

Tlsp ==

where 1 is the estimated sample size, v the signific-
ance level, Z,_ /, the rejection region cut-off point
in a two-sided test, pge the reference value of sensitiv-
ity, psp the specificity, and J the allowable error.

2.2. Study design

Two types of diagnosis models were trained in this
single-center, cross-sectional study. The first one
was the screening model, including 398 non-silicosis
miners as healthy controls and 221 silicosis patients as
cases. To break silicosis’s continuous and irreversible
progression early [29], the early detection model was
further studied with 85 patients in stage I as cases and
398 non-silicosis as healthy controls.

The good clinical practice (GCP) regards quality
control (QC) as an essential part in tests. QC is the
process by which samples are tested and measured in
the scope of the standard set in advance to minim-
ize errors and inconsistencies and ensure the ongoing
implementation of appropriate data entry [30]. And,
QC itself does not have a uniform, universal process
or protocol. In our work, GCP guidelines were adop-
ted as a basis. QC involves consistent subject recruit-
ment, device operation specifications, sample meas-
urement and recording, and data processing [26].
Highly standardized conditions and model assess-
ment for testing were also taken into account.

2.3. Breath collection and customized system for
sample processing

The breath testing in this study was performed on an
e-nose system based on a 16-nanofiber sensor array
(Pilot™, Vaporsens, Salt Lake City, USA), which was
equipped with a customized sample processing sys-
tem (figures 1 and 2). The data were analyzed by
pattern recognition algorithms. Detailed information
of the sensor array and operation mechanism were
provided in supporting information (available online
at stacks.iop.org/JBR/16/036001/mmedia). Consider-
ing the breathing velocity variation among subjects,
testing by breathing directly into the Pilot™ instru-
ment may cause significant fluctuation in sensor sig-
nals. To mitigate this problem, sampling bags were
used for collecting and storing the exhaled breath,
which allowed all the samples to be tested under
exactly the same conditions including humidity level,
temperature and flow rate. Briefly, subjects tidally
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blew into a 1-litre sampling bag through the mouth-
piece with a standardized and validated breathing
process [31]. The breath collection site was well-
ventilated over the whole period to maintain clean
and stable ambient air. Items used for sample col-
lection and storage included mouthpieces, tubes, and
sampling bags were all new and made of polytet-
rafluoroethylene. Prior to being introduced to the
sensor array for testing, the samples were processed
for dehumidification in a customized system at a flow
rate of around 400 sccm. Dehumidification was real-
ized by flowing the sample through a Nafion® tube
(MDO070-24F, Perma Pure LLC., Lakewood, NJ 08701,
USA), which adjusted the relative humidity to ~10%
for the breath samples. The dehumidified sample was
then introduced into Pilot™ to be exposed to the
sensor array. Processing and testing of each sample
was finished within half an hour after being collec-
ted. During the whole period of sensor testing, the
response signal was recorded in real time before and
after the exposure to the breath sample, named period
data. Period data is the continuous monitoring data
in the duration of breath exposure, which represents
a set of contiguous time granules within the exposure
period.

Pre-collection behavior requirements: Sampling
of breath was performed in the morning, and sub-
jects were asked not to eat, smoke, or take medicine
for 10 h before the breath collection. Subjects were
asked not to eat onions, garlic, or any other food
with a strong odor or go to a dusty environment for
two days before the collection. Subjects stayed in a

naturally ventilated environment and did not exercise
within an hour before sampling. Subjects rinsed their
mouths with purified saline and then with distilled
water before sampling.

2.4. Sensor materials and array

The sensor array used in this work was consisted of
16 organic nanofiber materials, which were fabric-
ated from solution phase self-assembly of different
building blocks molecules based on perylene tetra-
carboxylic diimide (PTCDI) [32-34]. By changing the
side-binding group of PTCDI molecules, the sensor
selectivity of nanofibers can be tuned and optimized
toward different VOCs present in the exhaled breath.
In this study, the side groups were selected to tar-
get the common VOCs found in exhaled breath of
humans that are redox-active for initiating interfa-
cial charge transfer interaction with the nanofiber and
thus resulting in a change in resistance [32, 34]. Such
VOC:s include aldehydes, ketones, ammonia, hydro-
gen peroxide, nitric oxide, and the concentrations of
these compounds in the breath may change (increase
or decrease) when people get a disease like pneumo-
coniosis. Depending on the disease type and stage,
the concentration change could be dramatic, ran-
ging from multiple times to orders of magnitude. For
example, formaldehyde, 2-pentanone, and propion-
aldehyde are detected in the breath of lung cancer
patients, and the concentration increases by two to
more than ten times compared to the healthy people
[35]. The same or similar VOCs were taken into
account in our work. Indeed, as recently reported
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[25], the concentration of 3-methyl-butanal increases
2.5 times for people diagnosed with pneumoconi-
osis. More biomarker VOCs such as hydrogen per-
oxide, nitric oxide, acetoin have been identified for
idiopathic pulmonary fibrosis, a disease having sim-
ilar symptoms as pneumoconiosis.

To target the above-mentioned VOCs, the side-
binding groups of PTCDI building blocks were
designed to contain amines, amide, hydroxyl and
other heterocycles, which provide strong and spe-
cific binding towards the VOCs via hydrogen bond-
ing, charge transfer and electrostatic interactions.
Typical molecular structures of the binding groups
can be found in one of our patents [36]. It should
be noted that rather than separating and detect-
ing the individual VOCs (as usually done with the
benchtop instrumentations like gas chromatograph-
mass spectrometry), the sensor array was exposed dir-
ectly to the breath mixture, and the composite pro-
file (breathprints) generated from the responses of all
the 16 nanofibers will enable discrimination between
disease and healthy controls, reflecting the metabolic
change in breath composition [17, 37, 38]. Such an
array-based detection is analogous to the mammalian
olfactory system [17, 39], wherein a large number of
olfactory receptors (sensors) work as a cooperative
array to generate specific patterns for different odors
or mixtures, but without knowing the details of the
individual components. This is also how a dog can be
trained to sniff out certain diseases by differentiating
the odor pattern of breath or sweat between diseased
and healthy people [40].

2.5. Statistical analysis and modeling

The electronic nose made a response to breath
samples with multiple signals, which were called
breathprints. Representative diagrams of sensor
response signals of a healthy control and a silicosis
patient in stage III are provided in figure S2, in sup-
porting information. Measurement time or batches
were not included as covariant in data modeling in
this study because the period of measurement caused
only slight data drifts (see figure S2), which could be
neglected by adopting appropriate feature extraction
methods, and stricter and more detailed QC require-
ments. Therefore, 16-dimensional signals obtained
from the sensor array with demographic information
were input as the raw data.

Feature extraction is a technique that selects vari-
ables and combines them into features, effectively
reducing the data amount to be processed, while still
accurately and fully describing the original data set
[41]. The reduction of the data and the effort in build-
ing combinations of features facilitate the learning
and generalization steps in the machine learning pro-
cess. To extract as much information as possible from
the original data, we have conducted linear regres-
sion on period data of the breath exposure, which was
about fitting a linear model (y = k*x + b) to data
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points. Hence, data were reduced and generalized into
a few parameters in a regression: k in the function is
the slope, which quantifies the steepness of the line.
It equals the change in Y for each unit change in X. b
in the function is intercept term. The intercept term
and the median of the period data indicates the data
range of samples.

As aresult, the linear fitting slope and the median
of the period data were extracted as two data features,
forming a 32-dimensional dataset with 16 sensor
signals. Discrete information like personal smoking
habits was coded by one-hot encoding. All the data
processing and analysis were done in Python version-
3.7.1 with PyCharm 2021.1 x 64 (Python Software
Foundation, Delaware, USA).

We reduced the dimension of sensors’ response
by principal component analysis (PCA), aiming
to visualize points aggregation between groups.
Three-dimensional PCA were adopted, getting three
principal components extracted after dimensionality
reduction. To identify representative sensors that con-
tribute significantly to the classification, partial least
square variable importance in projection (PLS-VIP)
analysis of the two models were conducted, respect-
ively. PLS-VIP is often used to identify the import-
ance of each indicator based on variance calcula-
tion [42]. The variance of each PLS dimension could
measure the variable’s data explanatory ability and its
influence on the model classification.

For data modeling, raw data were divided into
a training dataset (data obtained in October and
November tests) and a validation dataset (data
obtained in December tests). Classifiers were con-
structed by 5-fold cross-validation with the training
dataset, which was divided into a training set and
test set further. Blinded identification was conducted
via unknown data in the validation dataset, namely
external validation. To ensure the inaccessibility of the
validation dataset and prevent information leaks, the
training dataset and validation dataset were processed
independently. Classifiers to discriminate between
the controls and cases were established with two
improved ensemble learning algorithms, eXtreme
gradient boosting (XGBoost) and random forest
(RF). The two algorithms were popular ensemble
learning algorithms, which were modified to be cost-
sensitive algorithms in this study. The core of cost-
sensitive algorithms was that we assigned different
weights to false negatives (FNs) and false positives
(FPs). Consequently, cost-sensitive algorithms can
flexibly adjust ‘the cost of misdiagnosing a patient as
a healthy person’ and ‘the cost of misdiagnosing a
healthy person as a patient’ to reduce FNs in medical
diagnosis. The modeling flow diagram of this study is
shown in figure 3.

We also used two classical classification
algorithms, support vector machine (SVM) and
K-nearest neighbor (KNN), to contrast with our
improved ensemble learning algorithm. SVM is
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a kind of generalized linear classifier by super-
vised learning method. Its decision boundary is the
maximum-margin hyperplane solved for the learn-
ing samples. KNN quantifies the distance of samples
based on the Euclidean distance. This method
determines the classification of the samples according
to the category of the nearest one or several samples
in the feature space. Normalization and dimension-
ality reduction were combined to provide input data
for KNN models.

In KNN, normalization method based on
equation (3) changes numbers to decimals in the
range of 0-1.

Xoorm = w (3)
Xmax - Xmin

These four algorithms were all optimized for
parameter tuning during modeling.

Since there were two types of diagnostic models
in this study due to different silicosis stages included,
eight classifiers were run based on the combina-
tion of algorithms and diagnostic model types. Stat-
istical analyses were done using receiver operating
characteristic (ROC) analysis. Classifiers were eval-
uated using the area under the ROC curve (AUC),
accuracy, sensitivity, and specificity. The eight clas-
sifiers were compared further, and two-factor ana-
lysis of variance was conducted to assess whether
the algorithm and case stages could make a signific-
ant difference to classification. Moreover, the asso-
ciation between personal smoking habits and classi-
fier performance was investigated using a chi-square
test with the significance level o as 0.05. Personal

smoking habits were quantified into four types: cur-
rent smoker, former smoker, never smoker, and
second-hand smoker. The number of the true pos-
itive (TP), the true negative (TN), the FP, and the
FN were employed as data input to the chi-square
test.

3. Results

3.1. Subject characteristics

A total of 619 subjects were enrolled in this study.
The screening model included 398 healthy controls
and 221 silicosis cases. The early detection model had
398 healthy controls and 85 silicosis cases in stage
L. Age, personal smoking habits, and silicosis stages
were labeled individually. The demographic charac-
teristics of all subjects and silicosis phase statistics are
provided in table 1. The subjects were all males since
the female was not allowed to do the hard physical
labor in underground mines in China.

3.2. Data visualization by PCA

The score plots for PCA analysis are shown in figure 4.
In figures 4(a) and (b), almost 97% of the variance
was explained by the first three principal components.
Figure 4(a) presented the observation of all subjects
in the screening model, in which scattered regions of
different groups separated to a great extent. Points of
the control group and case group were apart along the
approximate direction of the PC1 axis in figure 4(a).
Figure 4(b) presented the observation of subjects in
the early detection model, points of which aggregated.
However, some points of early silicosis cases were
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Table 1. Subject characteristics in this study.

Cases in screening Cases in early detection

Characteristics Controls (n = 398) model (n = 221) model (n = 85)
Age (year), mean (SD) 48.0£7.2 50.3 £8.3 50.0 £ 7.3
Sex, 1 (%)
Male 398.0(100.0) 221.0(100.0) 85.0(100.0)
Female 0(0) 0(0) 0(0)
Smoking habit, n (%)
Current smoker 244(61.3) 132(59.7) 52(61.2)
Former smoker 25(6.3) 26(11.8) 11(12.9)
Never smoker 100(25.1) 52(23.5) 16(18.8)
Second-hand smoker 29(7.3) 11(5.0) 6(7.1)
Clinical stage, n (%)
Stage I 85(38.5) 85(100.0)
Stage 11 83(37.6)
Stage IIT 53(24.0)
(a) . @ silicosis (b) silicosis (stage 1)
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Figure 4. Three-dimensional PCA score plots of with data center points (a) screening model; (b) early detection model.

Table 2. The variable importance of all the 16 sensors (positive correlation).

Sensor 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15 16

Scores  0.34 0.01

1.08 0.62 029 0.34 026 026 0.37

047 0.73 131 1.63 026 0.50 0.32

close to those of healthy controls with region overlap.
On the other hand, from the comparison of models,
the aggregation of case points in the early detec-
tion model was not as tight as those in the screen-
ing model. This may be due to the stage difference of
silicosis cases in the two case groups.

PLS-VIP analysis of the 16 sensor signals were
done. The VIP values were scored, as shown in table 2.
The scores helped to reveal sensors’ contribution to
classification results. Sensor CH13, CH12, and CH3
are the top three responsive sensors; meanwhile, CH2,
CH14, CH7, and CHS8 were the four sensors that had
the least contribution to classification.

3.3. Classifier performance

Eight classifiers were established: screening model
using RE, XGBoost, KNN and SVM; early detec-
tion model using RE, XGBoost, KNN and SVM. The

screening model allocated 197 healthy controls and
128 silicosis cases to 5-fold validation to construct
classifiers, 201 healthy controls, and 93 silicosis cases
for external validation to test classifiers. The early
detection model allocated 197 healthy controls and
43 silicosis cases to 5-fold validation, 201 healthy con-
trols, and 42 silicosis cases for external validation.

ROC analysis investigated the classifier perform-
ance of the test set and external validation, as shown in
figure 5. All the ROCs reached a relatively high value,
and it was clear to find ROCs of RF and XGBoost were
close in all four pictures. ROCs of figures 5(a) and (b)
seem similar in terms of trend and AUCs, while the
ROC of figure 5(d) presented an evident decline in
comparison with figure 5(c). ROC analysis of KNN
and SVM is in supporting information.

Results of the classification are presented in
table 3. Classifiers of ensemble learning were further
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Table 3. Classification results using different diagnostic model types and algorithms.

Model type Algorithm Data set AUC Accuracy Sensitivity Specificity
Screening RF Training 0.999 0.987 0.984 0.992
model Test 0.892 0.843 0.765 0.893
External validation 0.895 0.839 0.776 0.869
XGB Training 0.989 0.945 0.879 0.987
Test 0.884 0.843 0.719 0.923
External validation 0.898 0.858 0.806 0.882
KNN Training 0.985 0.987 0.971 1.000
Test 0.769 0.785 0.692 0.846
External validation 0.488 0.490 0.484 0.493
SVM Training 0.815 0.800 0.882 0.747
Test 0.782 0.785 0.769 0.795
External validation 0.585 0.673 0.344 0.826
Early detection RF Training 0.999 0.982 0.907 0.999
model Test 0.938 0.917 0.811 0.939
External validation 0.811 0.817 0.729 0.836
XGB Training 0.998 0.975 0.959 0.978
Test 0.942 0.9 0.811 0.919
External validation 0.806 0.867 0.705 0.901
KNN Training 0.926 0.974 0.853 1.000
Test 0.479 0.708 0.111 0.846
External validation 0.509 0.811 0.048 0.970
SVM Training 0.851 0.849 0.853 0.848
Test 0.744 0.792 0.667 0.821
External validation 0.788 0.852 0.690 0.886
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Table 4. P value calculated with two-factor analysis of variance.

Data set Factor AUC Accuracy Sensitivity Specificity
Training Model 0.500 0.605 0.981 0.844
Algorithm 0.437 0.395 0.775 0.590
Test Model 0.073 0.082 0.205 0.555
Algorithm 0.795 0.500 0.500 0.874
External Model 0.029* 0.747 0.223 0.833
validation Algorithm 0.844 0.269 0.930 0.374
Note: * means p < 0.05.
Table 5. Chi-square tests for smoking habits and classification in models using RF.
Screening model Early detection model
Never Former Second-hand Current Never Former Second-hand Current
smoker smoker smoker smoker smoker smoker smoker smoker
TP 14 3 8 47 3 2 5 21
TN 42 12 12 109 40 12 11 105
FP 6 2 2 16 8 2 3 20
FN 4 0 3 14 2 0 2 7
X2 4.745 7.552
p 0.856 0.580
Table 6. Chi-square tests for smoking habits and classification in models using XGBoost.
Screening model Early detection model
Never Former Second-hand Current Never Former Second-hand Current
smoker smoker smoker smoker smoker smoker smoker smoker
TP 15 3 9 48 4 2 5 19
TN 42 12 12 111 43 13 12 113
FP 6 2 2 14 5 1 2 12
FN 3 0 2 13 1 0 2 9
x? 4.900 7.694
p 0.850 0.565

compared using a two-factor analysis of variance, and
p values calculated are shown in table 4. Pictures in
figure 5 supported discoveries in tables 3 and 4.

In general, four classifiers based on ensemble
learning had achieved good performance. In these
models, all AUCs obtained with the screening model
were larger than 0.88, indicating excellent stability.
Results of the early detection model were slightly
inferior to the screening model, but it was still good,
with the AUC ranging from 0.806 to 0.999. For four
evaluation indexes, sensitivity was generally lower
than the other three in the validation, with differences
around 0.1. Since it is not unusual for cases detection
models to classify subjects as healthy controls by mis-
take, the sensitivity range between 0.705 and 0.984 is
acceptable.

Models using KNN and SVM showed a good per-
formance in model training and a rapidly decline in
testing set and external validation set, which meant
poor generalization capacity in internal and external
validation.

From table 4, all p values of algorithms in vari-
ance analysis were more than 0.05, indicating no
significant difference between the two algorithms.
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P values of model types were more than 0.05 in most
cases, indicating that the difference between the two
models had no statistical significance, except in the
AUC of external validation. This result conformed to
table 3, as the AUC of the early detection model was
obviously poorer than that of the screening model in
external validation. Given the study design, this phe-
nomenon meant that identifying early silicosis cases
in this study was harder than running a screening
model.

3.4. Chi-square tests for smoking habits and
classification
After simple statistics on the predicted results of clas-
sifiers, the amount of the TP, the TN, the FP, and the
FN were calculated in each classifier. Statistics gen-
erated acted as data input to investigate the associ-
ation between personal smoking habits and classi-
fier performance by chi-square test (significance level
a = 0.05). Results of the chi-square tests conduc-
ted on RF and XGBoost models were summarized in
tables 5 and 6.

It can be concluded that the TP rate, the TN rate,
the FP rate, and the FN rate were different in people
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with various smoking habits, but chi-square tests
demonstrated a nonsignificant impact of smoking
habits on both models as p > 0.05.

4. Discussion

As some studies have demonstrated the feasibility
of respiratory diagnosis for several diseases [43], we
focused on developing a technical scheme for silicosis
diagnosis and exploring the influencing factors of this
approach. Experimentally, breath samples collected
from 619 participants (221 in the case group and 398
in the control group) were measured with the Pilot™
platform incorporated in a customized e-nose system.
Classifiers with different case stages and algorithms all
achieved good performance.

In data visualization, points of silicosis cases
aggregated and were clearly separated from points of
healthy controls in screening model. This indicated
that silicosis cases had a similar breath pattern, which
was different from healthy controls. In figure 4(a),
points of the control group and case group were apart
along the approximate direction of the axis of PCl1,
which was the first principal component containing
the most information of the original data. This also
revealed the separability of the control group and case
group. In figure 4(b), region of early silicosis cases
overlapped a part of that of healthy controls, showing
a weaker separability. Thus, efforts should be made to
optimize classifiers and elevate the classification cap-
ability.

In both the classifier training and validation,
silicosis cases were recognized accurately in models
using ensemble learning, taking recent literature as a
[17, 24]. Five-fold cross-validation and external val-
idation gave a robust evaluation of classification. The
consistency of performance in the screening model
and early detection model demonstrated that results
were reproducible. It is probably worth noting that
sensitivity in nearly all the classifications was slightly
lower than the other three evaluation indexes. It
meant that classifiers were inclined to classify samples
as healthy controls. This problem has also been found
in previous studies, presenting a wider gap between
sensitivity and specificity [24, 44-46]. This may be
attributed to the imbalance of sample sizes in the two
groups, as healthy controls are often much more than
cases. Due to this reason, we introduced the cost-
sensitive algorithms in advance to adjust the poten-
tial bias. Thus, other evaluation indexes did not hold
an overwhelming advantage over the sensitivity, with
differences around 0.1 in the validation.

For models using KNN and SVM, classifica-
tion performance showed a huge decline in internal
and external validation, compared with the model
training. This result suggested the two algorithms’
weak generalization ability in large-scale practice.
And all the model performance of the two classical
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algorithms were weaker than the improved ensemble
learning methods. The difference between the clas-
sical classifiers and ensemble learning models sugges-
ted the importance of appropriate feature extraction
and model selection. Furthermore, the sensitivity of
KNN and SVM models was obviously low, while the
sensitivity of RF and XGBoost models was close to
other indexes. This supported the utility of the cost-
sensitive algorithms in diagnosis modeling.

From the two-factor analysis of variance, RF and
XGBoost algorithms exerted little influence on mod-
els in this paper. On the other hand, different model
types showed a significant difference in the AUC of
the external validation, in which the early detection
model’s AUC was inferior to that of the screening
model. Since the difference between the two mod-
els lied in silicosis stages included, we believed that
the reason was the uneven quality of the raw data
input. Data size or distribution bias were underly-
ing reasons, e.g. the amount of category data in the
early detection model was more unbalanced. In sum-
mary, our results suggested that the data input and
improved algorithms exerted a significant impact on
classification, while algorithms had little effect on
classifiers if already improved. This study leads us to
emphasize both the algorithmic optimization and the
enhancement of raw data quality. Therefore, stand-
ardized clinical care, behavior requirements, appro-
priate data processing and modeling are important in
future guidelines.

Concerns have also been raised in the previous
literature on individual smoking habits, supposing
that this variable would mask pathologically induced
differences in breath compounds [47-49]. Our res-
ults of Chi-square tests indicated there was little dif-
ference in identifying people with different smoking
habits. This phenomenon was accordant with some
relevant studies using electronic noses [46, 50], show-
ing its great potential to be applied in a diverse
population. We speculated that one reason was the
effective smoking ban and gargling before breath
tests. Another reason might be the sensor array was
highly selective and little sensitive to smoking-related
components. Therefore, whether this conclusion is
extensive and universal needs further verification.

The novel contribution of our study was that
a customized e-nose system was applied to explore
two types of diagnostic models with independent
external validation. Although some articles did not
do external validation, many scholars confirmed the
necessity of this vital step to check the reproducibil-
ity of tests [51-53]. In addition to reducing the envir-
onmental interference, some actions were adopted to
elevate the test reproducibility in this study. On the
one hand, we regulated individual behaviors before
sampling and customized the sample pre-processing
system to reduce system error. On the other hand,
cost-sensitive algorithms was adopted to improve the



10P Publishing

J. Breath Res. 16 (2022) 036001

classifiers. The linear fitting slope of each signal was
extracted along with the median also, covering the
data information of the whole breath exposure. Con-
sequently, the static characteristics of sensors like drift
and linearity were naturally incorporated into the
integrated data features. Classification results of the
validation and training datasets, or between sens-
itivity and specificity, did not show a wide gap in
this work, indicating that our frame of algorithms
was technically reasonable and applicable. Successful
external validation of models is an important step for-
ward in silicosis detection.

5. Limitations

It should be noted that this study has examined only
the population from one place and there were some
limitations. Ideally, data from another location to
form a multicenter test could better verify the adapt-
ability of a diagnostic model. At present, technical
noise and lack of multicenter trials still hamper the
application of this technique to screen larger cohorts
of miners.

6. Conclusion

Our investigation proposed a technical scheme for
silicosis detection based on breath tests and electronic
nose. A customized system, standard operating pro-
cedure, and improved modeling played a huge role in
exploring this technique. In comparison with other
diagnostic techniques, this method suggested a great
potential of identifying early cases. The classification
results in validation have proved the potential and
robustness of the improved diagnostic models using
ensemble learning algorithms. Overall, breath tests
using the cross-reactive e-nose is worth developing
to provide a quick and accurate detection method for
silicosis.
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