Homework for Lecture 28, 29

The oxidation of silicon $(Si + O_2 \rightarrow SiO_2)$ is a typical way to form an insulating oxide layer on silicon wafer (as shown in the diagram below). The oxidation rate (i.e., the increase rate of SiO₂ layer thickness) follows Wagner's parabolic model, $x^2 = Kt$, with the rate constant K following the experimentally-determined values in an atmosphere of dry oxygen as shown in the table below:

Temperature (°C)	1200	1100	1000	920	800
Oxidation rate constant (<i>K</i>) $(\mu m^2/h)$	0.0450	0.0270	0.0117	0.0049	0.0011

Note: $1 \ \mu m = 10^{-6} \ m$

(data are from a J. W. Mayer and S. S. Lau 1990 Book)

1). Calculate how long will be needed to grow a 0.1 μ m thick of SiO₂ layer under 1000 °C.

2). The oxidation rate constant (K) depends on temperature as evidenced by the data shown in the Table. Make a plot of $\ln K$ versus 1/T to check if the temperature dependence of K follows the

Arrhenius equation as discussed in Lecture 1 and 2, i.e., $K = \text{const} \times e^{-\Delta G_A/RT}$, and estimate the activation energy ΔG_A .

(hint: you will need to convert the temperature unit from Celsius to Kelvin, K)

