Homework for Lecture 16-18

Consider the precipitation of a spherical B-rich phase (β phase) from a dilute solution (α phase) of B in A. Suppose the original concentration of B in the solid solution is C₀=5×10²¹ atoms/cm³, the diffusion coefficient of B is D=10⁻¹⁰ cm²/sec, and the interface transfer parameter of B is M=10⁻⁶ cm/sec. In a quasi-steady state, if the averaged concentration of B in the bulk (C_t) remains approximately the same as C₀, and the concentration of B next to the α/β interface is C_r=4×10²¹ atoms/cm³, what are the equilibrium concentration of B in the α and the β phases (C_{α} and C_{β}), when

the radius of the β particle is $r = 1 \ \mu m = 10^{-4} \ cm$ and grows at a rate $(\frac{dr}{dt})$ of $10^{-7} \ cm/sec$?