
978-1-5090-3561-8/16/$31.00 c©2016 IEEE

Design of a Multi-Style and Multi-Frequency FPGA
Jotham Vaddaboina Manoranjan, Solomon Surya Tej Mano Sajjan, Vivek B. Gujari, Kenneth S. Stevens

Department of Electrical and Computer Engineering
University of Utah

Abstract—This paper presents an FPGA architecture capable
of implementing relative timing based asynchronous designs.
Modifications are made to a traditional synchronous FPGA
architecture to make it asynchronous capable, while retaining
its capability as a fully functional synchronous FPGA. Such a
design permits multi-frequency implementations. A test FPGA
fabric is developed and evaluated with the implementation of a
MIPS processor. The asynchronous MIPS processor implemented
on the designed FPGA provides a performance improvement
of 1.7× while also providing a power improvement of 2.3×
compared to the synchronous version of the MIPS implemented
on a counterpart synchronous FPGA.

I. INTRODUCTION

The current generation of FPGAs, built on deep sub-micron
process technologies, are powerful devices with millions of
programmable logic elements. This has enabled entire system-
on-chip (SoC) designs to be implemented on FPGAs. How-
ever, it has become significantly harder to design efficient
distribution of high speed clocks across these large chips.
Maintaining synchronization between various SoC blocks
operating at different clock domains can become power intens-
ive. Asynchronous designs provide an alternative design style
that can mitigate these issues significantly.

Asynchronous designs are shown to provide significant
power and performance benefits on ASICs [1]. Relative timing
(RT) based asynchronous designs have shown 3× benefit in
energy, 1.5× in area and 1.2× in performance compared
to synchronous counterparts [2]. RT uses path based timing
constraints to guarantee functional correctness of a circuit.

The primary motivation for this paper is the desire to
achieve the same level of power and performance benefit of
asynchronous designs seen on ASICs when the designs are
implemented on FPGAs. Commercial FPGAs are designed
and optimized for clocked design, which poses significant
hurdles in implementing asynchronous modules. For example,
a significant problem in building asynchronous controllers with
combinational feedback on FPGA fabrics is hazards [3].

In this paper we design an FPGA architecture that is capable
of implementing RT based asynchronous designs. Certain
additional circuits are included to make the architecture asyn-
chronous compatible. The FPGA is designed on the 65 nm
node and compared to a counterpart synchronous FPGA.

A unique feature of the proposed architecture is that this
new FPGA retains complete support and functionality for
traditional synchronous designs. The proposed architecture
can be used independently for synchronous or asynchronous
designs, and can also be used to combine the design styles.
This merging of design styles can be employed to create hybrid

solutions in numerous domains. For instance, synchronization
issues that have become prevalent in high speed software
defined radio could be resolved by utilizing asynchronous
circuits to simplify global timing constraints while simulta-
neously using synchronous blocks for computation [4]. Other
potential applications include low power domain crossing and
communication backbones [5].

II. BACKGROUND

Asynchronous FPGA architectures have been built for
highly pipelined and high throughput applications, which
prove valuable in applications such as cryptography [6]. One
such asynchronous FPGA architecture was commercialized
by Achronix Semiconductor Corp [7]. The architecture is
based on micropipeline stages that enable high throughput
applications. Novel configuration logic blocks that enable
better pipelining and power reduction are implemented. The
use of dual rail data encoding enables resistance to process
variation, although this incurs an area penalty. Most of the
silicon fabric was dedicated to routing resources. In this
particular case 80-90% of the area was covered by configurable
routing resources, and routing fabric consequently utilized a
proportionally high power.

FPGA architectures capable of implementing various design
styles have been explored [8]. A unique approach as part
of the architecture is the inclusion of programmable delay
elements (PDEs) for delay matching. The architecture targets
reducing the tight connection between asynchronous design
styles and design entry. However, the work does not elaborate
on power/performance benefits.

Other approaches maintain logic element structures similar
to those seen in synchronous FPGAs, while implementing
asynchronous dual rail data routing structures and creating
circuits to bridge between the two architectural styles [9].
The clock structure is replaced, which allows for power
reduction. However, the use of dual rail protocols creates area
overheads in the routing structure. As the design maintains
synchronous logic blocks, conventional design tools can be
used for logic clustering, while additional tools are built for
the implementation of the asynchronous portions.

III. APPROACH

This paper provides a unique solution that addresses some
of the drawbacks of the architectures discussed above. The
following summarize the broad concepts of this approach:

• Bundled data: Numerous asynchronous data styles exist.
As seen in Section II, a prevalent practice has been the use

Fig. 1: Clocked design

Fig. 2: Relative timed asynchronous bundled data design

of dual rail data protocols. Bundled data structures, on the
other hand, avoid the area overhead of dual rail protocols
as the data is relayed the same way as in synchronous
designs. The FPGA design here incorporates the use of
bundled data asynchronous designs.

• Merging synchronous and asynchronous styles: The logic
and routing structure from synchronous FPGAs is largely
retained in this new architecture due to the similarities
in the data paths between bundled data asynchronous
and synchronous designs. Only minor modifications and
additions are made to synchronous FPGAs to make them
asynchronous capable. Hence, designs that incorporate
both synchronous and asynchronous designs can be effi-
ciently implemented on this new FPGA.

• Tools: A significant barrier-to-entry for new digital de-
sign styles is the need to train engineers, and support
them with the required tools. The current generation of
FPGA tools are extremely well refined and an attempt to
build these tools from scratch for asynchronous designs
would require a large investment in time and money.
Bundled data asynchronous designs require additional
tool support because timing must be maintained between
the handshaking protocols and data paths. This has been
traditionally achieved in the ASIC realm through custom
languages and tools for describing these timing relation-
ship [10]. However, the bundled data asynchronous de-
sign style used in this work allows designers to retain the
synchronous tool flow to build the asynchronous designs.
On ASICs, asynchronous designs have been success-
fully implemented using commercial synchronous EDA
tools [11]. Similarly, it is possible to retain synchronous
designs tools for asynchronous designs on FPGAs.

IV. RELATIVE TIMING

Relative timing is a formal timing methodology that can
apply to both synchronous and asynchronous designs. A
comparison between synchronous and asynchronous architec-
tures is provided in Fig. 1 and Fig. 2. Bundled data based

Fig. 3: Logic block design

asynchronous systems are partitioned into a control path and
a data path. This can be seen in Fig. 2. The data path of the
system consists of the logic and registers, similar to that in a
synchronous pipeline (Fig. 1). The control path is primarily
composed of modules called controllers. The controllers carry
out a request-acknowledge (req-ack) handshaking between
them and clock the registers. The control logic maintains the
timing and functional relationship between pipeline stages.

RT provides a methodology to model and verify circuits and
protocols with timing constraints [11]. The formal representa-
tion of an RT constraint is shown in Eqn. 1.

pod↑ 7→ poc0 +m ≺ poc1 (1)

The pod and pocs are signal transitions or events in a circuit.
Eqn. 1 specifies that the maximum delay between pod (point-
of-divergence) and the (point-of-convergence) poc0 is less than
the minimum delay between pod and poc1. The constraint
orders events, causing poc0 to always precede poc1. A margin
m of separation is incorporated.

For the synchronous pipeline stages the timing relationship,
in the presented formalism, is defined as follows:

FFi/clk↑j 7→ FFi+1/d+m ≺ FFi+1/clk↑j+1 (2)

The above constraint sequences arrival of new data at the
flip-flop (FFi+1) corresponding to a pipeline stage before the
clock edge (clkj+1), following a clock edge (clkj) at the flip-
flop at the previous stage (FFi). The constraint represents
the timing relationship between pipeline stages and the global
clock.

A similar constraint is constructed for the asynchronous
pipeline:

reqi ↑ 7→ Li+1/d+m ≺ Li+1/clk↑. (3)

Each reqi ↑ handshake on LCi indicates new data presented
to pin d of Li. The delays in the circuit are sized as per
the above RT constraint. Hence, after reqi ↑, the maximum
delay to Li+1/d must be smaller than the minimum delay to
Li+1/clk↑. This would ensure that valid data is present when
it is latched.

V. BASELINE SYNCHRONOUS ARCHITECTURE

A. Logic Structures

The building blocks of FPGAs are look up tables (LUTs)
that are programmable to create any n-input boolean function.

Fig. 4: Slice incorporating two logic blocks

Fig. 5: Cluster of CLBs connected by a global interconnect:
dotted lines show additions to synchronous baseline architec-
ture

Fig. 3 shows the design of our logic block. It is a relatively
standard FPGA logic block design incorporating a 6-input
LUT, a carry chain, an XOR gate for addition functions, and
a register. Two logic blocks are connected together to form a
“slice”. This is shown in Fig. 4. Within a slice, the output of
the LUTs (Q in Fig. 3) pass through an additional multiplexer
(MUX). This allows the two 6-input LUTs to be combined to
form one 7-input LUT. The output of the 7-input LUT is f7
in Fig. 4.

Two slices are then connected using a local interconnect.
The local interconnect is essentially a switch matrix that routes
signals locally. Two slices along with a local interconnect form
a configuration logic block (CLB). The local interconnect from
multiple CLBs also interface with a global interconnect. Fig. 5
shows this structure. It represents a “cluster” in the designed
FPGA (in solid line). A cluster consists of five CLBs that are
all connected to a single global interconnect.

B. Interconnect Structures

The interconnects are implemented using tri-state buffers.
Configuration bits are used to connect an input to a certain
output by enabling the required tri-state buffers. Fig. 6a shows
a part of the local interconnect matrix. The 24 global inputs
from the global interconnect are capable of being routed to

(a) Portion of local interconnect matrix

(b) Enable buffer connecting global inputs to a local input

Fig. 6: Design of interconnect

the inputs of the 4 LUTs within a CLB. This is done by
using the tri-state buffer shown in Fig. 6b. Tri-sate buffers are
implemented in each of the marked cross points in Fig. 6a. An
input to a pin of a LUT is connected to outputs of multiple
tri-state buffers, each of which allows the input to be driven by
a different global signal. Only the lower left diagonal half of
the matrix cross points are connected, reducing redundancy.
The configuration bits ensure that only one of the tri-state
buffers driving a wire is enabled. The authors are aware that
the switch matrix being implemented is fairly rudimentary.
However it suffices for the target MIPS application.

Asynchronous handshake signals are added to the routing
matrix which are not in the baseline synchronous architecture.
The data signals for both the clocked and the asynchronous
FPGA are routed the same way. This is the advantage of
utilizing relative timed bundled data asynchronous design; the
data plane of asynchronous designs closely resemble the data
path of synchronous designs.

C. Clock Distribution

A logic block is placed and routed first and then two
copies are incorporated into a slice. Copies of the slice are
incorporated to create a cluster. This creates uniform timing
characteristics between various instances of the same block
and slice. Copies of the CLB are then evenly distributed on the
chip floor plan. Once placed and routed, a global clock tree is
created and connected to the logic structure through the g clk
port (shown in Fig. 3). This creates a highly efficient low skew
clock distribution network that spans the entire FPGA. This
global clock tree does not flow through the interconnects. The
slices can also be configured to use a clock that is sourced
through the local interconnects (l clk in Fig. 3).

VI. MULTI-STYLE MULTI-FREQUENCY ADDITIONS

A. Handshake Controllers

Asynchronous controllers can be accommodated on an
FPGA in two ways. The first involves building the handshake

Fig. 7: Controller slice

controllers using the existing LUT structures on the FPGA.
Unfortunately FPGAs have logic and routing structures that are
not conducive to this approach owing to delay overheads and
hazards [3]. Also, even though it is possible to implement these
circuits on LUTs, the high activity factor of the controllers
leads to very high power consumption.

The second method to accommodate the control path into
the FPGA is to incorporate hard controllers into the FPGA.
This is the method used in this paper. These are essentially
control blocks implemented using traditional digital library
gates. The controllers are connected to the routing matrix
of the FPGA in a manner similar to how the inputs and
outputs of the logic blocks are connected to the routing matrix.
This enables the realization of a fast controllers with minimal
delay and area overhead. Realizing the control logic with
custom built hard coded circuits also leads to a much lesser
power consumption when compared to implementing the same
control circuitry on LUT based logic elements.

B. Protocol and Controller choice

Protocol and controller choice are interdependent issues.
Various protocols exist that can be used to carry out hand-
shaking between controllers. Controllers are then designed
to implement these protocols. Controllers can interface with
other controllers that work on compatible protocols. Two broad
protocol categories are 4-phase and 2-phase protocols [12]. 4-
phase protocols employ a four phase return to zero protocol.
After each communication the handshake signals reset to zero,
and data validity is expressed based on signal levels. We
choose to utilize 2-phase protocols. These protocols employ
signal transitions to validate data, and do not need to reset to
zero. This reduces the number of signal transitions needed per
data transfer, reducing the activity factor on the communica-
tion signals and in turn lowering power consumption.

As part of the FPGA design, we can choose more than
one protocol, and implement more than one controller on
the FPGA. This would give designers a choice. However, for
the current paper, a C-element based two phase protocol is
utilized. This was primarily chosen as it would be sufficient to
implement the MIPS processor. A commercial implementation
of this FPGA may require a wider selection of controllers.

C. Control Block

Since relative timing constraints order events on a circuit,
the inclusion of PDEs can simplify the implementation of
these constraints. Consider constraints similar to that in Eqn. 3;
these constraints order the arrival of data at registers relative to
the clock signal at the registers. Delays are usually employed
in the handshake signals to ensure that the registers are not
clocked/opened too early. This is done by matching the delay
of the data path to the delay on the request signal. This is

Fig. 8: FPGA test fabric

shown in Fig. 2. Delays are added on the req signals to match
the combinational logic. This ensures that the relative timing
constraint shown in Eqn. 3 is satisfied.

The PDEs are incorporated within a “controller block” that
contains the controller and a PDE. This is shown in Fig. 7.
The rr output of the controller goes through a PDE before
it reaches the next controller. There are other easy methods
of delaying signals on an FPGA. The routing structure can
be used to create delay, and the LUTs can be programmed
as delay buffers. In our approach, these methods are used to
create coarse delays and the the PDEs are used to fine tune the
delays. The design for this paper utilizes rudimentary MUX
based PDEs with buffer chains to create delays. Custom PDEs
can be used to reduce the area and power consumed [13].

D. Pulse Generator

This FPGA utilizes 2-phase protocols. This implies that at
every transition on the request line, the data being propagated
from one stage to another is valid. Hence data must be latched
at these transitions. Therefore, the DFFs utilized in the logic
blocks must register new data at both positive and negative
edges. This is implemented here by incorporating a pulse
generator that creates a pulse for every transition on its input.

E. Incorporating the Controller block and Pulse Generator

Fig. 5 shows the incorporation of the controller block and
a pulse generator into the cluster (in dashed lines). Asyn-
chronous designs use far more regular logic structures for data
path logic than controllers. Hence the FPGA incorporates only
sporadic instances of these controllers. A comparison with
DSP slices is insightful. There are FPGAs with higher den-
sities of DSP slices, and some with lower. Similarly, FPGAs
can be built with varying number of specialized asynchronous
blocks.

For the current design, each cluster is given only one
controller block. The controller block is interfaced with not
only the global interconnect, but also the local interconnect
of a CLB. This is done to allow the IOs of the controller
slice to enter and exit logic elements too, while also cre-
ating fast and efficient channels for controller to controller
handshaking through the global interconnects. Similarly, one
pulse generator per cluster is also interfaced to the global
interconnect. Both the global and local interconnects are
modified to incorporate routing capabilities for the additional
signals.

TABLE I: Area (in µm2) comparison between synchronous
and multi-style FPGA

Design block Synchronous FPGA Designed FPGA % penalty

Interconnect 79869.90 80508.85 0.8%
Logic elements 59019.84 59888.16 1.47%

Total 138889.74 140598.50 1.23%

F. Implementation

The FPGA is designed on the IBM 65 nm node using
the Artisan standard cell library. Each of the building blocks,
(Slices, local interconnect, global interconnect, controller slice
and pulse generator) of the FPGA is independently designed,
synthesized and placed and routed. The post layout blocks are
then utilized to implement the FPGA. Placement constraints
are used to create regular spacing between the blocks on the
FPGA. Two versions of the FPGA are designed, one that is
purely synchronous, and one that includes the asynchronous
circuit additions, shown in dotted lines in Fig. 5. The global
interconnects are also expanded to include additional routing
structures for the asynchronous controller block. The config-
uration memory that stores the bitstream for the FPGA is
emulated.

An area penalty is borne for the asynchronous version of the
FPGA due to the fact that additional circuitry is added. The
logic elements have a penalty due to the addition of controller
blocks and pulse generators, whereas the interconnects have
additional circuitry for routing the asynchronous communi-
cation signals. Table I shows the area penalty of the logic
resources and the interconnects.

The FPGA design reported in this paper has six clusters
connected as shown in Fig. 8. Furthermore, global IOs are
also included into the design. This creates an effective fabric
to test the benefits of the designed FPGA.

VII. IMPLEMENTING A MIPS PROCESSOR

An 8-bit MIPS processor based on the ISA provided in
[14] is implemented to test the FPGA. The design utilizes
a 5-stage structure. This MIPS architecture is designed to
execute one instruction at a time. To accommodate this, a
Johnson counter is used to create a clock-enable (ce) signal
for each stage. Beginning from the first stage, the stages are
sequentially enabled. This avoids any needless transitions that
may incur additional power. The external RAM arrays that
implement instruction memory and data memory, along with
the internal MIPS register file, are simulated. The registers
associated with each stage, the ALU and all other associated
logic are implemented on the FPGA. The external memory
registers are implemented with a delay of a single logic block.
The Xilinx tool chain is used to synthesize the design, but the
design is manually placed and routed onto the FPGA.

Two versions of the MIPS processor are built, one clocked
and one asynchronous. The synchronous version utilizes the
clock gating mechanism and a global clock. The asynchronous
version replaces the global clock with handshake controllers
and pulse generators. As asynchronous circuits only clock
registers when data is valid, so there is no need for any

clock gating. Hence the clock gating that is utilized in the
synchronous MIPS is not used in the asynchronous design.

The minimum delays on the request line from one controller
to another are designed to match the maximum delay on the
corresponding data path in order to satisfy Eqn. 3. This is done
by utilizing both the PDEs and free LUTs as delay elements.

VIII. EVALUATING THE FPGAS

A. Measured Metrics

For each of the following combinations of FPGA and design
styles, power and performance was measured.

• SonS The synchronous version of the MIPS implemented
on the synchronous FPGA.

• SonM The synchronous version of the MIPS implemented
on this multi-style and multi-frequency FPGA.

• AonM The asynchronous version of the MIPS on this
multi-style and multi-frequency FPGA.

The synchronous FPGA and the multi-style FPGA closely
resemble each other. This allows us to compare the multi-style
FPGA against a baseline synchronous FPGA. Comparison
between SonS and AonM will gauging benefits gained by
creating asynchronous designs, while comparison between
SonS and SonM will identify penalties associated with the
synchronous designs on the multi-style and multi-frequency
FPGA.

B. Results and Analysis

The placed and routed designs on the two FPGAs were
tested. Performance and power numbers are generated from
vector based simulation using PrimeTime using post-layout
back annotation from the sdf file for delay, and parasitic
extracted values from a spef file. The MIPS is tested using
a random instruction testbench. It is important to note that
not only are the two FPGAs made to closely correspond to
each other, the implemented synchronous and asynchronous
MIPS utilize the same logic configuration, placement and
interconnect routing in the data paths. This allows us to
faithfully compare the FPGAs and designs without bias.

Table II details the results. The results of the synchronous
MIPS implemented on the synchronous FPGA (SonS) is
considered as the baseline for all comparisons. The power
numbers are split into three parts: power consumed by the
interconnect, the logic blocks, and the clock tree network.
In the asynchronous MIPS implemented on the multi-style
FPGA (AonM), the clock tree power is replaced by the power
incurred by the control path of the asynchronous circuit.
The following summarize key observations from the obtained
results:

• The multi-style FPGA is capable of implementing syn-
chronous designs with no speed penalty. This is due to
no change in any of the logic structures. A minor power
penalty of 2% is incurred due to the presence of additional
circuit components and the need for additional routing
capabilities.

• The asynchronous MIPS on the multi-style FPGA oper-
ates at much lower power. While the interconnect power

TABLE II: Power-performance for MIPS
Implementation Slice Interconnect Clock/control path Logic block Total Instruction Energy per Energy

style Utilization power (mW) power (mW) power (mW) power (mW) frequency (MHz) instruction (pJ) benefit

SonS 90% 0.187 0.260 0.576 1.02 78.1 13.1 baseline
SonM 90% 0.191 0.269 0.576 1.04 78.1 13.1 0.98×
AonM 83% 0.214 0.005 0.231 0.45 133.3 3.38 3.88×

goes up due to additional signals flowing through it,
this is more than compensated by the enormous saving
in not using the global clock tree. The controllers and
the pulse generator incur a fraction of the power of the
global clock tree. Furthermore, the logic block power
is also reduced. This is again primarily attributed to
the perfect clock gating of the asynchronous design. In
the synchronous design, the clock is being constantly
propagated to the logic blocks, and each of the logic
blocks contains circuitry for clock gating. This circuitry
is constantly active, even though each stage operates only
once every five cycles. The asynchronous design on the
other hand clocks a logic block only when data is valid
on its inputs.

• The logic block resources utilized by the asynchronous
MIPS is lesser as the the Johnson counter based clock
gating circuit is not used. This also contributes to the
power reduction. The asynchronous design employs three
logic blocks for delays.

• The asynchronous design on the designed FPGA is faster
by 1.7×. The increase in speed is due to the fact that each
pipeline stage can operate at its own optimal speed. There
is no need to slow down a stage to match the critical path
of another stage. Hence an instruction can flow through
the entire system faster.

Overall, the asynchronous design on the designed multi-
style and multi-frequency FPGA provides an energy per in-
struction benefit of 3.88× when compared to its fully syn-
chronous counterpart. Furthermore, the new FPGA is shown to
be capable of implementing synchronous designs with minimal
penalty.

IX. CONCLUSION

The paper presents an FPGA architecture that uses a tra-
ditional synchronous FPGA as a starting point and makes
alterations making the FPGA capable of implementing relative
timing based asynchronous circuits. Hard-coded asynchronous
controllers are implemented on the asynchronous fabric, in
lieu of implementing LUT based asynchronous controllers.
Pulse generators are added to the FPGA to utilize 2-phase
asynchronous protocols.

Synchronous and multi-style versions of FPGAs are
designed on the 65 nm node, and clocked and asynchronous
8-bit MIPS processors are implemented. The clocked design
is placed and routed on the traditional FPGA, and the clocked
and asynchronous version are implemented on the multi-style
FPGA. The designs are compared for area, power, and per-
formance. The asynchronous design on the multi-style FPGA
provided a 3.8× reduction in energy per instruction and a 1.7×
improvement in speed. The multi-style FPGA implements the

synchronous design with a 2% energy per instruction penalty
and no performance penalty.

The presented work makes a strong case for the benefits
of asynchronous designs on programmable fabrics as well as
multi-style and multi-frequency FPGA architectures. Relative
timing asynchronous designs also provide significantly lower
hurdles to adoption as traditional synchronous EDA tools can
be used to implement asynchronous designs.

X. ACKNOWLEDGMENTS

This material is based on work supported by the National
Science Foundation under Grant Number 1111533.

REFERENCES

[1] K. S. Stevens, S. Rotem, R. Ginosar, P. Beerel, C. J. Myers, K. Y.
Yun, R. Kol, C. Dike, and M. Roncken, “An Asynchronous Instruction
Length Decoder,” IEEE Journal of Solid State Circuits, vol. 36, no. 2,
pp. 217–228, Feb. 2001.

[2] W. Lee, V. S. Vij, A. R. Thatcher, and K. S. Stevens, “Design of Low
Energy, High Performance Synchronous and Asynchronous 64-Point
FFT,” in Design, Automation and Test in Europe (DATE). IEEE, Mar
2013, pp. 242–247.

[3] D. L. Oliveira, S. S. Sato, O. Saotome, and R. T. de Carvalho, “Hazard-
Free Implementation of the Extended Burst-Mode Asynchronous Con-
trollers in Look-Up Table based FPGA,” in Southern Conference on
Programmable Logic, March 2008, pp. 143–148.

[4] H. Duan, D. Huang, Y. Huang, Y. Zhou, and J. Shi, “A Time Syn-
chronization Mechanism Based on Software Defined Radio of General-
purpose Processor,” in Communications and Networking in China (CHI-
NACOM), 2012 7th International ICST Conference on, Aug 2012, pp.
772–777.

[5] V. Vij, R. Gudla, and K. Stevens, “Interfacing Synchronous and Asyn-
chronous Domains for Open Core Protocol,” in VLSI Design and
2014 13th International Conference on Embedded Systems, 2014 27th
International Conference on, 2014, pp. 282–287.

[6] K. Sun, L. Ping, J. Wang, Z. Liu, and X. Pan, “Design of a Re-
configurable Cryptographic Engine,” in Advances in Computer Systems
Architecture, ser. Lecture Notes in Computer Science, C. Jesshope and
C. Egan, Eds. Springer Berlin Heidelberg, 2006, vol. 4186, pp. 452–
458.

[7] J. Teifel and R. Manohar, “Highly Pipelined Asynchronous FPGAs,” in
Proceedings of the 2004 ACM/SIGDA 12th International Symposium on
Field Programmable Gate Arrays, ser. FPGA ’04, 2004, pp. 133–142.

[8] N. Huot, H. Dubreuil, L. Fesquet, and M. Renaudin, “FPGA Architecture
for Multi-Style Asynchronous Logic.” in DATE. IEEE Computer
Society, 2005, pp. 32–33.

[9] D. Shang, F. Xia, and A. Yakovlev, “Asynchronous FPGA Architecture
with Distributed Control,” in Circuits and Systems (ISCAS), Proceedings
of 2010 IEEE International Symposium on, May 2010, pp. 1436–1439.

[10] H. Solutions, TiDE Manual, 2007.
[11] K. S. Stevens, Y. Xu, and V. Vij, “Characterization of Asynchronous

Templates for Integration into Clocked CAD Flows,” in 15th Interna-
tional Symposium on Asynchronous Circuits and Systems. IEEE, May
2009, pp. 151–161.

[12] J. Sparsø and S. Furber, Principles of Asynchronous Circuit Design – A
Systems Perspective. Kluwer Academic Publishers, 2001.

[13] S. Kobenge and H. Yang, “A Power Efficient Digitally Programmable
Delay Element for Low Power VLSI Applications,” in Quality Electronic
Design, 2009. ASQED 2009. 1st Asia Symposium on, July 2009, pp. 83–
87.

[14] C. Ortega-Sanchez, “MiniMIPS: An 8-Bit MIPS in an FPGA for Edu-
cational Purposes,” in 2011 International Conference on Reconfigurable
Computing and FPGAs, Nov 2011, pp. 152–157.

