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REVIEW

Structural Design and Applications of Stereoregular Fused
Thiophenes and Their Oligomers and Polymers
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Ling Zangb, and Jingkun Xua
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ABSTRACT
Stereoregular fused thiophenes (SFTs: especially thieno[3,2-b]
thiophene (TT) and dithieo[3,2-b:20,30-d]thiophene (DTT)),
as stable conjugated structures deriving from thiophene ring
enlargement, possess outstanding properties and special
configuration, such as the superior carrier transfer efficiency
and a high degree backbone of planarity. In comparison to
stand-alone SFTs structures, oligomers and polymers containing
different heteroaromatic units have been much widely
researched and used in many fields. In decade, several important
reviews have summarized the broad field of fused thiophenes
including SFTs, and their synthesis and optoelectronic applica-
tions. Here, we critically present the structure– performance
relationships and application of oligomers and polymers contain-
ing SFTs (exhibiting thiophene ring number from 2 to 7) units.
First, the basic structures and properties of SFTs are briefly
stated. Then, oligomers classified by extra conjugated heterocyc-
lic attachments are carefully discussed, focusing on the structur-
e–performance relationships for their optoelectronic applications
including organic photovoltaic cells and organic field-effect
transistors. Moreover, such relationships in polymers have been
applied in much wider fields such as organic light-emitting
diodes, electrochromic devices, thermoelectric devices, and
supercapacitors are discussed. Finally, a summary and prospect
are given. Through this review, instruction for molecular design
and novel ideas for the future development of SFTs-contained
are provided.
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GRAPHICAL ABSTRACT

1. Introduction

Advanced electronic applications based on heterocyclic aromatic materials have been
emerging in the past several decades owing to their intrinsic organic characters such as
tunable structures, good processability, and so on, as well as distinguished multi-
functionality and rich electronic performances. Thiophene, as one of the most stable
penta-heterocycles, is one of the research focuses on these fields. Its numerous oligom-
ers and polymers (e.g., PThs) have been widely applied in organic photovoltaic cells
(OPVs), organic field-effect transistors (OFETs), organic light-emitting diodes (OLEDs),
electrochromic devices (ECs), and thermoelectric devices (TEs), etc.[1–5] Theoretically,
the skeleton structures of PThs are configured by single bonds to link adjacent thienyl
rings, resulting in poor solubility and molecular planarity. These, significantly confine
their electronic applications where high carrier mobilities and facile fabrication technol-
ogy are preferred. For solubility improvement, various side-chain modification strategies
have been proved to be quite effective, however, such functionalization plays a weak
role in improving the molecular conjugation and enhancing carrier transport.
To these issues, besides the ordered assembly of polymer chains via non-covalent

weak interaction, the most important progress should be the rapid development of fused
thiophenes, that is, expanding numbers of conjugated thiophenyl rings along the parallel
direction. In the past decade, hundreds of papers along with several important reviews
have been published. In 2010, Wu et al.[2] focused on the active materials mainly com-
posed of fused thiophene rings for OFETs application. In 2015, Cinar and Ozturk[3]

summarized the synthesis methods and fundamental physicochemical properties
of oligomers and polymers based on. Later in 2017, Turkoglu et al.[6] overviewed the
applications of thiophenyl-based organic semiconductors covering that having fused
thiophene units in OPV, OFET, and OLED fields. Among various fused thiophene
structures, stereoregular fused thiophenes (SFTs), including thineo[3,2-b]thiophene
(TT), dithieo[3,2-b:20,30-d]thiophene (DTT), tetrathienoacene (TTA), pentathienoacene
(PTA), hexathienoacene (HTA), and heptathienoacene (HPTA), possess specific advan-
tages such as high planar conformation, good conjugated architectures, adjustable
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energy levels, excellent environment stability, and so on, due to their flat and conju-
gated skeletons and rigid geometric constructions.[3,7–9] Meanwhile, their electron-rich
structures that possess sulfur atoms are favorable to elevate the crystallization of their
oligomers and polymers by intermolecular interaction. The crystallization is proved to
be quite beneficial to achieve high carrier mobility in molecular system and extend
device lifetime.[6,10–13]

Moreover, in contrast to pentacene which has been demonstrated as a promising
aromatic material for high-efficiency organic thin film transistors (OTFTs), SFTs
inherit the facile functionalization of PThs through attaching flexible alkyl chains,
electron-withdrawing or electron-donating substituents at flanking positions. Thus, their
(homo- or co-) oligomers and polymers are with much-enhanced solubility and better
performances for opto-/electronic- or other applications. In particular, the incorporation
of side groups does not necessarily mean the loss of molecular ordering in view
of macromolecular arranging regularity through the intermolecular stacking of rigid
backbones of SFTs, although sometimes researches have to keep a balance between the
solubility and charge carrier mobility when long chains are incorporated into the
molecular skeletons.[14–16] Overall, SFTs-contained oligomers and polymers have been
extensively researched in optoelectronic fields, mainly focusing on increasing the device
efficiency via elaborate molecular design in line with controlled conformations and
selective fabrication methods. In addition, according to X-ray diffraction (XRD) charac-
terization, two general molecular p–p stacking patterns of SFTs molecules, ‘edge-on’
and ‘face-on’ (Figure 1) on substrate surfaces, could appear. They are favorable to aug-
ment carrier transport in full device system due to the formation of one-dimensional
transmission line at molecule to molecule and substrate to molecule. Similarly, regular
aggregates of PTCDIs with enhanced carrier mobility compared to normal monomer
molecules have been researched and discussed in our previous papers.[17–23] SFTs and
their oligomers and polymers have earned a significant space in active materials for
organic electronics. Besides to widely use in OPVs, etc., our group and others have also
paid attention to SFTs-based ECs and TEs.[24–26]

Thus, in this review, we devote to summarize the advances and compare the
structural characteristics and applied performances of SFTs as well as their oligomers
and polymers, especially in the past five years. For oligomers, the logic organization is
presented according to various skeleton units aligned with SFTs, while the representa-
tion for polymers is following their application fields due to their quite complex struc-
tures. Special attention is paid to discussing the relationship between molecular
structures and electronic properties accompanying applications. At last, the cautious
evaluations of current challenges and prospect on this field are stated.

Figure 1. Two stacking conformations, edge-on (left) and face-on (right), of SFTs on substrate
surfaces. The direction of carrier transfer is vertical with substrate.
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2. Stereoregular fused thiophenes (SFTs)

Till now, the reported basic structures of SFTs contain TT, DTT, TTA, PTA, HTA, and
HPTA, in response to the number of thiophene rings from 2 to 7, respectively. They all
have intrinsically planar conjugated structures and active substitutional sites, enabling further
functionalization to achieve more structural and performance superiority. As the backbones
enlarge from TT to HPTA, the molecular rigid planarity, conjugation degree, and thermal
stability gradually increase. Meanwhile, these SFTs exhibit successively smaller band gaps
(Figure 2) and thus diverse optical, electronic, and electrochemical properties. Further, all the
sulfur atoms are positioned at the molecular periphery, facilitating multiple short intermo-
lecular S… S contacts, which will increase the effective dimensionality of the electronic struc-
tures to allow for enhanced transport properties.[27–29] According to density functional theory
(DFT) calculations and real transistor devices based on SFTs, PTA displays the highest carrier
mobility, with hole mobility of 0.55 cm2V�1 S�1 and electron mobility of 0.80 cm2V�1 S�1.
However, HTA, since it shows a bit smaller data (0.48 and 0.22 cm2V�1 S�1 for the hole
and electron mobility, respectively) due to the longer carrier transfer distance in the whole
molecule. Circularly-fused thiophenes present extreme loss of conjugation and increased
symmetry leading to poor optical absorption in the visible or near-UV range.[27,30]

Nevertheless, single molecular SFTs as the active material can’t achieve satisfactory
application performances owing to its rigid structure, limited conjugation, molecular
defect, etc. On account of their poor solubility in organic solvents, material processable
technology is another serious problem to realize the practical application. For these
reasons, SFTs are usually employed as important skeleton cores or p-bridge between
donor (D) and acceptor (A) units in optoelectronic fields to elevate carrier mobilities
strengthen optical absorption enhance p–p stacking ability, and others.[10,31–33] Also,
modification by side-chains (e.g., alkyl chains) has been widely used. Generally,
oligomers and polymers containing SFTs and functional groups with D-A, D-p-A, or
D-p-D constructions are much more widely applied in optoelectronic devices.[31,34,35]

3. Oligomers and applications

Oligomers containing SFTs units can significantly enlarge their applications by
compositing with other D- or A-type groups, including but not limited to typical

Figure 2. DFT-derived SFTs orbitals data and carrier mobility from TT to HPTA.
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examples in Figure 3 and their derivatives. For D-type groups, they usually possess
a high degree of conjugated planarity, making the whole molecule have very good
planarity. For A-type groups, they exhibit strong electron-withdrawing ability, facile
synthesis good solubility, strong light absorption, etc.[11,32,36,37] The main purposes of
these design are to gain excellent carrier mobility and promising processibility for
desired application of oligomers in OPVs and OFETs devices.[38]

OFETs as logical devices exhibit four basic device constructions (Figure 4). SFTs are
usually appeared as active semiconductor materials in the bottom-gate top-contact
type.[2,39] In general, high performances for transistors means high carrier mobility (l),
large on/off ratio (Ion/Ioff) value, and low threshold voltage (VT), as well as good
material stability, where molecular SFTs possess limits as mentioned above.
OPVs as the most important solar-induced electronic power generation devices

also have different configuration (Figure 4), and in addition to stability, are evaluated
by high power conversion efficiency (PCE) to represent their high performances.
It can be measured according to the following formula:

FF ¼ ImVm

VocJsc
(1)

PCE ¼ FF
JscVoc

Pin
(2)

where Im is the maxima current power points, Vm is the maxima voltage power points.
JSC is the short circuit current, VOC is the open-circuit voltage, FF is the fill factor, and
Pin is the incident light power density.[40] SFTs-based oligomers are mainly employed
as active material on bulk heterojunction solar cell (BHJ, as shown in Figure 4).[40,41]

3.1. Attaching thiophenyl units

Thiophene possesses the aromatic five-membered with a high molecular resonance
energy (29 kcal mol�1).[9] In SFTs-contained oligomers, thienyl units are usually located
at the A-position of SFTs unit, which acted as p-bridge linking or end-capping group.
Through controlling horizontal order of oligomer molecules, highly planar and rigid
thienyl units can enhance their p–p overlap in the solid state, and thus lead to efficient

Figure 3. Typical functional units (donor and acceptor) attached with SFTs units.
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intra-/inter-molecular charge transport, resulting into high carrier mobilities mainly
in OFETs.[2] The decoration of terminal thienyl rings also can reduce their steric
hindrance and facilitate solution-processability.[42] A summary of reported molecular
structures attaching thienyl units, their optical and electrochemical properties, and
application performances as OFETs devices is shown in Figure 4 and Tables 1 and 2,
respectively. When the effective conjugated lengths of molecular skeleton increase, the
maximum absorption peaks (kabs

max) of these oligomers exhibit red-shift and the optical
band gaps (Eg

opt) decrease.
For the effect of SFTs-based active materials on OFETs performances, it can be seen

that under possessing same number thiophenyl rings to TT cores in oligomers 1–5,
alkyl chain modification at horizontal direction has a little effect.[43–45] However, when
alkyl chains are introduced at the side face of molecular skeletons, the steric hindrance
increases leading to bigger between neighboring molecules and thus degrading the
device performances. Indeed, although symmetrical oligomer 9 possesses an extended
conjugated structure, oligomer 6 reveals much greater performances owing to its very
planar molecular structure.[44,46] However, oligomer 15 (Figure 5), which possesses two
planar DTT molecules, has a special p-stacked structure. It is profitable for electronic
migration on solid state due to face-to-face molecular stacking.[47] Similar behavior of

Figure 4. Basic opto-/electronic devices configurations based on organic active materials containing
SFTs structures.
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Table 1. Optical and electrochemical properties of SFTs-contained oligomers having thienyl units.
Oligomer Structure kabs

max/nm Eox
onset/V HOMO/eV LUMO/eV Eg

opt/eV

1 417 0.83 �5.27 �2.75 2.51

2 396 0.64 �5.08 �2.52 2.62

3 433 0.75 �5.19 �2.71 2.44

4 411 0.72 �5.16 �2.58 2.59

5 359 0.82 �5.26 �2.66 2.67

6 387 0.98 �5.48 – –

9 390 1.05 �5.25 �2.52 2.73

10 421 0.95 �5.15 �2.63 2.52

11 447 0.89 �5.09 �2.73 2.36

12 409 1.01 �5.21 �2.77 2.44

13 427 0.94 �5.14 �2.90 2.24

14 409 1.01 �5.21 �2.61 2.60

Table 2. Performances of OFETs devices of based on SFTs-contained oligomers.
Oligomer Structure l/cm�2V�1S�1 VT/V Ion/Ioff ratio

1 3.1� 10�3 �5.5 2.6� 102

3a 1.1� 10�2 �4.2 1.2� 103

3b 2.5� 10�2 �4.0 1.2� 103

5 0.14 3.6 104

6 3.0� 10�2 �25 104–105

7 5.4� 10�2 �28.5 106–107

8 0.18 �18.3 104–106

9 1.6� 10�3 �36 3.1� 102

10 0.12 �15 104–105

(continued)
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H-type aggregation of oligomer 11 results into enhanced OFETs performances.[48–50]

In addition, it also should be pointed out that same oligomer exhibited different
performances under the same fabricated conditions and technology.
When the same or another SFTs units instead thiophenyl groups are introduced

into skeleton. Oligomer 12 displays much higher mobility, at least fourfold, than that of
oligomer 9. In addition, all mobility data indicate that the increased molecular conjuga-
tion length may enhance OFETs performance, mainly by increasing carrier mobilities.

3.2. Attaching arylphenyl units

Generally, arylphenyl units such as phenyl, naphthyl, pyrenyl, xenyl, and their
derivatives are located on the terminal position of SFTs-cored oligomers (Figure 6
and Tables 3 and 4) to enhance the stability of materials and devices via retarding
oxidation.[51–57] The incorporation of the phenyl groups can also extend the conjugation
of oligomer chromophores, leading to shift of the absorption wavelengths and fluores-
cence emission, as well as improvement of the fluorescence quantum yields.[51,58,59]

And, just like above-mentioned molecular assembly of planar oligomers, with
the increase of phenyl rings (e.g., pyrenyl) to form a more planar structure, one-
dimensional nanofibers can be formed which are much beneficial to improve the carrier
mobility.[59–61] In contrast to thiophenyl involved oligomers, much rich variant
structures of arylphenyl groups and the diverse carbon-carbon bonds linking them with
SFTs units have shown much complex effect on their applied performances in OFETs

Table 2. Continued.
Oligomer Structure l/cm�2V�1S�1 VT/V Ion/Ioff ratio

11 0.81 �10 103–104

12 7.3� 10�2 �25.1 105–106

13 5� 10�2 – 108

aThe vacuum deposition of oligomer on substrates at 25 �C. bThe vacuum deposition of oligomer on substrates
at 70 �C.

Figure 5. Molecular structures and packing view of oligomer 15. Reprinted with permission from Li
et al.[47] Copyright 1998 American Chemistry Society.
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and other devices. As seen from Table 3, the linking way and the number of arylphenyl
are intimately involved in molecular structure although often implicitly ignored
in designing molecules. The presence of double or triple bonds in these oligomers can
facilitate p-electron delocalization among the whole molecular skeleton, and effectively
extend the conjugation length of the system. Moreover, although it is the attachment
of side groups like alkyl chains that maintain the molecular solubility, they will bring
some negligible effect on the device performances. For example, some specific molecules
(e.g., PTCDIs) attaching alkyl chains usually indistinguishable absorption and emission
properties which reduce PCE efficiency of OPVs devices.[62]

In line with the molecular structures, as listed in Table 4, the fabrication conditions
such as deposited temperatures of layers of these oligomers also play significant
roles on the OFETs device performances. On one hand, under the same fabrication
technology, oligomer 31 exhibiting a greater conjugated naphthyl shows improved
performance than that of oligomer 30 having end-capped biphenyls.[55] On the other
hand, treated temperatures can affect crystalline state of oligomer layers and the optimal
conditions also depend on the planarity of molecular structures which means
shorter distances of molecular stacking, such as oligomer 23. Besides active materials
themselves, their interfacial contact with substrate is also very critical to achieve
effective charge transfer. Often, the small charge injection areas and poor ordering of
the organic semiconductor has been experimentally investigated to limit device perform-
ance on the electrodes in the bottom-contact geometry. Noteworthily, the performances
of OFETs devices based on coating oligomers 20 and 28 octadecyltrichlorosilane (OTS)
pre-modified substrates can be improved in contrast to that with untreated substrates.
For this, the reduced interfacial energy between the oligomer and the substrate
having previously self-assembled OTS monolayer is the key factor.[63–65] In short, the
device performances should match well with the oligomers, their film microstructures,
and surfaces morphology of both substrate and active material layer. A symmetrical
oligomer 36 employing pyrenyl as end-capped group to DTT core was researched
as D-type active material for fabricating planar heterojunction devices due to the more
conjugated degree of oligomer 36.[66] Under simulated AM 1.5 solar irradiation
at 100mW cm�2, the device was estimated with PCE of 0.52%, FF of 0.22, JSC
of 3.15mA cm�2, and VOC of 0.76V. When blended with A-type C70, the PCE value
of device can reach 3.60%, due to efficient dissociation of excitons and carrier transport.

Figure 6. Molecular structures of oligomers 21, 26, 27, and 36 with DTT as center group with
symmetrical bis-aryl terminal units.
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3.3. Attaching triarylamine and cyanoacrylic acid units

Triarylamine (TPA) has advantages such as good redox activity, fluorescence, and
ferromagnetism due to the high oxidazability of the nitrogen center.[1] It has been noted
as one of the most frequently used hole transporting unit to build small D-A type
oligomer for OPVs.[1,67,68] On the contrary, cyanoacrylic acid (CA) usually is adopted
as an electron pull in the photosensitizer of dye-sensitized solar cell (DSSC).[68,69] From
Figure 7 and Table 5, the introduction of TPA and CA into SFTs-contained oligomers
could increase the kabs

max and HOMO value for 57. Regardless of these two functional
groups, different sized alkyl chains located on the same core unit can have some
influence on HOMO/LUMO energy level in that alkyl chain could produce steric
hindrance that is limited electron transfer.[31,32,70–76]

Benefiting from the improved electron delocalization via attaching TPA and/or CA
units into this series of oligomers, they are mostly used as sensitizer materials in DSSC
to lift PCE values. As shown in Table 6, many factors could affect photovoltaic

Table 3. The optical and electrochemical properties of SFTs-contained oligomers with aryl terminal
units.
Oligomer Structure kabs

max/nm Eox
onset/V HOMO/eV LUMO/eV Eg

opt/eV

16 389 – �5.25 �2.54 2.71

17 401 – �5.28 �2.55 2.73

18 409 – �5.20 �2.61 2.66

19 407 – �5.21 �2.54 2.67

20a 374 1.21 �5.41 – 2.59

28a 431 – – – 2.60

29b 383 1.03 �5.43 – 2.67

30b 372 1.01 �5.41 – 2.52

31b 356 0.99 �5.39 – 2.36

32a – 1.03 �5.43 – 2.53

32b – 0.73 �5.13 – 2.52

33a – 0.99 �5.39 – 2.40

33b – 0.82 �5.22 – 2.58

34a – 0.96 �5.36 – 2.37

34b – 0.74 �5.14 – 2.41

35 – – �5.54 – 2.95

aMeasurements performed in a 1,2-C6H4Cl2 solution.
bMeasurements performed in a dilute THF solution.
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performances, which contain fabrication technology, the position of alkyl chains and so
on.[70–76] For these devices fabrication, solution-processibility of oligomers is necessary.
In most cases, such capability is achieved by attaching branched alkyl chains on the
molecule skeleton. Also, alkyl chains can show some effect on the device performances.
For example, the device performance based on oligomer 49 is better than 50 and 51,
which is determined from the branched alkyl chains substituted in the molecule skel-
eton to decrease electron transform efficiency. The linear C15-alkyl chain substituent not
only prevents oligomer aggregation but also inhibits charge recombination from D to A.
Moreover, for most OPVs devices, device stability is an essential parameter to evaluate
OPVs devices. The device based on oligomer 41 maintained nearly the

Table 4. Performances of OFETs devices based on SFTs-contained oligomers with phenyl as terminal
units under different treated temperatures.
Oligomer Structure Temperature/�C l/cm�2V�1S�1 VT/V Ion/Ioff ratio

16 – a3.1� 10�2 – 4.5� 104

20b 25 0.20 �20 1.4� 105

20c 70 0.42 �23.4 5� 106

22 – 1.81 �26 105

23c 70 0.12 �20.2 5� 105

23d 120 0.14 �19 106

24 – 0.54 �14 106

25 – 5.0� 10�2 �31 105

28b 25 2.6� 10�2 �7.3 5.5� 10�2

30d 120 5.0� 10�2 �31 105

31d 120 9.0� 10�2 �28 106

32a 100 4.0� 10�2 �11.5 105

32b 100 4.0� 10�2 0.8 106

33a 70 0.17 �10.1 105

33b 70 1.3� 10�2 �6.4 2.0� 10�4

34a 100 1.4� 10�2 �3.5 104

34b 70 1.7� 10�2 �17.8 105

35 – 0.19 �23 1.6� 107

aThe data of top-contact OFETs devices. bC18-OTS, C8-OTS, BTS, and bare-treated substrates at 25 �C. cDifferent treated
temperatures on substrates. dDifferent treated temperatures and methods.
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initial performance values over a period of 45 days. Moreover, for oligomer 48, the
incorporation of thiazole unit as a rich-electron linker instead of thiophenyl between
TT units results into higher VOC, JSC, and PCE values. These are the performance met-
rics reported to date for DSSC devices using fused-thiophenes as dye sensitizers, and
approach the record PCE of 10.65% for metal-free organic sensitizers recently reported
by Yang et al.[77] using Co (II/III) redox shuttle.

3.4. Attaching diketopyrrolopyrrole units

Diketopyrrolopyrrole (DPP) unit has well-conjugated structures with strong p–p
interaction and electron-withdrawing effect, and relatively low lying HOMO and LUMO
levels. When embedding them into hybrid conjugated oligomers, it often brings broad and
tunable optical absorption, and high mobilities for holes and electrons, which can result in
efficient charge transport, high photocurrents and good FF for OPVs and OFETs.[78–81] As
structures are shown in Table 7, DPP units in SFTs-contained oligomers are generally as
central or terminal units of molecular backbones forming symmetrical structures.[82,83]

According to the optical and electrochemical properties of these oligomers listed in
Table 7, the presence of DPP units in molecular backbone could obviously decrease Eg

opt

and the initial oxidation potential (Eox
onset), favoring the carrier hopping. For example,

oligomer 60 possesses much promising performances of l than oligomer 9. However,
after the insertion of thiophenyl and bithiophenyl between TTA spacer and DPP caps
in oligomers 60–65, their kabs

max become blue-shifted. On the contrary, the incorporation
of thiophenyl and bithiophenyl at the DPP units results in red-shifted kabs

max.
As summarized in Table 8, the trend of l values of OFETs fabricated from oligomers

60–65 is following an order of 60> 62> 65> 64> 61> 63. On one side, the long
insulating branch side chains leads to a considerable difference in the hole mobility,
although they have same HOMO/LUMO energy levels.
For the OPVs devices using oligomers 60–65 as D-type material, PC71BM as the

A-type material and 1,8-diiodooctane (DIO) as a solvent additive, as listed in Table 9,
the PCE of that based on oligomer 60 achieved the highest value of 4.02%. When
the amount of DIO was 1.0 vol%, it achieved the higher PCE which was attributed to
a significant increase in JSC. A similar trend was observed for oligomer 65, which was
mainly attributed to the higher FF value.

Figure 7. Molecular structures of oligomers 40 and 41.
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3.5. Attaching other heterocyclic units

Up to now, most optoelectronic semiconductor materials including the aforementioned
SFTs-contained oligomers have shown p-type characteristic, which possesses limitations
on devices lifetime, stability, etc. To improve these, n-type semiconductors usually
possessing fluorine-contained heterocyclic ring or perylene imide units have been
widely applied.[54,58,84–87]

Table 5. Optical and electrochemical properties of SFTs-contained oligomers attached with TPA and/
or CA groups.
Oligomer Structure kabs

max/nm Eox
onset/V HOMO/eV LUMO/eV Eg

opt/eV

37 400 – �5.25 �2.47 2.78

38 410 – �5.26 �2.52 2.74

39 420 – �5.27 �2.59 2.68

45 414 0.39 �5.10 �3.42 1.64

46 420 0.30 �5.01 �3.36 1.61

49 485 0.99 �5.19 �3.27 –

50 498 0.99 �5.19 �3.28 –

51 519 1.00 �5.20 �3.29 –

52 510 – �5.09 – 1.79

53 500 – �5.01 – 1.84

54 498 – �5.29 �3.11 2.18

55 490 – �5.06 �3.14 2.08

56 482 – �5.16 �3.08 2.08

57 513 – �4.95 �3.05 2.04
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Table 6. Photovoltaic performances of SFTs-contained oligomers having TPA and/or CA units.
Oligomer Structure VOC/V JSC/(mA cm�2) FF PCE/%

37 0.79 11.1 0.49 4.31

38 0.89 15.4 0.60 8.23

39 0.99 17.1 0.67 11.29

42 0.75 14.2 0.72 7.60

43 0.65 13.3 0.73 6.40

44 0.73 15.4 0.75 8.40

45 0.74 5.7 0.34 1.44

46 0.61 3.6 0.34 0.75

47 0.87 11.04 0.57 5.41

48 0.95 12.01 0.54 6.20

49 0.81 17.5 0.72 10.21

50 0.78 15.5 0.62 7.60

51 0.78 16.9 0.69 9.02

(continued)
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Table 7. Optical and electrochemical properties of SFTs-contained oligomers having DPP units.
Oligomer Structure kabs

max/nm Eox
onset/V HOMO/eV LUMO/eV Eg

opt/eV

58 510 – �5.12 �3.29 1.61

59 540 – �5.08 �3.27 1.61

60 615 0.92 �5.12 �3.43 1.69

61 615 0.92 �5.12 �3.43 1.69

62 610 0.88 �5.08 �3.29 1.79

63 608 0.86 �5.06 �3.24 1.82

64 664 0.83 �5.03 �3.37 1.55

65 643 – �5.06 �3.28 1.66

Table 6. Continued.
Oligomer Structure VOC/V JSC/(mA cm�2) FF PCE/%

52 0.63 1.2 0.42 0.32

53 0.62 �0.98 0.43 0.26

54 0.95 7.7 0.66 4.76

55 0.83 16.3 0.74 10.11

56 0.89 10.1 0.68 6.15

57 0.83 11.8 0.70 6.91
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In this field, a series of SFTs-cored oligomers structures end-capped with pentafluorobenzyl
have been reported as shown in Table 10. The optical absorbance spectra of F-substituted mol-
ecules in C6H4Cl2 solutions nearly overlap with those without F substitution, which could be
attributed to the fact that fluoroaryl substitution could lower both the HOMO and LUMO
energy. The insertion of pentafluorobenzen in SFTs leads to much blue-shifted kabs

max and
increased Eg

opt and Eox
onset for oligomer 73 than that of 6, and for oligomer 68 than that of 20.

For oligomers 66 and 67, the absorption peaks are slightly red-shifted for that
containing the greater number of F atoms. In addition, the Eg

opt of oligomers is

Table 8. Performances of OFETs devices based on oligomers 58–65 attached with long alkyl
side chains.
Oligomer Structure l/cm�2V�1S�1 VT/V Ion/Ioff ratio

58 4.63� 10�2 1.27 3.82� 106

59 2.19� 10�2 �0.61 3.96� 106

60 0.1 �13.1 2.50� 104

61 9.4� 10�3 �9.2 6.90� 103

62 2.0� 10�2 �14.1 7.40� 105

63 4.5� 10�5 �4.8 2.30� 103

64 1.3� 10�2 �9.6 4.30� 104

65a 1.8� 10�2 �15.6 103

aBottom-contact top-gate geometry.
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increased in an order of 74< 73< 72. This result indicates that electrons are much
delocalized as the size of the SFTs core increases and as additional thienyl units are
combined to the fused molecular core.
The F-substituted oligomers generally provide n-channel transport for OFETs.

As shown in Table 10, devices based on these oligomers have high Eg
opt but low l.

Therefore, how to improve carrier mobility of n-type oligomer is the foremost research
focus. Oligomer 74 exhibits a quite similar herringbone packing motif with a dihedral
angle of 12�. The shortest interplanar distance between TTA cores is 3.57Å and
the shortest S–S distance is 3.50Å.[88] The increased degree of p–p overlap in cofacial
packing structures can promote much efficient charge transport versus herringbone
packing structures.[89–91]

4. Polymers and applications

Compared with oligomers, SFTs-contained polymers have conjugated structural chains
for long-range charge transfer and more abundant reactive sites for attaching functional
groups. The stacking of neighboring feasible side-chains and reconstitution of molecular
architectures can provide additional chances to enhance material properties and
device performances. These polymers with other types of functional materials can lead
to much abundant optic and electronic characteristics to meet wide applications.[92–94]

Table 9. Photovoltaic performances of oligomers 60–65 when D/A units are blended in differ-
ent ratios.
Oligomer Structure Blend ratio VOC/V JSC/(mA cm�2) FF PCE/%

60 2:3 0.70 7.7 0.50 2.9

61 1:1 0.76 1.8 0.58 0.9

62 2:3 0.70 5.1 0.51 2.0

63 1:1 0.63 3.6 0.39 1.2

64 2:3 0.60 1.5 0.60 0.6

65 – 0.75a 1.9 0.41 0.59
– 0.73b 7.3 0.40 2.13
– 0.72c 10.4 0.54 4.02
– 0.52a 2.1 0.33 0.36
– 0.60b 1.7 0.48 0.48
– 0.60c 1.6 0.51 0.38

DIO as a solvent additive was applied in the photovoltaic devices when oligomer 65 is D-type material. The ratio of
additive DIO is a0, b0.5, c1 vol%.
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In this section, their applications in OPVs, and OFETs (including OTFTs), ECs,
OLEDs, TEs, and supercapacitors (Figure 4) are summarized, and special attention is
paid on discussing the relationship between structures and device performances.
Fabrication technologies from relative oligomers to polymers, especially electrochemical
polymerization and chemical reaction, also have been introduced and their applicability
to achieve high-performance materials or devices is discussed.

4.1. OPVs

OPV cells, especially BHJ and DSSC, are noted as the most popular applications of con-
jugated polymers employing stable SFTs units.[31,74,95] In general, to achieve high device
efficiency, it is the copolymers of SFTs with other aromatic heterocycles whereas not

Table 10. Performances of OFETs devices based on oligomers 66–74 with pentafluorobenzen as
end-capped units.
Oligomer Structure l/cm�2V�1S�1 VT/V Ion/Ioff ratio

66 3� 10�5 74 104

67 4� 10�6 �60 104

68 3� 10�4 74 105

69 5� 10�6 �17 105

70 0.15 �59 8.3� 106

71 2� 10�3 �2 2.3� 104

72 6� 10�2 50 2.9� 108

73 4.6� 10�3 85 3.4� 105

74 9.9� 10�4 73 8.6� 104
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homopolymers, were chosen for obtaining broad and intense visible-light and even
near-infrared range response through narrowing their Eg

opt and providing efficient
photo-induced electron or hole transfer. The ubiquitous strategies are to construct
enlarged conjugated structures and build D-A interaction.[41,96] Although generally
bringing little effect on the frontier orbital energy levels of polymers, attaching alkyl,
alkoxy or other long chains (planar or blanching types) on the SFTs or corresponding
heterocycles is quite necessary to get acceptable solubility.[97–101] Surely, other factors
for affecting polymer solubility are also required special attention, for example,
the degree of polymerization, polarity of the attached substituents, skeleton rigidity,
intermolecular interactions, etc.[96]

Some typical SFTs-contained polymers for applying in OPVs are displayed in
Figure 8 and Table 11. The modifications of alkyl chains on conjugated skeletons have
gratifying effects on solubility, crystallinity, molecular orientation, and morphology of
the co-polymers, which directly influence molecular orientation on the substrate, leading
to improved PCE and materials processability. Noticeably, the face-on stacking
intensively affects the OPVs efficiency owing to the improved carrier transfer based on
the p–p stacking. Two-dimensional CI-XRD analysis has been conducted to investigate
the crystallinity and specific molecular arrangement on the substrate in order to better
understand the relationship between the alkyl chains’ bulkiness and charge carrier
mobility in the devices. It demonstrated that the relatively higher mobility for polymer
84 could be explained by the formation of small crystallites and their compactness on
the film surface in comparison to polymers 82 and 83. The bulky alkyl chains can
weaken the molecular aggregation by increasing the p–p stacking distance and decrease
the crystallinity of the polymer.
Due to the difference in the charge property of atoms, the introduction of different

atoms in repeating groups could produce different orbital energy levels, which can lead
to the difference of VOC values of OPVs devices. In addition, heterocycle bridges with
different electron-donating ability can markedly tune the optical absorptions and orbital
energy levels of polymers (as structures shown in Table 12).[97,99,101–103] When thio-
phenyl and selenophon units were inserted into polymer backbones, the PCEs will
improve due to their smaller band gaps, better crystallinity, and carrier mobility.[104–106]

For polymers 96–98, their linear structures could generate conformational lock due to
intra- and interchain noncovalent Coulombic interactions (S-O, S-N, hydrogen bond)
resulting in strong molecular self-organization. And, the hole mobility was significantly
improved by incorporating fluorine substituents into the polymer chain.[107]

SFTs, acting as electron-donating units, play an important role of D and p-bridge in
the polymer backbone to form the configuration of D-A, D-p-A, D-A-D-A for polymers

Figure 8. Molecular structures of polymer 85.
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Table 11. Performances of OPVs devices based on polymers 75–88 according to tunable alkyl
side chains.
Polymer Structure VOC/V JSC/(mA cm�2) FF PCE/%

75 0.58 5.7 0.45 1.5

76 0.63 11.3 0.45 3.2

77 0.43 5.96 0.34 0.9

78 0.44 5.95 0.34 0.9

79 0.59 16.6 0.60 5.9

80 0.61 18.6 0.64 7.3

81 0.60 18.7 0.62 6.9

82 0.54 8.0 0.51 2.2

83 0.56 9.25 0.51 2.7

(continued)
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Table 11. Continued.
Polymer Structure VOC/V JSC/(mA cm�2) FF PCE/%

84 0.59 7.1 0.63 2.7

86 0.91 12.14 0.48 5.4

87 0.65 10.05 0.53 3.4

88 0.92 11.68 0.53 5.7

Table 12. Performance of OPVs devices based on polymers 89–98 possessing different electron-
donating units.
Polymer Structure VOC/V JSC/(mA cm�2) FF PCE/%

89 0.76 8.54 0.73 4.73

90 0.44 8.31 0.57 2.15

91 0.63 11.40 0.71 5.10

(continued)
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Table 12. Continued.
Polymer Structure VOC/V JSC/(mA cm�2) FF PCE/%

92 0.53 11.60 0.66 4.05

93 0.63 10.55 0.58 3.84

94 0.60 11.76 0.64 4.55

95 0.58 15.62 0.62 5.68

96 0.61 9.82 0.60 3.54

97 0.71 11.70 0.63 5.20

98 0.74 13.30 0.63 6.40
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99–106 (structures are shown in Table 13).[10,98,108,109] The band gaps of these polymers
could effectively decrease to meet optimal 1.77 eV responding to both red and
near-infrared ranges of solar light.[110] The high planarity and rigidity of SFTs in
conjugated polymers have been proven to be an effective approach to minimize the
phase separation. The coplanar structure is beneficial to improve the p–p stacking
and charge transfer property of the polymers in the solid state.[111,112] As the OPVs
performances of polymers 99–106 are summarized in Table 13. The extension of
molecular coplanarity allows a much-delocalized HOMO distribution along the polymer
backbone, which is to enhance intermolecular charge-carrier hopping. Electron
transfer from D to A in polymers also can be effectively improved when small
conjugated units were selected to link D and A units.

Table 13. Performances of OPVs devices based on polymers 99–106 with configurations of D-A, D-
p-A or D-A-D-A, where SFTs as donor and p-bridge units.
Polymer Structure VOC/V JSC/(mA cm�2) FF PCE/%

99 0.86 15.30 0.70 9.21

100 0.78 10.56 0.62 5.05

101 0.57 8.90 0.59 3.00

102 0.58 15.00 0.61 5.40

103 0.65 1.47 0.31 0.29

104 0.60 5.15 0.45 1.39

105 0.67 3.76 0.39 0.97

106 0.77 4.18 0.37 1.19
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Nevertheless, designing an ideal polymer for OPVs is still a conundrum in the mater-
ial science field. The characteristics of ideal polymers include better solution-process-
ability, higher crystallinity, the smooth morphology, and strong p–p interaction via
neighboring two polymers. Moreover, annealing temperatures, solution additives,
different structural acceptors like PCBM for BHJ solar cell, and molecular arrangement
on the substrate could also affect OPVs performance due to the state and morphology
of the blend film. Fitted energy level of polymers is a key factor to meet the absorbance
of the large range of the solar light spectrum. Fabrication and assembly technologies
to outfit OPVs are still an active research orientation for different materials and under
different environmental conditions.

4.2. OFETs and OTFTs

Different from small oligomer molecules containing SFTs units for OFETs application,
their polymers have been extensively researched as active layers to fabricate OTFTs
devices.[86,113–117] However as the same, in order to achieve better device performance,
D-A type molecular configuration of polymers employing SFTs units as electron-
donating and p-bridge groups are still necessary. SFTs in polymer skeletons can adjust
their HOMO energy levels, while A-type groups like DPP groups were then employed
because they possess strong electron-withdrawing ability. As shown in Table 14, for
DPP involved polymers 108–110, the conjugated degrees of repeating groups provide
significant effects on the OTFTs performances.[115–118] For polymer 107, it exhibits
a specific ambipolar behavior unlike those of other polymers and displays two arrange-
ments as shown in Figure 9. For different attachments that with similar molecular
structures, like thienyl, selenophene and furan within polymers 111–114 in Table 15,
researches indicated that polymer 114 based on furan possessed relative poor OTFTs
performances due to the limited ability of providing electron of furan.

Table 14. Performances of OFETs devices of polymers 107–110 based on SFTs-contained structures.
Polymer Structure lh/cm�2V�1S�1 le/cm�2V�1S�1 VT/V Ion/Ioff ratio

107 0.40 1.3� 10�2 14 103

108 0.35 – – –

109 1.18 – �10 >106

110 1.19 – 0 106
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Figure 9. Schematic illustration of ambipolar molecular arrangements of polymer 107. Reprinted with
permission from Zhang et al.[115] Copyright 2014 American Chemistry Society.

Table 15. Performances of OFETs devices of polymers based on SFTs-contained and DPP units.
Polymer Structure lh/cm�2V�1S�1 le/cm�2V�1S�1 VT/V Ion/Ioff ratio

91 0.23 1.5� 10�2 – 104

92 0.13 1.0� 10�2 – 103

111 0.44 – �14 106

112 6.7� 10�2 – �25 106

113 9.0� 10�2 2.0� 10�2 �26 –

114 4.0� 10�2 7.0� 10�2 �13 –
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With the incorporation of SFTs and any other heteroaromatic rings in the polymers
skeletons, not only their energy levels, crystallinity and morphologies o in solid state
will be affected, but also the solution-processability will become poor. So the position
and size of alkyl chains attached to polymer skeletons will have a significant effect on
the performance of final devices. According to Table 16, strong intermolecular inter-
action of large branched alkyl chains attached on polymers 82–84 can lead to higher
mobility.[103] In addition, after thermal annealing at 200 �C, the mobilities of all poly-
mers increased due to the improved crystallinity and ordered lamellar packing between
the polymer chains. In the future, solution-processible SFTs-contained polymers also
may meet their promising applications in flexible transistor devices.

4.3. ECs

Unlike OPVs and OFETs, ECs materials (Figure 4) find important applications in dis-
play devices and energy-saving smart windows. Conducting polythiophenes, especially
PEDOTs, have been widely selected due to their numerous advantages such as variable
color transformation obtained from the same material at different redox states or via
feasible bandgap control through structural modification, fast switching times and
superior coloration efficiencies (CE), excellent structural and redox stability, good film-
forming ability and flexibility. In contrast, ECs performances of SFTs homopolymers

Table 16. Performances of OFETs devices based on oligomers 82–84 with high crystallinity and
ordered lamellar packing by thermal annealing.
Polymer Structure Temperature/�C l/cm�2V�1S�1 VT/V Ion/Ioff ratio

82 Pristine 8.90� 10�4 �2.56 103

200 6.13� 10�3 �6.41 105

83 Pristine 1.64� 10�3 0.51 104

200 7.65� 10�3 0.92 105

84 Pristine 1.20� 10�2 �4.84 105

200 6.88� 10�2 �5.93 106

Figure 10. Molecular structures of polymers 126–128 containing SFTs unit for ECs.
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Table 17. Performances of EC devices based on SFTs-contained polymer films.

Polymer Structure

Visible light NIR light Response time/s

DT/% CE/(cm2 C�1) DT/% CE/(cm2 C�1) Bleaching Coloring

115 29.5 81.7 69.4 255.3 2.63 1.87

116 19.2 – 48.4 – 0.57

117 – – 60 – 2.7 2.0

118 – – 60 – 0.96 1.63

119 23 120 62 440 0.90 0.34

120 16 190 50 324 1.10 0.35

121 38 93 64 234.6 0.36

122 13.4 – 12 – 0.83

123 34.4 153.0 59.6 288.4 0.97 1.31

124 29.5 81.7 69.4 255.3 2.63 1.87

125 29.9 133.2 70.8 331.3 0.72 1.98

129 44.7 370 79.4 406 –

130 29.3 353 69.9 446 –

131 14.2 68 42.8 140 –

132 19.1 199 59.2 320 –

133 43 361 78.6 353 –

134 32.1 212 59.5 300 –

(continued)
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have highly limited by their planar and rigid conjugated structures. Thus, for this
application, SFTs were mostly in combination with other hybrid units in copolymers,
as shown in Figure 10 and Table 17.[4,29,119–129]

Generally, most endeavors in this aspect to achieve better EC performance
has been focused on incorporating SFTs units into main chains of PEDOTs through
electrochemical polymerization of the oligomer precursors with SFTs and EDOT units
as core unit or end-caps, respectively.[121–124]

In the past five years, our, Meng’s and other groups have reported a series of
such polymers and investigated their structure–performance relationships as shown in
Table 17.[29,92,121,123,124,126,130,131] As listed in Figure 11, these show better ECs perform-
ances than P(TT) (36.8 cm2 C�1) due to the extension of the conjugated structure
rearranged electron density and redox activity. When other functional groups (e.g.,
TPA, arylphenyl) were introduced into the b-position of TT units, much improved ECs
performances were achieved owing to the lower bandgap and broader absorption.
In addition, some complex polymers 129–135 that employ other D-type or A-type

groups with flexible alkyl or alkoxy chains were also demonstrated as good EC
materials.[5,125,127–130] For instance, A-type units are inserted in P (TT), causing a lower
LUMO energy level and higher residual absorption, leading to higher ECs performance.
ECs of based on SFTs-contained copolymers can be noted as a much promising field

beyond their use in OPVs, especially considering current preference for flexible displays
and smart life, where the inorganic materials have severe limitations. There are many
similar design philosophies about material structure and device fabrication between such
fields. Moreover, in light of the great success of aqueous dispersions of PEDOT/PSS and
their flexible ECs films, chemically oxidative homopolymerization of above-mentioned

Figure 11. Molecular structures of ternary oligomers containing EDOT and TT or DTT units and
the EC images and properties of their polymer film-coated ITO electrodes.

Table 17. Continued.

Polymer Structure

Visible light NIR light Response time/s

DT/% CE/(cm2 C�1) DT/% CE/(cm2 C�1) Bleaching Coloring

135 16.4 328 80.5 368 –

136 15.5 239 66.1 394 –

137 2.0 156 54.0 46.4 –
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oligomers or copolymerization of SFTs with EDOTs will be a promising research
direction. Further interesting results also may be found if they are introduced into
hydrogel bioelectronics and applied through emerging film-forming technologies.[132]

4.4. OLEDs

OLEDs, employing p-conjugated polymers as active layers as shown in Figure 4, have been
rapidly developed in the past decades due to their highly active photoluminescence (PL) or
electroluminescence (EL), along with flexibility and low energy consumption.[133] As a typ-
ical electron-rich unit or p-bridge, TT has been introduced in electroluminescent copoly-
mers (Table 18) with alkyl fluorenyl groups through Suzuki polymerization, which is
beneficial to improve the hole affinity of copolymers.[133] With the help of further incorp-
oration of electron-deficient benzothiadiazole and electron-rich triphenylamine moieties
in the main chains (Table 18), the film EL efficiency meets greater improvement due to
optimizing electron- and hole-transporting, better solubility and thermal stability.[134]

Although their applications in this field are still quite a few, enlightened by abundant
design concepts of molecular structures and device constructions in OPVs and OFETs,
SFTs and their polymers may find further development in OLEDs.

4.5. TEs

TEs devices have functionality for green power generation from waste heat and
solid-state refrigeration. The application of organic semiconductor polymers in this field
is a challenging but extraordinarily interesting branch which has gained wide attention
in the past decade since our concentrative research on PEDOT in 2008.[135–138] The key
factor for evaluating TE performances of materials is the so-called dimensionless
thermoelectric figure-of-merit (ZT) as defined by Eq. 3:

Table 18. Performances of OLEDs devices based on copolymers 138–140.
Polymer Structure Luminancemax/cd m�2 EL efficiencymax/cd A�1

138 970 0.32

139 1450 1.35

140 3000 0.64

Table 19. TE performances of polymer films containing TT structure.
Polymer Temperature/�C r/(S cm�1) S/(lV K�1)

P(TT) 25 0.42 75
�75 0.04 51

P(TT/2Cz-D) ¼ 10:1 �75 0.12 169
P(TT/2Cz-D) ¼ 3:1 �75 0.26 85
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ZT ¼ ðrS2ÞT
K

(3)

where S is the Seebeck coefficient, r is the electrical conductivity, T is the absolute
temperature, and K is the thermal conductivity. Also, power factor P (¼rS2) is
sometimes used. A commercial TE material should reach a ZT value of 1.0 at operating
temperatures. Although it is still an unreachable level for organic TEs, we and others
have improved the data from 10�4 to 10�1 orders of magnitude.[139] As a typical
example, the ZT value of PEDOTs-based TE films has reached ca. 0.5, making polythio-
phenes derivatives attracted most of the interest in this field.[139,140] In 2011, our group
investigated the TE performance of electrosynthesized free-standing P(TT) film and
fabricated simple devices (Figure 4).[140] Through combining with 1,12-bis(carbazolyl)-
dodecane (2Cz-D) into free-standing copolymer films, a dependence between electrical
conductivities and molar ratios of TT and 2Cz-D monomers can be found.[141,142]

When the ratio was decreased from TT/2Cz-D of 10:1 to 3:1, higher S and p values
than P(TT) films were achieved (Table 19). But owing to their low conductivity and
molecular complexity than PEDOTs, for a long time, there is no further development
about SFTs-contained TE polymers. We believe there may be two ways to promote this
field, embeddings SFTs units into PEDOTs or other preferred organic TE skeletons, and
fabricating regular assembly structures with bulk-phase micro-/nano-scale nanofiber
morphology from small molecules, oligomers or polymers.

4.6. Supercapacitors

Capacitor application is extremely important for energy storage and to meet current
green power tendency. Supercapacitors based on the electrochemical mechanism
with the help of thin-film conjugated polymer electrodes (Figure 4) have achieved wide
interest from our and other groups in recent years.[143–146] Ates et al.[146] found a spe-
cific capacitance value of 0.18 mFcm�2 for a double eletctro-active layer capacitor based
on P(Th4DTT) (Figure 12) and a much higher data about 4.43 mFcm�2 for that based
on P(Th4DTT)/multi-walled carbon nanotube (MWCNT) composites. These composites
also showed long-term stability, remaining 87.37% efficiency of SFTs-contained conju-
gated polymers. The inherent structural and electronic advantages and high energy
density of MWCNTs played a significant role in such results. Also, the interchain inter-
actions and mesoporous structures are vital to achieve high supercapacitor performan-
ces. Nevertheless, the properties of individual conjugation structure, charge-discharge
ability, intermolecular interactions, and extent of disorder for materials, the develop-
ment of polymers-based capacitors still face severe difficulties.[147–149] The design of

Figure 12. Molecular structure of Th4DTT for applying in capacitor.
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electrochemically synthesized polymer films from oligomers containing both SFTs and
preferred groups (e.g., EDOT) as well as their composites with preferred carbon materi-
als could be seen as a potential research direction.

5. Conclusions and outlook

In summary, we systematically discussed the structure–performance relationships of SFTs-
contained oligomers and polymers are related to wide applications, especially OPVs,
OFETs, OLEDs, and ECs. When integrated with other constitutional units such as penta-
heterocycles, phenyl derivatives, and polycyclic aromatic units, etc., SFTs units as the
p-conjugated cores or bridges in the molecular skeletons will bring enhanced charge car-
rier generation and transfer efficiency and thereby improved device performances.
In general, regardless of special device applications, three critical molecular design

strategies have been adopted. On one hand, enlargement of the conjugated molecular
skeleton via tuning thiophenyl numbers of SFTs or attaching other conjugated structural
units at horizontal and/or side directions has been utilized to achieve much planar
structures and better intramolecular charge mobility. On another hand, D-A construc-
tions and functional side chain modification are developed to meet much wide or spe-
cial objectives. Last, alteration of alkyl substituents on the conjugated skeleton units can
not only improve molecular solubility but also modulate the molecular chain orientation,
intermolecular interaction, and solid-state morphology. In view of different applications,
other cases also should be given special considerations to get high performances. For
example, a broad molecular absorption in the visible-light regions is quite important for
OPVs, an effective D-A or n-p structure is necessary for OFETs, a good conductivity is
favorable to both ECs and TEs, and variable color transition is required for ECs.
Besides these ways, some new design principles can be introduced to this field. For

example, since SFTs have flat structural stereo-structures, their oligomers or polymers
could be constructed into well-defined stacking micro-/nano-scale structures with
diverse dimensional conformations via strong intermolecular interactions. Also, the
presence of abundant electrons offers many possibilities to design complex composites
with other functional compounds via hydrogen bonds, chalcogen interaction, and
others. Inspired by supramolecular or coordinative chemistry, nanotechnology, etc.,
besides remarkable applications mentioned above, these novel materials and bulk phase
structures may find opportunities in optoelectronic sensors, flexible electronics, and
even biology detection or pharmacy therapy of diseases.
Moreover, another important factor for realizing much high-performance devices is

selective fabrication or posttreatment technology. Recently, adding external molecular
doping solvent is demonstrated as an effective way to improve the stability and optimize
carrier transport properties of SFTs-contained oligomers and polymers.[150] It is believed
that if SFTs-contained oligomers or polymers can be compatible with forefront technol-
ogies (e.g., 3D printing), as well as assembly or hybrid combination with different type
semiconductors (e.g., forming heterogeneous junction) meet much promising perform-
ances and commercial applications.
Nevertheless, there are still many challenges for SFTs-based materials to realize

above-mentioned prospect considering more and more complex molecular synthesis or
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precise polymerization control, and optimal matching with other components in devices
with efficiency bottleneck. These problems exist in almost the whole field of organic
electronics which need cooperation between material scientists, technique engineers and
theoretical researchers to overcome.
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