
64

Timing Path-Driven Cycle Cutting for Sequential Controllers

WILLIAM LEE, University of Utah
VIKAS S. VIJ, Intel Corp.
KENNETH S. STEVENS, University of Utah

Power and performance optimization of integrated circuits is performed by timing-driven algorithms that
operate on directed acyclic graphs. Sequential circuits and circuits with topological feedback contain cycles.
Cyclic circuits must be represented as directed acyclic graphs to be optimized and evaluated using static
timing analysis. Algorithms in commercial electronic design automation tools generate the required acyclic
graphs by cutting cycles without considering timing paths. This work reports on a method for generating
directed acyclic circuit graphs that do not cut the specified timing paths. The algorithm is applied to over
125 benchmark designs and asynchronous handshake controllers. The runtime is less than 1 second, even
for even the largest published controllers. Circuit timing graphs generated using this method retain the
necessary timing paths, which enables circuit validation and optimization employing the commercial tools.
Additional benefits show these designs are on an average a third in size, operate 33.3% faster, and consume
one-fourth the energy.

CCS Concepts: � Hardware → Application specific integrated circuits

Additional Key Words and Phrases: Asynchronous, design automation

ACM Reference Format:
William Lee, Vikas S. Vij, and Kenneth S. Stevens. 2016. Timing path-driven cycle cutting for sequential
controllers. ACM Trans. Des. Autom. Electron. Syst. 21, 4, Article 64 (June 2016), 25 pages.
DOI: http://dx.doi.org/10.1145/2893473

1. INTRODUCTION
Asynchronous architectures and design methodologies are an excellent means of gen-
erating fast, low-power circuit topologies. Handshake protocols and their associated
controllers are used to implement the timing and sequencing of the design. The com-
plexity of developing a complex asynchronous design can be simplified due to the
modularity and composability of these controllers.

All asynchronous circuits have cycles. Cycles in these graphs come from three pri-
mary sources. First, the handshake controllers themselves are often sequential con-
trollers. The state memories in these sequential controllers are commonly implemented
using combinational gates with feedback. Second, the basic nature of asynchronous
handshake protocols produces cyclical feedback loops; the acknowledge signal creates
a circuit cycle that responds to the request. This cyclical ring of request acknowledge
logic gates produces an oscillator that dictates the operational frequency of each asyn-
chronous pipeline stage. Third, cycles are created in system-level architectures where
data is fed back to previous pipeline stages.

Many asynchronous design approaches leverage commercial electronic design au-
tomation (EDA) tools to optimize and validate power, performance, and timing correct-
ness, and to perform timing-driven optimizations for synthesis and place and route
[Ligthart et al. 2000; Kondratyev and Lwin 2002; Taubin et al. 2007; Smirnov 2009;

This material is based upon work supported by the National Science Foundation under Grant Number
1218012 and the Semiconductor Research Corporation under Grant Number 2235.001.
Authors’ addresses: W. Lee, V. S. Vij, and K. S. Stevens, 50S Central Campus Drive, MEB Room 2110, Salt
Lake City, UT 84112; emails: william.lee@utah.edu, vikasvij@gmail.com, kstevens@ece.utah.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 1084-4309/2016/06-ART64 $15.00
DOI: http://dx.doi.org/10.1145/2893473

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 64, Pub. date: June 2016.

http://dx.doi.org/10.1145/2893473
http://dx.doi.org/10.1145/2893473

64:2 W. Lee et al.

Stevens et al. 2009; Beerel et al. 2011]. The timing-driven algorithms in commercial
EDA tools employ fast static timing analysis (STA) algorithms, which require cir-
cuit models to be represented as directed acyclic graphs (DAGs). Unfortunately, the
sequential nature of asynchronous controllers and design approaches results in nu-
merous topological feedback paths, presenting a fundamental challenge in employing
commercial EDA tools.

Sequential asynchronous circuits must be modeled with acyclic timing graphs to
employ commercial EDA tools. This can be achieved with two fundamental elements
that are directly supported by the commercial EDA flows in the industry standard
Synopsys design constraints (sdc) format. First, circuit timing can be defined with a
set of path-based timing constraints and their delay targets. The paths are identified
by timing endpoints. Second, a set of timing cuts can be defined that model the native
cyclic timing graph of the design as an acyclic graph without cutting the path-based
timing constraints. Timing cuts can also be employed to remove false paths.

Following are three key observations for supporting cyclical circuits in the DAG-
based commercial tools with the above two constraint sets.

(1) If a cyclic circuit is given directly to a commercial EDA tool, a DAG representation
will automatically be created without respect to timing paths. If a timing path
is cut, it will not be employed in the timing-driven algorithms of the commercial
EDA tools. This is true for both optimization and validation. The cut timing paths
are considered to be vacuously true and are not reported as failures because they
cannot be evaluated.

(2) A DAG representation of a sequential circuit cannot directly model all of the nec-
essary timing of a sequential circuit. For instance, a handshake cycle in an asyn-
chronous design can be implemented with a controllable ring oscillator that has a
target frequency based on the function of the pipeline stage. A DAG-based model
will cut the ring, and thus, one cannot give a frequency-based delay target to op-
timize the design or validate its performance. Thus, sequential timing constraints
of an asynchronous design may require two or more timing runs to validate full
cyclical timing paths.

(3) All design approaches that map sequential asynchronous designs to commercial
EDA tools will require an additional methodology for cycle cutting, timing valida-
tion, and performance verification. The methodology and CAD tool reported here for
creating DAGs are developed in such a way that it should be applicable to nearly
all high-level methodologies that address system-level timing for asynchronous
designs.

Providing a DAG that supports a timing model of a sequential circuit to commercial
EDA tools results in several benefits. In some design approaches, such as bundled data
design, a nonfunctional design results if timing constraints do not hold. This can occur
if timing constraints are cut in creating the DAG. Likewise, commercial EDA cannot be
employed to evaluate circuit timing unless the graph is represented as a DAG and the
timing paths used for evaluation are not cut. Providing a DAG with associated timing
constraints enables the commercial EDA tools to better optimize designs, resulting
in significant improvement in the power, area, and performance of such designs. An
example across a complete family of controllers demonstrates that, on average, the
circuits are a third in size, consume one-fourth the energy, and operate 33% faster.

The primary contributions of this article are the following. The fundamental problem
is addressed of creating a DAG timing model for sequential controllers and systems
that does not cut the set of timing paths used for design synthesis, optimization, and
validation. This is the first published work to do so. Path-based timing constraints
are identified by timing endpoints, just as is done using sdc constraints in the com-
mercial EDA tools. This work also takes as input a path defined by timing endpoints.
This simplifies this work’s translation of the timing directives into commercial EDA
tool constraints. An algorithm is implemented that creates cycle cuts that preserve
the specified path-based timing constraints. This work also introduces the concept of
identifying paths that must be cut in a design in order to remove cycles formed by

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 64, Pub. date: June 2016.

Timing Path-Driven Cycle Cutting for Sequential Controllers 64:3

netlist connectivity external to the controller, along with its associated algorithm. This
algorithm is also used to remove false paths in the design. The tool uses vectorless
graph traversal algorithms similar to commercial static timing analysis approaches.
It assumes that the design has been technology mapped to specific gate implementa-
tions, and inputs the Verilog used in the design. The CAD algorithm is intended to be
applied to single asynchronous sequential controllers, making them the focal point for
timing paths and system-level cycle cuts. The combination of vectorless algorithms and
controller-based focus makes this CAD tool applicable to most, if not all, asynchronous
design methodologies and styles. The tool writes out sdc constraints that are directly
supported by the commercial EDA tools. The tool reports coverage and the quality of
the results of the cycle-cutting algorithm.

A timed burst-mode protocol and its circuit realization are employed as an example
for this article. The CAD algorithms in this article are applied to several examples
and compared against a commercial EDA tool. Results are reported on applying the
algorithm to 131 separate asynchronous sequential control circuits and to eight bench-
mark designs. The comparison of these designs are performed with respect to forward
latency, backward latency, cycle time, area, power, and energy per token. The results
are also analyzed for quality by ensuring that the cycle cuts produce a DAG, false
paths have all been cut, and the number of gates that have no timing path passing
through them are reported. Having at least one timing path passing through each gate
in a design results in the gates being power and performance optimized based on the
timing path constraints.

2. RELATED WORK
Combinational cycles are generally associated with sequential circuit designs like asyn-
chronous circuits. Cycles can also be present in combinational logic, and some cyclic
combinational circuits have been shown to substantially reduce area [Riedel and Bruck
2003]. Since algorithms in EDA tools require acyclic timing graphs, the problem of find-
ing cycles and analyzing the combinational nature of circuits with cycles has been in-
vestigated [Malik 1994]. Algorithms that generate an equivalent acyclic combinational
circuit that reproduces all the combinational behavior of the original cyclic circuit have
been developed [Shiple et al. 1996; Edwards 2003; Neiroukh et al. 2008]. These ap-
proaches cannot be applied to sequential circuits because they change the sequential
behavior when state-holding feedback of a circuit are removed. In order to support
general sequential circuits built as combinational logic with feedback, the cyclic circuit
must be represented as a DAG without modifying its structure or behavior.

The work that is most closely related applies cycle cutting to the testing of digital
circuits with feedback [Filippovich 1973]. This is formulated as a covering problem
where the set of paths form the cycles, the solution is to find the minimal number of
paths that cut all the cycles. The drawback of this approach is similar to the algorithms
in current commercial CAD tools that also cut cycles. A set of cycle cuts, even if they
are minimal, will create a DAG, but timing-driven optimizations cannot be performed
because timing paths are cut.

A core function of the algorithms in this work is to identify cycles and paths in a circuit
graph. Reconvergent paths and circuit cycles are particularly problematic. Indeed, it
has been shown that a circuit can have an exponential number of paths based on the
number of gates. This path explosion has proven to be particularly challenging for the
delay fault testing community. While path explosion is problematic in some domains, it
has not been demonstrated to be a problem in this application. The sequential modules
being evaluated have normally been designed to minimize hazards that can often be
a byproduct of reconvergent paths. Our algorithms are applied to single sequential
controllers that contain fewer than 100 gates. We have applied our tool to the largest
published sequential controller designs that tax the limits of what can be synthesized.
For all but one circuit, the runtimes are less than 1 second in the exhaustive search
mode. Pipeline controllers used in nearly all commercial and academic design are more
closely represented by the 131 controller set used in our example set.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 64, Pub. date: June 2016.

64:4 W. Lee et al.

Fig. 1. Clocked design. Frequency and data path delay of first pipeline stage is constrained by FFi/clk↑ j �→
FFi+1/d + margin ≺ FFi+1/clk↑ j+1 Similar asynchronous bundled data pipeline shown in Figure 2.

Fig. 2. Timed (bundled data) handshake design. Each reqi ↑ handshake on LCi indicates new data is
presented to pin d of Li . Delay sized by relative timing constraint reqi ↑ �→ Li+1/d + margin ≺ Li+1/clk↑.

3. BACKGROUND
3.1. Timed Asynchronous Design in Commercial EDA Tools
Delay-insensitive (DI) asynchronous design approaches ensure design correctness re-
gardless of circuit delay. Thus, circuit timing for DI designs largely becomes a power,
area, and performance tradeoff. However, in timed asynchronous design methodolo-
gies, circuit timing is critical to design correctness. Bundled data asynchronous design
is one such approach. Traditional clocked combinational data path logic is employed
much like in clocked design (as in Figure 1), and the handshake controllers are used to
match the data path delays and sequence pipeline stages that support stalling.

The handshake controllers in a bundled data asynchronous design (the LC blocks
in Figure 2) have three tasks. First, they perform flow control between communication
channels. Second, they are used as the local timing reference to determine the operation
frequency of the design. Each handshake channel implements a ring oscillator with
an odd number of signal inversions that results in a particular oscillation frequency. In
the absence of a stall, the delays through the controllers and communication channels
determine the native cycle time of that pipeline stage. Third, these controllers produce
the clock signal that drives the local latches and/or flip-flops in the data path. Delay
differences between the clock drivers of adjacent handshake controllers result in wasted
performance.

Delays through bundled data asynchronous handshake controllers comprise two of
their three basic tasks. Unlike DI design, many of these bundled data timing con-
straints must hold for design correctness. For example, nearly all burst-mode con-
trollers have internal timing constraints that must hold for correctness because the
state variables can change concurrently with the outputs. Timing constraints internal
to a controller are required to ensure correct circuit operation. Therefore, having a
DAG graph representation where timing paths are not cut is a requirement for circuit
optimization and validation for some asynchronous design styles that use commercial
EDA tools.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 64, Pub. date: June 2016.

Timing Path-Driven Cycle Cutting for Sequential Controllers 64:5

Fig. 3. LC circuit implementation.

Fig. 4. Petri net specification of linear control.

Fig. 5. CCS specification of LC block.

We use the most challenging approach as the primary example in this paper by
employing the burst-mode controller of Figure 3 in a bundled data pipeline. This is
a four-phase return to zero handshake protocol with data valid on the rising edge
of the request (lr) signal [Cortadella et al. 2002]. Figures 4 and 5 show the Petri
net and CCS specifications of the protocol [Milner 1989; Chu 1987]. This is a timed
protocol (the dashed arcs in Figure 4 constrain inputs), implementing a burst-mode
specification [Coates et al. 1993]. This protocol is chosen as an example because it
requires protocol-level burst-mode timing constraints between LC modules. The circuit
in Figure 3 implements this protocol and is mapped to static gates from the Artisan
65nm library.

3.2. Circuit Representation
Timing analysis used in commercial EDA tools employ vectorless static timing analysis
(STA) algorithms. This is accomplished by modeling the circuit as a directed acyclic
graph, which largely ignores the functional behavior of the circuit. The algorithms

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 64, Pub. date: June 2016.

64:6 W. Lee et al.

developed in this article also use only the structural netlist, identifying paths using
graph traversal algorithms.

The circuit is represented as a directed graph G = (V, E), where each gate, primary
input, and primary output vi ∈ V is a vertex (node) of the graph, and edges ei =
(vx, vy) ∈ E define connectivity between primary input and gate output vertices to
primary outputs and gate input vertices of the design. A simple path si = [v j, . . . , vk] ∈
S is a sequence of vertices that are connected in G, where repetitions of vertices are
not allowed. A cycle ci = [v j, . . . , vk, v j] ∈ C is a sequence of vertices that are connected
in G, where the first and last vertex are the same, but no other vertex in the sequence
is repeated. A timing endpoint ti = (vx, vy) ∈ T , vx �= vy is a pair of vertices. In this
article, we represent timing endpoints ti by the pair of nodes (vx, vy) or the relationship
(vx→vy).

Each primitive gate in a cell library used to build a design, such as an inverter
or 2-input NAND gate, will have one or more input and one or more output. Each
input for gate vy will be associated with one or more edge (vx, vy) ∈ E. Each output for
gate vx will be associated to one or more edge (vx, vy) ∈ E. The path to edge function
P2E(G, S ∨ C) ⇒ E translates a vertex-defined path (or cycle) set into a set of edges
that are used to traverse the path (cycle) set.

In the circuit of Figure 3, the two simple paths [lr, lc3, lc4, rr] and [lr, lc1, lc2,
lc5, lc3, lc4, rr] connect the timing endpoint pair (lr→rr). This circuit contains
several cycles, such as [lc1, lc2, lc1]. The set of edges covered by this cycle are
P2E(G, {[lc1, lc2, lc1]}) = {(lc1, lc2), (lc2, lc1)}.

Two data structures � and � are sets of timing endpoint pairs. Set � contains timing
endpoints that are used to define the true timing paths in the sequential circuit that
need to be retained uncut. Set � holds timing endpoints that are used for cutting false
paths, as well as local timing endpoints that will remove cycles formed by connectivity
outside of the controller graph G. Mapping functions GC P(G, T) ⇒ S and P(G, T) ⇒ S
are defined, which map from a set of timing endpoints to a set of paths. Function
GC P() creates the set of greatest common paths between the timing endpoint set (see
Section 3.3). Function P() creates the complete set of simple paths between the timing
endpoints in graph G.

3.3. Greatest Common Path between Timing Endpoints
A GCP is a minimal structural path between a pair of timing endpoints. If the node
sequence in a shorter path is contained in a longer path between the same endpoints,
then the longer path is not a GCP. Let G represent the circuit of Figure 3. Graph G has
two simple paths between timing endpoints lr and rr that do not contain cycles. There-
fore, by setting � to {(lr, rr)},P(G,�) = {[lr, lc1, lc2, lc5, lc3, lc4, rr], [lr, lc3, lc4, rr]}.
The greatest common path is calculated as GCP(G,�) = {[lr, lc3, lc4, rr]}. The longer
path is not a GCP because it is not minimal; it contains the shorter path. Note that
paths that contain cycles will not be GCPs.

3.4. Path Identification from Timing Endpoints
Our specification approach does not identify or enumerate individual paths through a
circuit; rather we employ timing endpoints to correctly identify paths that should not
be cut (true paths) as well as false paths and paths that must be cut to remove cycles
external to the controller. This approach is chosen because it is more compatible with
the sdc path timing specifications set_max_delay and set_min_delay that use timing
endpoints. It also allows multiple true or false paths to be identified with a single pair
of timing endpoints.

3.5. Cutting the Timing Graph
The liberty timing file that is used by the commercial EDA tools defines the delay from
inputs to outputs of each primitive gate. For example, the NOR gate in Figure 3 has a
timing path from pin Ato pin Y and from pin B to pin Y . These liberty gate-level timing

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 64, Pub. date: June 2016.

Timing Path-Driven Cycle Cutting for Sequential Controllers 64:7

paths can be cut with the sdc command set_disable_timing. This is the mechanism
we employ for cutting timing paths and cycles in a circuit, and the tool outputs its
results in the sdc format.

Assume we want to cut the Figure 3 cycle [lc3, lc4, lc3]. This can be accomplished by
cutting either of the two edges P2E(G, {[lc3, lc4, lc3]}) = {(lc3, lc4), (lc4, lc3)}. Removing
edge (lc3, lc4) is implemented by disabling the liberty timing edge (A, Y) in gate lc4.
We write this out as the sdc constraint set_disable_timing -from A -to Y for the lc4
gate in the design. Using this mechanism, our tool can create a timing graph DAG that
is supported by commercial EDA.

Note that edge (lc4, lc3) is the preferable arc to cut in the above example to remove
the cycle from the timing graph. If edge (lc3, lc4) is cut, the circuit has no timing path
from the primary inputs lr and ra to the primary output rr.

3.6. True and False Path Specification
3.6.1. True Path Specification. Many structural paths in a sequential design will be false

paths that are not behaviorally sensitizable. True paths are the result of the logical
sequential behavior of the circuit and how it responds to changes in the primary inputs
and internal state. Since both STA and the algorithms employed in this tool are struc-
tural and ignore circuit behavior, a mechanism must be employed to specify the true
and false paths in a design. True paths must be preserved, and false paths in a circuit
must be cut. Otherwise, timing results will be incorrect and the quality of the timing
optimizations performed by the commercial EDA tools will be significantly degraded.
The timing endpoint sets � and � from Section 3.2 are used to identify the the true
and false paths through these sequential circuits.

True timing paths are often directly identified as GCPs. As demonstrated in Sec-
tion 3.3, there are two simple paths between the timing endpoints (lr→rr) for the
circuit in Figure 3. However, only the shorter of the two paths, [lr, lc3, lc4, rr], is a GCP.
The GCP is also the true behavioral path through the circuit. Thus, placing the timing
endpoints (lr, rr) into � correctly identifies the true path between lr and rr. The longer
path is false because it cannot behaviorally occur in this design. Lowering rr is only
sensitized by ra. For rr to rise, ra and y must be asserted and lr must rise. For the
longer path to occur, y would need to rise, which only occurs when la falls.

A GCP can identify multiple paths. Let G model the circuit of Figure 3, and set �
to {(lr, lc5)}. Then GC P(G,�) = {[lr, lc1, lc2, lc5], [lr, lc3, lc4, lc5]}. In this case, both of
these paths are true paths through the circuit.

In some designs, a single GCP does not identify the true timing path(s) between
the desired timing endpoints. In such cases, a set of timing endpoints must be
used to identify the true path(s), where the transitive closure of the GCPs correctly
covers the true path(s) and no other paths. For example, let G model the hand-
shake controller of Figure 6, and set � to {(lr, rr)}. The GC P(G,�) = {[lr, 3, 4, 8, rr],
[lr, 0, 2, 4, 8, rr],[lr, 5, 6, 2, 4, 8, rr]}, but the last two paths are false. The timing end-
points (lr→rr), therefore, incorrectly identifies all three GCP paths as true. By selecting
3 as an intermediate timing endpoint, a set of two timing endpoints � = {(lr, 3), (3, rr)}
now define the true path because GCP(G,�) = {[lr, 3], [3, 4, 8, rr]}. Each of these end-
points identifies a single GCP path, whose transitive closure is the correct true path
between lr and rr. (One can apply transitive closure on all true paths to reduce the
number of paths, since each path will not be cut. Therefore, {[lr, 3], [3, 4, 8, rr]} = {[lr, 3,
4, 8, rr]}.

3.6.2. False Path Identification. Simply identifying true paths through a design is not
sufficient to ensure correct timing evaluation of the design. The false paths must also
be identified and then cut. For example, let G model the circuit in Figure 3, and set � to
{(lr, rr)}. The GCP() function identifies the shorter of the two paths as true. This path
will not be cut in our algorithm. Assume that a DAG is formed to represent this circuit,
and the longer simple path [lr, lc1, lc2, lc5, lc3, lc4, rr] also remains uncut. Evaluating
the maximum delay between timing endpoints lr and rr of this circuit using static
timing analysis will return the delay of the longer false path, rather than the true

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 64, Pub. date: June 2016.

64:8 W. Lee et al.

Fig. 6. Handshake Controller L222 ◦ R2242 synthesized with Petrify.

path [lr, lc3, lc4, rr], resulting in an incorrect delay value. Thus, we must identify as
false all simple paths between true timing endpoints that are not true paths. This is
accomplished by placing the timing endpoints of the complete path into set �.

Only the first and last timing endpoints of the transitive closure of timing endpoint
pairs in � will be included in � when a true path cannot be represented as a single GCP
in �. For the circuit in Figure 6, two timing endpoint pairs are required to identify that
path: � = {(lr, 3), (3, rr)}. In this case, � is set to {(lr, rr)}, which identifies all false paths
between lr and rr, and P(G,�) returns the path set {[lr, 3, 4, 8, rr], [lr, 0, 2, 4, 8, rr],
[lr, 0, 2, 3, 4, 8, rr],[lr, 5, 6, 2, 4, 8, rr], [lr, 5, 6, 3, 4, 8, rr], [lr, 5, 6, 2, 3, 4, 8, rr]}.

3.6.3. False Path Specification. In our algorithm, true paths are specified by the GCPs
of the timing endpoint pairs in �. False paths are identified by all paths in �. Let G
model the Figure 3 circuit, set � to {(lr, rr)}, and � to {(lr, rr)}. The true path is specified
as GC P(G,�) = {[lr, lc3, lc4, rr]}. False paths are identified as all paths between the
timing endpoints, so P(G,�) = {[lr, lc1, lc2, lc5, lc3, lc4, rr], [lr, lc3, lc4, rr]} are candi-
date false paths. Since the true path is also a valid path between the timing endpoints,
we perform set subtraction to specify the correct set of false paths that must be cut:
P(G,�) − GC P(G,�) = {[lr, lc1, lc2, lc5, lc3, lc4, rr]}.

This condition also holds for paths constructed from the transitive closure of GCP
constraints. Let G model the Figure 6 circuit, set � to {(lr, 3), (3, rr)}, and � to {(lr, rr)}.
Now GC P(G,�) = {[lr, 3], [3, 4, 8, rr]}, which can be simplified to {[lr, 3, 4, 8, rr] through
transitive closure, and P(G,�) = {[lr, 0, 2, 4, 8, rr], [lr, 0, 2, 3, 4, 8, rr], [lr, 5, 6, 2, 4,
8, rr], [lr, 5, 6, 3, 4, 8, rr], [lr, 5, 6, 2, 3, 4, 8, rr], [lr, 3, 4, 8, rr]}. The set of false paths
that must be cut are P(G,�) − GC P(G,�) = {[lr, 0, 2, 4, 8, rr], [lr, 0, 2, 3, 4, 8, rr],
[lr, 5, 6, 2, 4, 8, rr], [lr, 5, 6, 3, 4, 8, rr], [lr, 5, 6, 2, 3, 4, 8, rr]}.

3.7. Classification of Cycles and Cycle Cutting
Asynchronous bundled data design can be partitioned into two facets, as shown in
Figure 2: the combinational data path logic and a clock control network. The clock con-
trol network implements handshaking protocols with sequential controllers (LC) that
interact with upstream and downstream pipeline stages. These handshake controllers
are small design blocks normally consisting of less than 20 logic gates. Most bundled
data architectures typically use less than three or four different handshake protocols
and controllers throughout the entire design.

Therefore, if we can isolate cycle cutting to the handshake controllers, then we can
create a DAG for an entire design by performing cycle-cutting algorithms on a small

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 64, Pub. date: June 2016.

Timing Path-Driven Cycle Cutting for Sequential Controllers 64:9

Fig. 7. LC circuit with the eight local cycles highlighted. Three cycles pass through lc1, three through lc3,
and two cycles through lc6.

Fig. 8. External cycles formed from handshake channels are highlighted.

set of simple sequential designs. This can be accomplished by partitioning the three
types of cycles described in Section 1 into two partitions as follows.

(1) Local Cycles: The first class of cycles are those that are entirely contained in a
controller. These cycles are created in sequential controllers in order to implement
state holding logic. The eight cycles for our example timed controller are highlighted
in Figure 7.

(2) External Cycles: The other two cycles in an asynchronous architecture are clas-
sified as external because they are formed from interconnections outside of the
handshake controller. These are of two types. Handshake channels create cycles
for the request-acknowledge protocol. Figure 8 highlights some of these cycles such
as [LC0/rr, LC1/lr, LC1/la, LC0/ra, LC0/rr]. The third class of cycles are formed
from cycles in architecture. If the leftmost channel and rightmost channel in
Figure 8 are connected, an architectural cycle would be formed.

A point of convergence for all external cycles exists in the sequential handshake
controller. Therefore, if we can support external cycle cutting in our algorithms, we can
create a DAG for an entire asynchronous architecture regardless of its size by simply
performing cycle cutting on the small set of handshake controllers used in the design.
This must only be done once per controller, making this a very efficient operation.

The algorithms in this tool will automatically cut local cycles because they can be
identified by evaluating the circuit graph G. External cycles can only be cut if they are
identified by the user. This is performed by identifying all subsections of all external
cycles that pass through the controller as false paths. These paths are identified by be
placing the timing endpoints of the path subsections into the set �. For example, in a
linear pipeline such as that shown in Figure 8, all external cycles can be removed by
placing the timing endpoints (ra, rr) into set �. Such an approach allows a single cut
path constraint local to the pipeline controller to remove all handshake channel cycles
in a design. The location and expression of these cycles is dependent on the high-level
design methodology employed.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 64, Pub. date: June 2016.

64:10 W. Lee et al.

Three observations can be made based on cycles external to the controllers being
evaluated. First, placing a path that should be cut due to an external cycle into � does
not guarantee the path will be cut. If there exists a path between the timing endpoints
that is fully covered by GCPs in �, the path will not be fully cut. This will result in
combinational cycles that remain in the timing graph of an architecture. However, this
condition will be reported as an error by our tool.

Second, each handshake controller will have its cycle cut values generated indepen-
dently. Therefore, if multiple different controllers are used in a single design and they
employ a different handshake cut methodology, then cycles can remain in an archi-
tecture. (For instance, assume one controller cuts the handshake cycle with the (lr, la)
endpoints and another with the (ra, rr) timing endpoints. If both are used in a design,
the system can have cycles left uncut.) Thus, the application of this tool is dependent
on correctly conforming to the system-level methodology employed, and ensuring that
it is applied uniformly to the control modules.

Finally, while this method helps support different circuit and timing validation
methodologies, it remains dependent on the high-level models employed. External
cycles created by data path feedback may not be directly supported by adding a cut
path in � for all timed asynchronous circuit and timing methodologies.

4. RULES FOR TIMING PATH-DRIVEN CYCLE CUTTING
This tool will create a DAG where true paths remain uncut and false paths and external
cycles are cut when a correct set of timing paths are provided. If the set of paths are
inconsistent and a DAG cannot be generated, or external cycle paths cannot be cut, an
error is raised.

4.1. Rule Set
Paths are identified by a sets of timing endpoints. The timing paths consist of (a) a
set � of timing endpoints that identify the true paths where the paths between the
endpoints are GCPs, and (b) a set � of cut paths that cut all paths between the timing
endpoints that are not GCPs in �.

RULE 1. All timing paths that are GCPs between timing endpoints in set � are
considered true paths and must remain uncut.

RULE 2. All cycles in the controller must be cut.

RULE 3. All paths between timing endpoints in the cut path set � that are not GCPs
from set � must be cut.

If at least one structural path exists between pairs of timing endpoints ∀(vx, vy) ∈ �,
then there exists at least one GCP between each pair of timing endpoints. If all timing
paths covered by a GCP cannot be cut, then at least one timing path will be preserved
for each pair of timing endpoints. The GCP(s) defines the true timing path(s) for a pair
of timing endpoints. This rule takes precedence over the other rules.

4.2. Additional Information
4.2.1. True Path Identification. Providing the correct values for � that identify true paths

through a sequential circuit is critical to the correct DAG generation, as it will directly
impact design optimization. The method used to identify the true paths will be based
on the particular design flow. In our work, we have a formal verification engine that
automatically produces timing constraints that are required for the circuit to operate
correctly [Xu and Stevens 2009]. This engine has been extended to support identifica-
tion of true paths through the sequential circuits being verified for performance and
timing.

4.2.2. Full Design Module Optimization. Best circuit optimization occurs with timing-
driven design, as will be shown in Section 7. Ideally, every gate will have a timing path
passing through it to define the intended delay bounds. An orphan is defined as a

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 64, Pub. date: June 2016.

Timing Path-Driven Cycle Cutting for Sequential Controllers 64:11

Fig. 9. Handshake Controller L400 ◦ R0000 synthesized with Petrify.

gate that does not have a true timing path passing through it defined by Rule 1. The
optimization of handshake controllers will require multiple timing paths through the
design to minimize or eliminate orphans and to create timing paths between primary
inputs and outputs of a sequential controller.

4.2.3. Consistency and Rule Correctness. If set � consists of a single pair of timing end-
points, then rules 1–3 are necessary and sufficient to create a DAG with only true
timing paths passing through the design for optimization. Unfortunately, these rules
cannot all be guaranteed to hold when more than one pair of timing endpoints exist
in �.

If true paths cover a cycle, rule 2 will fail, permitting the cycle to remain uncut. For
example, the controller in Figure 9 contains 18 cycles, 26 cut paths, and 3 GCP paths.
The true path for timing endpoints (lr, rr) is [lr, 9, 10, 1, 2, 3, 7, 5, 6, 0, 1, 9, 10, 7, 4, rr]
(which contains a cycle), while the true path for (lr, la) is [lr, 9, 10, 1, 2, la]. Setting �
to {(lr, 10), (10, 1), (1, la), (3, 5), (5, 0), (0, 10), (10, rr)} is sufficient to represent the true
paths. However, when this is done, the algorithm reports that three cycles remain
uncut including [0, 1, 2, 3, 7, 5, 6, 0], [0, 1, 2, 3, 7, 5, 6, 0], and [1, 9, 10, 1]. This is due to
GCPs that overlap to cover all 3 cycles in the true path.

Likewise, a false path in a design may be covered by a set of GCPs. Therefore, any
uncut path between timing endpoints in � that are not true paths are reported as an
error by the tool.

4.2.4. Providing Correct Endpoint Sets. The generation of a complete and consistent set of
timing endpoint sets for � and � that has no orphans, correctly specifies all true timing
paths using GCPs, and correctly identifies all false paths, is outside of the scope of this
article. The implementation of the algorithms in this article reports on the quality of
the timing endpoint sets provided. If there is no solution that adheres to all of the rules,
then a report is generated noting the violations.

5. ALGORITHM
An algorithm that automates the process of generating cycle cuts for sequential circuit
modules is presented. It obeys the rules in Section 4.1. Four inputs are provided to this
tool: (1) A sequential circuit specified in structural Verilog that has been technology
mapped to a set of library gates, (2) a data structure L that defines the input and
output pin names and mapping for each gate in the structural Verilog library, (3) timing
endpoint set � that defines true paths, and (4) Timing endpoint set � that defines false
paths and external cycle cuts.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 64, Pub. date: June 2016.

64:12 W. Lee et al.

Fig. 10. Graph representation for LC circuit.

The structural Verilog circuit description and cell library data structure L are parsed
and stored as an adjacency list G = (V, E). Figure 10 demonstrates a graph represen-
tation of the Figure 3 circuit. The true paths are calculated by GC P(G,�) = �p, and
the false paths are calculated as P(G,�) − �p = �p. All cycles present in the circuit
module are identified using a depth-first search algorithm on G and stored in data
structure C.

A set of edges Ec that are cut candidates are generated from the paths in �p and C
as P2E(�p ∪ C) − P2E(�p) = Ec. A covering table is then created that maps paths in
�p and C to cut candidates Ec. A quality metric is defined for the final DAG solution,
with the best solution having all cycles cut, all false paths cut, with no gate orphans.
Two algorithms are now applied to determine the edges to be cut: a polynomial time
greedy heuristic and an exponential algorithm, which finds the best quality solution.

A set of cycle cut constraints in the sdc format are output as well as a list of violations
to the rules. These constraints can then be passed through the synthesis and place and
route flows to allow the circuits to be automatically power and performance optimized
by commercial EDA tools and then validated for timing correctness.

More details on certain specific steps of the algorithm are described.

5.1. Finding All the Cycles Present in the Circuit
A brute-force algorithm is implemented to find all the local cycles in a circuit. A depth-
first search is performed for each vertex vi ∈ V in the adjacency list G to find paths
that return to the vertex vi. If such a path exists, then the stack that stores the trace
is recorded as a cycle.

The LC controller in Figure 7 highlights the eight circuit cycles shown below.

Cycle 0 [lc1 lc2 lc1] Cycle 4 [lc3 lc4 lc5 lc3]
Cycle 1 [lc1 lc2 lc5 lc1] Cycle 5 [lc3 lc4 lc5 lc3]
Cycle 2 [lc1 lc2 lc5 lc1] Cycle 6 [lc5 lc6 lc5]
Cycle 3 [lc3 lc4 lc3] Cycle 7 [lc5 lc6 lc5]

Note that Cycles 1 2 have the same gate sequence because the output of gate lc2 goes
into two separate inputs of gate lc5. This can be verified from the adjacency list with
gate lc5 appearing twice as successor of gate lc2. Similarly, Cycles 4 and 5 and also
Cycles 6 and 7 have the same gate sequence but are two separate cycles. This implies
that two timing cuts may be necessary to cut a single cycle.

The fanout and fanin of paths through the pins of the gate (or through independent
gates) can result in an exponential number of paths and cycles in a design. Thus,
the complexity of finding paths and cycles is theoretically exponential based on the
number of vertices (gates) in a design. Fortunately, sequential controllers generally
have few gates (typically less than 20). Finding the paths and cycles for the circuits
under investigation result in small run times, even with fanin and fanout as observed
above.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 64, Pub. date: June 2016.

Timing Path-Driven Cycle Cutting for Sequential Controllers 64:13

5.2. True Timing Path Generation
A depth-first search is performed to generate all paths between the timing endpoints
in sets � and � specified by the user. The paths from sets of timing endpoints in set �
are then pruned to the GCPs.

A set of four timing endpoints are employed as true timed paths for the circuit of
Figure 3 and stored in �. The constraints and GCPs for � are shown here:

lr → la [lr, lc1, lc2] × 2
lr → rr [lr, lc3, lc4]
ra → la [ra, lc0, lc1, lc2]
lr → y [lr, lc1, lc2, lc5, lc6] × 4 [lr, lc3, lc4, lc5, lc6] × 2

5.3. Generating Cycle and False Path Cuts
Two algorithms have been implemented to generate cycle cuts:

—V1: This is a polynomial-time greedy approach in terms of number of cycles. The
solution is created by cutting maximum occurring edges in the covering table.

—V2: This is an exponential time approach in terms of number of cycles, which searches
through the complete list of solutions possible to find the highest-quality solution.

Quality metrics for the tool flow report the status whether all cycles are cut, if any
false paths remain uncut, and if there are any orphaned gates without a timing path
passing through them. There is no need to create a minimal set of cuts; what matters
is that the “right” set is created that does not violate any of the rules in Section 4.1.

The basis of both algorithms is the same. Up to this point, all false paths, cycles,
and true timing paths have been defined. The problem of generating the false path and
cycle cuts is converted into a covering problem for which a covering table is generated.
In this implementation, the cycles are cut first, then the false paths. They could be
processed concurrently as well.

Paths in the cycle set C become rows of the table. The columns are the edges in set
P2E(C)− P2E(�p). Only the edges present in the cycles that can be cut are considered.
All the edges that are present on a GCP are excluded because they cannot be cut due
to Rule 1 precedence.

Edges that have the same source and destination gates are combined into a
single column for the covering table even though they might generate multiple
set_disable_timing constraints. Shorthand is used in the following table for the local
cycles present in the circuit of Figure 3. Columns la0, y 0, y 1, y, and rr0 represent the
edges (lc2, lc1), (lc5, lc1), (lc5, lc3), (lc6, lc5), and (lc4, lc3), respectively.

la0 rr0 y 0 y 1 y
[lc1 lc2 lc1]

√
[lc1 lc2 lc5 lc1]

√
[lc1 lc2 lc5 lc1]

√
[lc3 lc4 lc3]

√
[lc3 lc4 lc5 lc3]

√
[lc3 lc4 lc5 lc3]

√
[lc5 lc6 lc5]

√
[lc5 lc6 lc5]

√

After the generation of the covering table, the V1 algorithm selects the edge that
cuts the maximum number of cycles (rows). Each selected edge is stored in the cut
edge set X and removed from future consideration by removing that column in the
covering table. One or more set_disable_timing constraints are written out, and all
rows representing cycles that get cut by this edge are removed. The algorithm iterates
through the table to find a solution by repeatedly selecting an edge that is present in
the most rows, writing out the sdc constraint(s), and updating the table. The generation
of the local cycle cuts end when there are either no more edges (some cycles were not
cut) or there are no more rows (all cycles have been cut) in the table.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 64, Pub. date: June 2016.

64:14 W. Lee et al.

Fig. 11. LC circuit implementation showing local (red) and external (orange) timing arc cuts through the
marked gates.

There are three edges that can result in cutting two cycles for the covering table of
the circuit of Figure 3. Assume the rightmost edge y is selected. Cycles 6 and 7 are cut
by removing this edge. This leads to the cycle count for the y edge to become zero, and
hence that column is also removed. Continuing this process leads to the following cut
set, which cuts all the cycles with six sdc constraints, graphically shown as red circles
in Figure 11.

set disable timing -from A2 -to Y [find -hier cell *lc1]
set disable timing -from A2 -to Y [find -hier cell *lc3]
set disable timing -from B1 -to Y [find -hier cell *lc5]
set disable timing -from C1 -to Y [find -hier cell *lc5]
set disable timing -from B1 -to Y [find -hier cell *lc1]
set disable timing -from B1 -to Y [find -hier cell *lc3]

Algorithm V2 also creates the covering table, but goes one step further. It generates
the complete list of solutions. A solution cost heuristic is employed to select the best
solution. After generating each new solution, its cost is calculated and compared against
the previous best solution. The solution with the minimum cost is selected as the best
solution. Following is the cost heuristic, which gives priority to remaining uncut cycles.
The constant K gives different weights for number of uncut cycles and number of
orphaned gates. A orphaned gate exists when no timing path passes through the gate.
This article assigns K = 3 to give higher cost for uncut cycles.

cost = K × number of uncut cycles (1)
+ number of orphaned gates

The search ends when the first solution with zero cost is found or when all the partial
solutions have been generated. In the latter case, the partial solution with the lowest
cost is returned.

After generating cycle cut constraints for all the local cycles, the cut path constraints
are applied to remove false paths and external cycles. There are 24 simple false paths
and external cycle cut paths generated from P(G,�). Ten of these paths are removed
as being identical to true paths in GCP(G,�), leaving 14 remaining paths. Twelve of
these are removed because a cycle cut previously performed removes an edge in these
paths (six each by y0 and y1). The remaining uncut paths are stored in path set variable
�c. In this example, all of the false paths are cut as part of the cycle-cutting phase. The
two remaining paths in �c belong to the (ra→rr) constraint used to cut external cycles.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 64, Pub. date: June 2016.

Timing Path-Driven Cycle Cutting for Sequential Controllers 64:15

The covering table is constructed with the rows being the remaining false path and
external cycle cut paths that have not been cut as part of the cycle-cutting phase. The
columns are calculated as P2E(�c) − (P2E(�p) ∪ X): the edges in the remaining false
paths and external cycle cut paths that are not on a true path and have not already
been removed in the cycle-cutting phase. This results in the following table, where
(lc0, lc3) is signal ra 0.

(lc0, lc3)
[ra, lc0, lc3, lc4]

√
[ra, lc0, lc3, lc4]

√

The V1 algorithm, which eagerly selects cuts based on the number of paths cut, is
employed. One or more set_disable_timing timing cut constraints are written out,
and all rows representing covered by this edge are removed. The algorithm ends when
there are either no more edges (some cut paths could not be cut) or there are no more
rows (all cut paths have been cut) in the table. This results in the following two sdc
constraints being applied to remove the two rows in the table.

set_disable_timing -from A0 -to Y [find -hier cell *lc3]
set_disable_timing -from B0 -to Y [find -hier cell *lc3]

These two cut points are highlighted in orange in Figure 11. The algorithm has now
generated a complete DAG for the system with all of the true paths intact, all of the
cycles cut, all of the false paths cut, and without leaving any orphaned gates because a
true path passes through each gate in the design. Timing targets can be placed across
each of the timing endpoints in � to optimize the sizing and placement of the gates to
ensure that hazards to not occur in the design resulting in failure, and the performance
of the circuit can be optimized.

6. EVALUATION APPROACH
This tool is evaluated on asynchronous pipelines using a bundled data or micropipeline
approach [Sutherland 1989]. A micropipeline consists of a traditional Boolean logic data
path and an asynchronous control path. The data path contains acyclic combinational
logic (CL) and registers (L). The control path consists of linear control blocks (LC),
which perform via handshaking the role of the clock. Handshake clocking generates
the appropriate timing and sequencing for the design. It is elastic in nature and can
stall if required. The minimum latency through the control logic plus a margin must be
greater than the maximum delay of the combinational logic in order to fulfill the setup
and hold time constraints at the register bank. Thus, delay elements may be required
between LC blocks.

The C-element used in the Sutherland micropipeline is replaced with each controller
in the full family of four-cycle handshake controllers with data valid on the rising
request [Nagasai et al. 2010; Birtwistle and Stevens 2014]. To simplify the evaluation
and to focus on the controllers, the data path of the micropipeline has been removed.
Since there is no data path, this implements a token FIFO where the handshake
controllers are allowed to operate at maximum frequency. Pipelines of depth four are
employed, rather than the three deep example shown in Figure 2. The simulations
employ controllable interfaces on the input and output of the pipeline that operate
faster than the response time of the controller under test.

The evaluation uses the methodology in Stevens et al. [2009], which is based on
relative timing [Stevens et al. 2003]. A set of relative timing constraints specific to each
controller are generated that must hold for the circuit to perform hazard free. These
are mapped onto each controller as a set of path-based constraints that are provided to
the tool in the true path set � and the cut path set �. Three additional path constraints
are added to reduce the cycle time of the controller: a constraint from lr of the current
controller to lr of the downstream controller, lr of the downstream controller to ra
of the current controller, and ra of the downstream controller to ra of the current
controller. These endpoints are identified as red dots and black arrows in Figure 8.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 64, Pub. date: June 2016.

64:16 W. Lee et al.

Those endpoints are mapped onto the local controller constraints {(lr, rr)(lr, la)(ra, la)}
that are passed to the tool in � and � (adjusting timing endpoints to identify true
paths in each of the specific controllers). The handshake channel cycles are cut by
adding timing endpoint (ra, rr) to the cut set �.

The sdc constraints generated by the tool are employed in synthesis and simulation,
where delays are attached to each of the three identified timing paths. The delays
are customized to each specific controller design based on its response time such that
negative slack does not occur.

The pipelines are synthesized with a commercial CAD tool employing optimization
for power and performance using the Artisan 65nm library. This tool automatically
cuts cycles in the design based on a minimum cut algorithm that does not respect
timing paths provided to the design. The designs are then placed and routed with
SoC Encounter to determine layout area and parasitics. The numbers for forward
latency, backward latency, and cycle time are generated by simulating the post-routed
design using sdf (standard delay format) back annotation. The designs are tested for 50
handshake cycles to generate a vcd (value change dump) file that reports node activity.
The vcd file is used with PrimeTime to generate power and simulation time numbers
on the post-APR (automatic place and routed) design using back-annotated parasitics
extracted from the layout.

7. PRELIMINARY RESULTS
7.1. Benefits of Correct Cycle Cutting
Path-based timing-driven optimizations are not able to be performed if timing paths
through the circuit have been cut. The LC circuit in Figure 3 is used as a preliminary
example. Optimization results are significantly degraded when commercial EDA tools
cut cycles without respecting timing paths because the tools must perform untimed
circuit optimization. We show the power, area, and performance benefits of applying
timing-driven optimizations on an asynchronous handshake controller when timing
paths are ensured to remain uncut through the application of the algorithms in this
article. However, performance, power, and area degradation is a secondary problem.
When true timing paths are cut, the circuit cannot be optimized nor evaluated for that
path. If this is a path that is required for correct operation, the circuit may fail.

The three timing constraints used for the micropipeline performance analysis
described in Section 6 are employed. Verification identifies additional constraints
that must hold in this design for correct operation. The relative timing constraint
lr ↑ �→ y↑ ≺ rr ↓ states that y must rise before rr falls. Thus, we also include a cor-
rectness timing endpoint pair (lr, y) for the design. These four timing endpoints are
added to both � and �. The external cycle cut constraint (ra, rr) is added to �. The
tool is passed these constraints and the Verilog design. A set of sdc constraints are
generated that create a DAG. All false paths and cycles are cut, and at least one timing
path specified in � passes through every gate in the design. The design has 10 true
paths identified as GCPs, cuts 8 cycles, and 14 false paths or external cycles. This is
accomplished with 8 timing graph cuts.

The design is evaluated under the following four scenarios.

—No TPCC Constraints: The commercial CAD tool algorithm cuts all cycles in the
design not respecting timing paths.

—External Cut Constraints: The external cut constraints are provided by our tool,
but local cycles and false paths are left to the commercial tool to cut.

—Local Cut Constraints: The algorithms described here are used to cut local cycles
and false paths, respecting the true timing paths provided in set �. The external
cycles are cut by the commercial EDA algorithms, not respecting timing paths

—All TPCC Constraints: All cycles and false paths are cut using our timing path
cycle-cutting algorithms that retain the true paths uncut.

Table I shows that there is a substantial improvement in circuit quality obtained
by employing cuts from the timing path constrained algorithms in this article when

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 64, Pub. date: June 2016.

Timing Path-Driven Cycle Cutting for Sequential Controllers 64:17

Table I. Comparison of Performance Metrics on Figure 3 Pipeline Using Timing Path Cycle
Cutting (TPCC) Versus Commercial EDA Algorithm

No TPCC External Cut Local Cut All TPCC
Constraints Constraints Constraints Constraints

Forward Latency (ps) 98 128 85 108
Backward Latency (ps) 328 348 305 233

Cycle Time (ps) 520 540 460 390
Area (um2) 362 384 237 146

Power (mW) 2.30 2.31 1.72 1.01
Simulation Time (nS) 32.5 34.3 29.3 27.8

Energy/token (fJ) 374 395 253 141
No. of Cut Timing Paths 2 2 0 0

Fig. 12. WCHB Circuit. Red and orange circles denote locally and externally cut timing arcs.

compared to cuts automatically generated by the commercial CAD tool. Applying our
algorithm for this circuit over letting the commercial EDA tool create the DAG results
in improvements of 1.3× for cycle time, 2.5× for area, and 2.7× for energy per token.
The table also points out the importance of including both the local and external cycle
cut constraint paths. If only the external cycle cut path constraints are generated by
our tool, the results are generally worse than having the commercial CAD tool perform
all cycle cutting. Simply employing the local constraints helps, as this reduces energy
by 1.5× over the commercial CAD tool. However, there still remains a penalty of 1.8× in
energy per token over our algorithm if one allows the commercial CAD tool to perform
external cycle cutting.

7.2. Generality of Approach
This tool can used with any design methodology and applied to any controller de-
sign. This is illustrated by applying this to a well-known quasi–delay-insensitive con-
troller. Figure 12 shows the implementation of a weak-condition half-buffer (WCHB)
[Lines 1998]. This design has been mapped to the same cell library and character-
ization flow described in Section 6. The constraint sets � and � for this circuit in-
clude timing endpoints {(I0, O0), (I1, O1), (I0, Iack), (I1, Iack)}. Two cut path endpoints
{(Oack, O0), (Oack, O1)} are used to remove cycles in the handshake channel are added to
�. The algorithm generates the cycle cuts shown graphically in Figure 12.

Post-layout results for a four-deep pipeline are generated. Table II shows that us-
ing both local and external cycle cut constraints clearly results in the best design.
This timing-optimized implementation has nearly a 2× improvement in forward and
backward latency and cycle time, a 1.4× area advantage, and a 3.2× energy-per-token
advantage.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 64, Pub. date: June 2016.

64:18 W. Lee et al.

Table II. Comparison Using Timing Path Cycle Cutting (TPCC) Versus the Algorithm in a Commercial
CAD Tool for Delay-Insensitive WCHB

No TPCC External Cut Local Cut All TPCC
Constraints Constraints Constraints Constraints

Forward Latency (ps) 163 160 153 83
Backward Latency (ps) 273 270 253 145

Cycle Time (ps) 510 520 460 270
Area (um2) 1270 1214 1233 891

Power (muW) 717 607 646 344
SimTime (nS) 53.8 54.3 52.5 34.5

Energy/token (fJ) 770 659 678 237
No. of Cut Timing Paths 2 2 2 0

Table III. The “Total Cycles Found / Cyclesfalse paths Left Uncut/Orphans” for the V1 Algorithm Applied
to the Full 4-Phase Family of Controllers

LoR L000 L200 L400 L220 L420 L222 L422 L440 L442 L444
R0000 – – 18/32/0 35/0/2 – – 11/0/2 24/30/7 7/10/0 5/10/0
R0020 38/0/1 – 17/22/1 14/0/0 11/0/0 13/0/0 9/11/0 13/0/0 9/0/0 8/0/0
R0040 20/0/0 23/0/1 15/0/0 14/0/0 44/0/6 19/0/8 8/0/0 5/0/0 8/0/0 10/0/0
R0022 25/0/0 59/0/9 7/11/0 10/0/4 19/0/9 8/0/0 7/0/0 3/0/0 4/0/0 4/11/0
R0042 39/0/15 13/0/1 14/0/0 – 16/0/0 35/0/7 7/0/0 10/10/0 6/0/0 5/10/0
R2022 22/0/11 30/0/6 44/0/12 7/0/0 12/0/5 12/0/3 8/0/0 6/0/0 4/0/0 .
R2042 50/0/6 20/0/1 10/0/0 5/0/3 7/0/0 8/0/0 6/0/0 4/0/0 4/0/0 .
R0044 10/0/0 7/0/0 10/0/1 4/0/0 5/0/5 10/0/6 4/0/0 6/0/0 3/0/3 3/10/0
R2044 7/0/1 9/0/0 7/0/0 4/0/6 6/0/7 6/0/1 4/0/0 2/0/0 3/0/5 .
R4044 18/0/0 7/0/1 . 3/0/0 . 5/10/0
R2222 19/0/8 7/0/3 5/0/0 3/0/0 5/0/0 5/0/3 4/0/0 4/0/0 2/0/1 .
R2242 17/0/0 9/0/0 8/0/0 7/0/3 6/0/5 5/0/2 4/0/0 3/0/0 3/0/0 .
R2262 7/0/2 7/0/0 10/0/0 4/0/0 5/21/0 . . 3/0/0 . .
R2244 3/0/1 4/0/0 4/0/1 1/0/0 1/0/0 1/0/0 1/0/0 1/0/0 1/0/0 .
R2264 5/0/0 6/0/0 5/0/0 1/0/0 2/0/0 . . 1/0/0 . .
R4244 5/0/4 6/0/3 . 1/0/0 . 2/0/0
R4264 4/0/1 4/0/0 . 1/0/3

8. RESULTS
The algorithm described in this article is written in C++. The results are reported for
runs on a Core i7 processor with 4GB memory. Sequential control circuits are relatively
small, so this problem is not constrained by runtime or memory.

8.1. Complete Family of Four-Cycle Handshake Controllers
This example set consists of the complete family of 131 untimed four-cycle handshake
controllers with data valid at the rising edge of request (lr) [Nagasai et al. 2010;
Birtwistle and Stevens 2014]. The specifications are generated from concurrency re-
duction rules, and they are synthesized with Petrify. This creates a rich set of controller
modules with various properties, such as half and full data buffered pipelines. The con-
currency reduction rules were applied to the most concurrent protocol to generate the
complete set of untimed (speed-independent and delay-insensitive) protocols.

The evaluation approach described in Section 6 is employed. This includes the three
paths (lr→la), (lr→rr), and (ra→la). Additional timing paths specific to each controller
that are required to remove hazards from the design are also included. The external
cycle cut constraint (ra→rr) is included to remove cycles on the handshake channel.

Data is included in tabular and graphical form. Table III shows some results for each
individual controller. Some of the handshake controllers failed synthesis from Petrify
and are marked as “–” in the table. Those that deadlock due to too much concurrency
reduction are marked with “.”. Graphical results collect data into sets for each of the left
cut (Lxxx). Thus, from 6 to 16 controllers are included for each Lxxx value in the graphs.
The table and graphs generally display data from higher to lower concurrency. (The

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 64, Pub. date: June 2016.

Timing Path-Driven Cycle Cutting for Sequential Controllers 64:19

Table IV. Comparison of Performance Metrics Using the Algorithm in Commercial CAD Tool
Versus Timing Path-Based Cycle Cutting (V1) (Commercial CAD Tool Number/V1 Number)

Minimum Value Maximum Value Average
Forward Latency 0.76× 3.56× 1.60×

Backward Latency 0.33× 2.92× 1.55×
Cycle Time 0.77× 2.32× 1.52×

Area 1.46× 4.49× 2.96×
Power 1.0× 6.19× 2.81×

SimTime 0.81× 2.16× 1.42×
Energy/token 1.43× 6.34× 3.84×

eτ /token 1.16× 13.69× 5.45×

improved left cut nomenclature of Birtwistle and Stevens [2014] is employed.) Larger
Lxxx numbers represent increased concurrency reduction on the output rr/ra channel.
Likewise, Rxxxx cuts for each Lxxx set create orthogonal concurrency reduction on
the input lr/la channel. All concurrency reduction values for the input channel are
included in the Lxxx value, so the numbers can have significant variance. The average
value for the left cut set is identified by the line with the maximum and minimum
values identified with the error bars.

Table III shows the total cycles, cycles and false paths left uncut, and orphans for
the design. The total number of cycles in these controllers is identified in the table.
The amount of concurrency in a design is directly proportional to the number of state
variables required [Birtwistle and Stevens 2008]. As expected, the most concurrent
protocols contain the largest number of cycles due to more state-holding feedback
signals. Table III also shows the number of cycles and false paths left uncut, and
the number of orphaned gates. The uncut false paths are reported next to the uncut
cycles because false paths are removed when cycles are cut. Six designs have one false
path that was left uncut, and two designs have two uncut false paths. All cycles were
removed in 118 of the 131 test cases employing the given constraint paths. A number
of gates were orphaned. Gates are orphaned for two reasons: first, there is no timing
path through the gate, and second, all input to output timing arcs get cut.

Further investigation reveals that all the orphan gates have no timing constraint
path passing through them in both the V1 and V2 algorithms. These gates are primarily
associated with reset and the local state variable logic. Thus, these gates can be sized
by applying constraint paths that are specific to the state logic of each design.

Table IV summarizes the performance results. It presents a comparison of the per-
formance values employing cycle cutting done by a commercial CAD tool and by the
V1 algorithm for latency, cycle time, area, power, and energy. The average aggregate
improvement of forward latency × area × eτ/token results in a 25.8× improvement
over a commercial CAD tool across the protocol set.

Figure 13 shows the energy delay product comparing cycle cutting being performed
by the V1 algorithm and a commercial CAD tool. The benefit of the V1 algorithm ranges
from an improvement of 13.7× to 1.2× over a commercial CAD tool. Figure 14 shows
the forward latency, Figure 15 shows the backward latency, and Figure 16 shows the
cycle time of each module with cycle cutting performed by a commercial CAD tool
and our timing path-driven cycle cutting. A comparison of these graphs show that the
commercial CAD tool typically generates a slower circuit except for a few cases where
it used big gates that improved performance by expending substantially more energy.

Figure 17 shows post-layout area. Gates are substantially oversized when the com-
mercial CAD tool performs cycle cutting. Four of the five cases with smallest area
advantage (1.9× times or less) are for the circuits with uncut cycles. In these five
cases, the commercial CAD tool creates additional cycle cuts after our timing-driven
algorithm is employed, as it synthesizes and optimizes the design.

The same conclusion can be made by comparing the power consumption and comple-
tion time reported in Figures 18 and 19. There are five designs that have higher per-
formance when the commercial CAD tool performs cycle cutting, but the performance

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 64, Pub. date: June 2016.

64:20 W. Lee et al.

Fig. 13. eτ ratio averaged across left cuts. Interval
shows largest and smallest values for the cut, line
passes through the mean. Dotted line depicts using
commercial CAD tool, while solid line our algorithm.

Fig. 14. Forward latency averaged across left cuts.
Interval shows largest and smallest values for the
cut, line passes through the mean. Dotted line de-
picts using commercial CAD tool, while solid line our
algorithm.

Fig. 15. Backward latency averaged across left cuts.
Interval shows largest and smallest values for the
cut, line passes through the mean. Dotted line de-
picts using commercial CAD tool, while solid line our
algorithm.

Fig. 16. Cycle time (post APR) averaged across left
cuts. Interval shows largest and smallest values for
the cut, line passes through the mean. Dotted line
depicts using commercial CAD tool, while solid line
our algorithm.

improvement again comes at the cost of expending lots more power. Energy per token is
shown in Figure 20. The Energy numbers for the pipeline design average 3.84× larger
for the case when the commercial CAD tool performs cycle cutting.

Results of the V1 and V2 algorithms were compared for forward latency, backward
latency, and cycle time. The average variation was found to be 0.3%. Designs using
the V2 algorithm were generally faster except for seven cases with more than ±10%
variation. Similarly, in terms of power consumption and performance, the results were
pretty much the same except in six cases where the variation was more than ±10%
and ±5%, respectively. Similarly, the average energy variation is around 0%, but four
of the the previous outlying designs show results with more than ±10% variation.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 64, Pub. date: June 2016.

Timing Path-Driven Cycle Cutting for Sequential Controllers 64:21

Fig. 17. Core area averaged across left cuts. Inter-
val shows largest and smallest values for the cut, line
passes through the mean. Dotted line depicts using
commercial CAD tool, while solid line our algorithm.

Fig. 18. Power consumption averaged across left
cuts. Interval shows largest and smallest values for
the cut, line passes through the mean. Dotted line
depicts using commercial CAD tool, while solid line
our algorithm.

Fig. 19. Computation time averaged across left cuts.
Interval shows largest and smallest values for the
cut, line passes through the mean. Dotted line de-
picts using commercial CAD tool, while solid line our
algorithm.

Fig. 20. Averaged energy consumed across left cuts.
Interval shows largest and smallest values for the
cut, line passes through the mean. Dotted line de-
picts using commercial CAD tool, while solid line our
algorithm.

8.2. Benchmark Circuits
A number of benchmark circuits of varying complexity were also evaluated, including
the largest published asynchronous finite-state machines that sequential synthesis
tools are able to create. These benchmarks include a GCD design and modules from
the Post Office [Stevens et al. 1986] and PSCSI [Yun and Dill 1999]. These designs were
synthesized using Petrify to generate a gate-level netlist to which reset was added by
hand.

The test setup for these designs is similar to that for the examples in Section 7. The
notable exception is that the circuits were not formally verified for correctness against
the specification in order to generate the true timing paths in the design. Instead,

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 64, Pub. date: June 2016.

64:22 W. Lee et al.

manual analysis of these designs was performed to identify the true paths taken for
each input to output path in the design. Only one true path from each primary input to
each primary output was identified, if one exists. These true paths are supplied to the
algorithm. Also, the external connectivity of these designs is ignored, so no external
cut paths were employed to cut handshake channel cycles. Using this information,
the cycle cuts were generated for these circuits using the V1 and V2 algorithms and
compared against a commercial CAD tool.

TableVI shows the complexity of each of these designs and a comparison of generating
the cycle cuts using the V1 and V2 algorithms. Design complexity is based on the
number of paths, cycles, and gates. The two algorithms are compared based on the
number of unsized gates and algorithm runtime. Analysis of the pscsi-isend design
provides a good picture of the exponential nature of the exhaustive V2 algorithm.
The algorithm considers edges that are not GCPs of specified true timing paths as
cut candidates. There are over 6,000 candidates in the pscsi-isend design. The V2
algorithm performs an exhaustive search to find a zero-cost solution on all possible cut
combinations to cut all false paths. This search is expensive and consumes significant
runtime. For the pscsi-isend design, the exhaustive algorithm does not improve the
results over the eager V1 algorithm.

Table V gives a comparison for the designs generated by the algorithms with re-
spect to a commercial CAD tool in terms of timing paths that have been cut, area,
energy per token, runtime performance, and energy delay product eτ . These numbers
give a comparison on the effectiveness of applying the greedy approach (V1) and the
exhaustive approach (V2) to finding the cycle cut points in a circuit. The commercial
tool preserves all timing paths in four out of seven designs. The average results for the
designs generated using the V1 algorithm compared to a commercial CAD tool are less
than half the size and energy, with a 5% performance improvement. This gives a 2.9×
eτ benefit. The benefits for the V2 algorithm are similar to the V1 algorithm, with the
only difference being that the designs are very slightly smaller.

9. CONCLUSIONS
Timing paths must be cut to represent the timing graphs of sequential circuits as
DAGs in the current state-of-the-art EDA tools. An algorithmic approach is presented
for automating the timing path-driven generation of these cycle cuts so that the EDA
tools can properly perform gate sizing for performance, area, and energy optimizations
on sequential circuits without modifying the underlying structural netlist. Timing
information is specified as an input to the algorithm. It is passed as timing endpoints
of two forms: those that identify the true timing paths in the circuit and thus cannot be
cut to preserve necessary timing paths, and those that identify false paths and external
cycles that must be cut. A method based on the greatest common path is provided for
specifying the correct timing paths in the sequential circuits based on timing endpoints
composition. The CAD tool reports on the quality metrics of the results, consisting of
the number of cycles left uncut, the number of false paths that were not cut, and the
number of gates that do not have a timing path passing through them. Two versions of
the algorithm are presented: a faster greedy search as well as an exhaustive algorithm
that returns a result of the highest quality.

The CAD tool developed generates cycle-cutting constraints in the sdc format. This
timing path-driven cycle-cutting algorithm is a key component of any design and CAD
flow that enables asynchronous design to be synthesized, placed and routed, power and
performance optimized, and validated for post-layout timing correctness using commer-
cial EDA tools. The input is the structural Verilog design of sequential controllers that
implement handshake protocols and sequencing in asynchronous designs.

The algorithms are general to any sequential circuit. The algorithm is demonstrated
on a test bench of 131 four-cycle bundled data asynchronous controllers, one delay-
insensitive design and a set of large gate count benchmark circuits. Circuits in this
example set have as many as 325 cycles and over 6,000 paths in the implementation.
The general runtime for each example is very small with the worst case for the large

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 64, Pub. date: June 2016.

Timing Path-Driven Cycle Cutting for Sequential Controllers 64:23

Ta
bl

e
V.

R
es

ul
ts

C
om

pa
ris

on
fo

r
B

en
ch

m
ar

k
C

irc
ui

ts

C
om

m
er

ci
al

C
A

D
to

ol
V

1
A

lg
or

it
h

m
V

2
A

lg
or

it
h

m
V

1
B

en
efi

ts
V

2
B

en
efi

ts
A

re
a

E
n

er
gy

/
C

om
p

Fa
ls

e
A

re
a

E
n

er
gy

/
C

om
p

A
re

a
E

n
er

gy
/

C
om

p
A

re
a

E
n

er
gy

/
C

om
p

A
re

a
E

n
er

gy
/

C
om

p
(u

m
2
)

to
ke

n
(p

J)
ti

m
e

(n
s)

C
u

ts
(u

m
2
)

to
ke

n
(p

J)
ti

m
e

(n
s)

(u
m

2
)

to
ke

n
(p

J)
ti

m
e

(n
s)

to
ke

n
ti

m
e

to
ke

n
ti

m
e

rc
v-

se
tu

p
68

.6
0.

05
86

.7
8

0
42

.0
0.

03
91

.1
5

42
.0

0.
03

91
.1

5
1.

63
1.

67
0.

94
1.

63
1.

67
0.

94
sb

u
f-

se
n

d-
ct

l
22

4.
6

0.
78

31
6.

81
0

10
8.

0
0.

29
31

6.
09

10
3.

2
0.

29
31

6.
09

2.
07

2.
68

1.
00

2.
17

2.
69

1.
00

ps
cs

i-
tr

cv
-b

m
30

9.
5

0.
66

14
3.

91
0

96
.0

0.
15

14
9.

78
10

0.
8

0.
16

14
9.

78
3.

22
4.

42
0.

96
3.

07
4.

05
0.

96
ps

cs
i-

ts
en

d-
bm

34
7.

2
0.

79
22

3.
41

0
12

0.
0

0.
23

19
9.

47
11

5.
2

0.
22

19
9.

47
2.

89
3.

43
1.

12
3.

01
3.

65
1.

12
ps

cs
i-

ts
en

d
30

9.
5

0.
61

21
9.

42
2

12
7.

2
0.

22
18

8.
61

12
2.

4
0.

21
18

8.
61

2.
43

2.
77

1.
16

2.
53

2.
92

1.
16

ps
cs

i-
is

en
d

49
5.

5
0.

98
29

6.
47

7
20

4.
0

0.
44

25
8.

79
20

4.
0

0.
44

25
8.

79
2.

42
2.

25
1.

15
2.

42
2.

25
1.

15
gc

d
64

2.
0

1.
25

31
4.

46
4

34
8.

6
0.

61
29

9.
97

34
8.

6
0.

61
29

9.
97

1.
95

2.
04

1.
05

1.
84

2.
04

1.
05

A
ve

ra
ge

B
en

efi
t

2.
35

2.
74

1.
05

2.
38

2.
74

1.
05

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 64, Pub. date: June 2016.

64:24 W. Lee et al.

Table VI. Benchmark Circuits Design Comparison (Number of Gates with All the Input
to Output Paths Cut)

No. of Gate Unsized Algorithm No. of
Cycles Count Gates Runtime (s) Paths

V1 V2 V1 V2
rcv-setup 1 8 2(0) 2(0) <0.01 <0.01 4
sbuf-send-ctl 12 28 16(1) 16(0) <0.01 0.01 120
pscsi-trcv-bm 6 26 11(1) 11(0) <0.01 <0.01 32
pscsi-tsend-bm 10 33 7(2) 7(0) 0.02 0.03 377
pscsi-tsend 10 35 7(2) 7(0) 0.04 0.12 1,819
pscsi-isend 325 43 19(2) 19(0) 0.17 49,710 6,122
gcd 22 72 34(0) 34(0) <0.01 0.01 175

benchmark design pscsi-isend being 0.17s for the greedy algorithm, and 13.8 hours for
the exhaustive algorithm. Results are reported with an identical set of timing paths on
these examples.

It is shown that allowing EDA tools to generate a DAG employing algorithms that
do not respect timing paths passing through the sequential circuit leads to issues in
timing optimization and validation, as well as producing inferior circuits. The circuits
generated when cycle cutting is performed by a commercial CAD tool are, on average,
2.96× larger, operate 1.42× slower, have a forward latency 1.60× greater, and consume
3.84× more energy. The average aggregate benefit of this approach is a 25.8× improve-
ment using these metrics. However, even more importantly, true timing paths of the
circuit cannot be evaluated using static timing analysis unless a DAG is generated
that respects the timing paths. If some timing paths do not meet specified delays, the
circuit will fail to operate correctly.

REFERENCES
Peter A. Beerel, Georgios D. Dimou, and Andrew M. Lines. 2011. Proteus: An ASIC flow for GHz asynchronous

designs. IEEE Design and Test of Computers 28, 5 (2011), 36–51.
Graham Birtwistle and Kenneth S. Stevens. 2008. The family of 4-phase latch protocols. In Proceedings of

the 14th International Symposium on Asynchronous Circuits and Systems. IEEE, 71–82.
Graham M. Birtwistle and Kenneth S. Stevens. 2014. Modelling mixed 4 phase pipelines: Structures and

patterns. In Proceedings of the International Symposium on Asynchronous Circuits and Systems. IEEE,
27–36.

Tam-Anh Chu. 1987. Synthesis of Self-Timed VLSI Circuits From Graph-Theoretic Specifications. Ph.D.
Dissertation. Massachusetts Institute of Technology.

William S. Coates, Alan L. Davis, and Kenneth S. Stevens. 1993. Automatic synthesis of fast compact self-
timed control circuits. In Proceedings of the IFIP Working Conference on Design Methodologies. 193–208.

J. Cortadella, M. Kishinevsky, S. M. Burns, A. Kondratyev, L. Lavagno, K. S. Stevens, A. Taubin, and
A. Yakovlev. 2002. Lazy transition systems and asynchronous circuit synthesis with relative timing
assumptions. IEEE Transactions on Computer-Aided Design 21, 2 (Feb 2002), 109–130.

S. A. Edwards. 2003. Making cyclic circuits acyclic. In Proceedings of the 40th Conference on Design Automa-
tion. ACM, New York, NY, 159–162.

V. V. Filippovich. 1973. Transforming a cyclic directed graph into an acyclic graph. Cybernetics and Systems
Analysis 9, 2 (March 1973), 348–351.

Alex Kondratyev and Kelvin Lwin. 2002. Design of asynchronous circuits using synchronous cad tools. IEEE
Design & Test of Computers 19, 4 (July-Aug. 2002), 107–117.

Michiel Ligthart, Karl Fant, Ross Smith, Alexander Taubin, and Alex Kondratyev. 2000. Asynchronous design
using commercial HDL synthesis tools. In Proceedings of the International Symposium on Advanced
Research in Asynchronous Circuits and Systems. IEEE, 114–125.

Andrew M. Lines. 1998. Pipelined Asynchronous Circuits. Master’s thesis. California Institute of Technology,
Pasadena, CA.

Sharad Malik. 1994. Analysis of cyclic combinational circuits. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 13, 7 (1994), 950–956.

Robin Milner. 1989. Communication and Concurrency. Prentice Hall International, London.
Santosh Nagasai, Kenneth S. Stevens, and Graham Birtwistle. 2010. Concurrency reduction of untimed

latch protocols – theory and practice. In Proceedings of the International Symposium on Asynchronous
Circuits and Systems. IEEE, 26–37.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 64, Pub. date: June 2016.

Timing Path-Driven Cycle Cutting for Sequential Controllers 64:25

Osama Neiroukh, Stephen A. Edwards, and Xiaoyu Song. 2008. Transforming cyclic circuits into acyclic
equivalents. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 27, 10
(2008), 1775–1787.

Marc D. Riedel and Jehoshua Bruck. 2003. The synthesis of cyclic combinational circuits. In Proceedings of
hte Design Automation Conference. ACM/IEEE, 163–168.

T. R. Shiple, V. Singhal, R. K. Brayton, and A. L. Sangiovnni-Vincentelli. 1996. Analysis of combinational
cycles in sequential circuits. In Proceedings of the 1996 IEEE International Symposium on Circuits and
Systems, Vol. 4.

A. B. Smirnov. 2009. Asynchronous Micropipeline Synthesis System. Ph.D. Dissertation. Boston University.
Kenneth S. Stevens, Ran Ginosar, and Shai Rotem. 2003. Relative timing. IEEE Transactions on Very Large

Scale Integration (VLSI) Systems 1, 11 (Feb. 2003), 129–140.
Kenneth S. Stevens, Shane V. Robison, and Alan L. Davis. 1986. The post office—communication support

for distributed ensemble architectures. In Proceedings of 6th International Conference on Distributed
Computing Systems. 160–166.

Kenneth S. Stevens, Yang Xu, and Vikas Vij. 2009. Characterization of asynchronous templates for inte-
gration into clocked CAD flows. In Proceedings of the 15th International Symposium on Asynchronous
Circuits and Systems. IEEE, 151–161.

Ivan E. Sutherland. 1989. Micropipelines. Communications of the ACM 32, 6 (June 1989), 720–738. Turing
Award Paper.

A. Taubin, J. Cortadella, L. Lavagno, A. Kondratyev, and A. Peeters. 2007. Design automation of real-life
asynchronous devices and systems. Foundations and Trends R© in Electronic Design Automation 2, 1
(2007), 1–133.

Yang Xu and Kenneth S. Stevens. 2009. Automatic synthesis of computation interference constraints for
relative timing. In Proceedings of the 26th International Conference on Computer Design. IEEE, 16–22.

Kenneth Y. Yun and David L. Dill. 1999. Automatic synthesis of extended burst-mode circuits: Part II
(automatic synthesis). IEEE Transactions on Computer-Aided Design 18, 2 (Feb. 1999), 118–132.

Received September 2015; revised January 2016; accepted February 2016

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 64, Pub. date: June 2016.

