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FAIM-1 can be scaled
to provide two to
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machines with
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T his article describes a symbolic
multiprocessing system called
FAIM-1.* FAIM-l is a highly con-

current, general-purpose, symbolic accel-
erator for parallel Al symbolic computa-
tion. The paramount goal of the FAIM
project is to produce an architecture that
can be scaled to a configuration capable of
performance improvements of two to
three orders of magnitude over conven-
tional architectures. In the design of
FAIM-1, prime consideration was given to
programmability, performance, extensi-
bility, fault tolerance, and the cost-
effective use of technology.

Programmability. Although the
FAIM-1 machine architecture is uncon-
ventional, the software environment pro-
vides a concurrent programming language
and an application development system
that are based on models familiar to mem-
bers of the Al community. This environ-
ment permits immediate evaluation of the
FAIM-I architecture when that architec-
ture is used for existing applications, and it
eases the burden on programmers of fu-
ture applications.

Performnce. Effective use of concur-
rency is the primary mechanism employed
by the FAIM-1 system to increase signifi-
cantly performance over conventional se-
quential systems. Hardware concurrency
is exploited in the operation of
* the individual processing elements,
* subsystems within the processing
elements, and

Work on the FAIM (Fairchild Al Machine) project
was begun at the Fairchild Research Laboratories and
has since moved to another research lab within
Schlumberger.
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* components within each subsystem.
Software concurrency is exploited in two
distinct forms. Spatial concurrency in-
volves a set of independent tasks, each
working on a partitioned piece of the
problem. Temporal concurrency involves
pipelined execution in which stages can be
viewed as concurrent tasks operating on
elements of a stream of data at different
times.

Extensibility. High priority was given to
creating a design permitting arbitrary ex-
pansion of the hardware resources. Ex-
pansion in FAIM-1 requires minimal re-
wiring, and no modification to either the
user software or system software. The
communication topology is planar, and
therefore will not become a liability as
technology advances to permit evolution
from multiple-chip to single-chip process-
ing elements. Wiring complexity scales
linearly with processing-element count.
All hardware module interfaces are self-
timed I to permit individual components
to evolve independently in performance,
implementation technology, and function-
ality. Self-timed circuit design is a type of
circuit design discipline that does not use a
global clock to guarantee synchroniza-
tion. In this style, each component keeps
time internally and provides interface
handshaking signals to coordinate with its
partner subsystems. The result is an archi-
tecture that is easy to modify and exhibits a
favorable cost/performance ratio under
scaling.

Fault toance. Any solution to the
fault-tolerance problem inherently con-
tains redundancy. The FAIM-l contains
significant redundancy, both in term's of
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processing elements and in the way these
elements are interconnected. FAIM-1 is
designed to be fault tolerant at the process-
ing-element level, but not at the gate or cir-
cuit level. The resource-allocation mecha-
nism permits the reassignment of tasks to
processors, the message-routing algorithm
is capable of routing messages around
failed paths and processors, and the sys-
tem software supports self-diagnosis.

Technology. The architecture is de-
signed to take advantage of the cost and
performance of both advanced VLSI cir-
cuit technology and advanced packaging
technology (immersion-cooled wafer hy-
bridization is an example of the latter) as
they become available.
The focus of this article is on the physi-

cal architecture of the FAIM-1 system.
However, to understand some of the de-
sign decisions, one must examine the sa-
lient aspects of both the software system
structure and the programming language
that the physical architecture supports.
The next section ("Software structure")
presents a synopsis of both topics; subse-
quent sections present the hardware
architecture.

Software structure
The architecture of the FAIM-1 serves

as a high-speed evaluation engine for the
concurrent programming language OIL
(Our Intermediate Language), and sup-
ports a style of distributed multiprocessing
system structure that is embodied in the
runtime operating system.

The OIL language and OIL objects.
OIL is a high-level, concurrent, symbolic-
programming language. The design of
OIL was influenced by current AI pro-
gramming practices, in which a number of
AI programming languages are widely
used. A distillation of these languages
leaves three main linguistic styles: object-
oriented programming, logic program-
ming (primarily Prolog), and procedural
programming (primarily Lisp). A complex
Al application may require several (or all)
of these programming styles. Emulating
one programming style within another is
inefficient, so there is a need for a better
linguistic mechanism, one that efficiently
incorporates or efficiently supports the es-
sential features of the major styles. OIL
has been designed to provide concurrent
versions of each of the three linguistic
styles.

An OIL program is a collection of ob-
jects that communicate by sending mes-
sages. The nature of the communication
structure explicitly indicates the top level
of concurrency represented by the pro-
gram. Individual objects may themselves
be concurrent program fragments. An
OIL object consists of some local state in-
formation (typically in the form of vari-
ables) and several ports through which
messages are sent and received in FIFO
order. A behavior, associated with each
port, describes what the object does in
response to a message. The behavior is a
program that may modify the local state
and/or send messages to other objects.
Atomic OIL objects are of two distinct
types: logical and procedural. Logical
behaviors are written in a declarative style
similar to a parallel version of Prolog.2
Procedural behaviors are written impera-
tively in a lexically scoped dialect of Lisp
that is similar to T. 3 Objects can be nested
heterogeneously to form other objects that
permit control to pass between declarative
and imperative behaviors.
An OIL object consists of
9 state, which is represented as the col-
lection of variables and data struc-
tures that are considered local to the
object;

* ports, that is, the set of entry points
that may receive messages;

* entries (an entry is a subset of ports);
and

* behaviors, that is, code that may be
either procedural or logical.

Objects can be created dynamically or
statically. Upon creation, the state of an
object is set to its initialization value. An
object takes action when a message ar-
rives. To support distributed procedure
calls and parallel process synchronization,
subsets of ports may be grouped into en-
tries. Behaviors are associated with entries
rather than ports. When all of an entry's
ports have a message, then the associated
behavior is said to be fireable. In cases
where only a single port's message invokes
a behavior, that port is also labelled as an
entry. In cases where an object is defined in
terms of other objects, the inheritance is
static.
An object may consist of an arbitrary

number of behaviors and ports, and each
behavior is viewed as a potentially inde-
pendent code fragment. Since the object's
state is accessible by any of that object's
behaviors, a potential source of nondeter-
minacy exists. To prevent this situation,
the behaviors are viewed as a set of mutu-
ally exclusive transactions. When a behav-

ior is started up, all other behaviors are in-
hibited until that behavior terminates.
Furthermore, a behavior may close ports
and thereby temporarily inhibit message
delivery on those ports until they are
subsequently re-opened.
The roles of logic and procedural com-

ponents are quite distinct. The logic com-
ponent is used to express in a succinct
manner nondeterministic pattern-driven
search, while the procedural component is
used for sequential algorithm specifica-
tion, manipulating unique objects, and ex-
pressing history-sensitive algorithms.
Neither component projects its semantics
on the other. Therefore, procedural ob-
jects do not have multiple versions of their
environments, and logical objects do not
have changeable state variables. Commu-
nication between logical and procedural
objects is based on message streams
managed by manipulation of continua-
tions in the sending and receiving objects.
The exact semantic significance of contin-
uations is somewhat different on each
side, but both use continuations as
"handles" to obtain subsequent values in
a stream. A logic component accepts an
input stream of goals, and produces an
output stream of solutions. In general,
there are several logical solutions per goal.
A procedural component accepts an input
stream of function calls, and produces an
output stream of response messages, usu-
ally with one response per input function
call.
The binding of variables observes the

semantics of the object in which the vari-
ables are defined. Thus, a logical variable
has multiple alternative bindings, in keep-
ing with the nondeterministic semantics of
logic objects, and a procedural variable
has values that are changed by direct
assignment. Moreover, components are
not allowed to violate the binding policies
imposed by the variable's proprietor.
Bound logic variables are invisible to pro-
cedural accessors; instead, such accesses
directly return the variable's value. Un-
bound logic variables are detected as such
in procedural components, but cannot be
bound by them. Procedural variables are
passed by value to logic components when
used in parameters. Hence, procedural
variables (as assignable entities) are invisi-
ble in logic components.
The programmer may also annotate

OIL code with pragmas, which describe
some of the expected runtime dynamic be-
havior of the code. These programmer-
supplied hints are used by the static
resource allocator to partition code and

COMPUTER56

Authorized licensed use limited to: The University of Utah. Downloaded on August 15, 2009 at 11:06 from IEEE Xplore.  Restrictions apply. 



data onto the physical resources ofthe ma-
chine. The pragma information gives the
programmer control over some aspects of
the allocation strategy. Ifno pragma infor-
mation is supplied, the program will still
run, although perhaps not as efficiently.

Procedural OIL. The procedural com-
ponent ofOIL is a parallel modification of
a lexically scoped dialect of Lisp called T. 3
The primary modifications to T facilitate
the use ofconcurrency; they include a con-
current reformulation of the basic seman-
tics, and the addition of parallel control
and data structures, operations on parallel
data structures, and specifiable evaluation
strategies that permit a variety of parallel
evaluation methods. The primitive special
forms are exactly as defined byT with two
exceptions. The first exception involves
Cond, which is the normal T conditional.
Cond also exists in OIL, but Cond= has
been added, and is the parallel OIL ver-
sion. Cond = causes the guards to evalu-
ate in parallel, and the first one that evalu-
ates to True is pursued. Semantically, this
implies that an arbitrary evaluation of
"True" by the guard forces selection,
since the notion of what is first is not con-
trollable by the programmer. The second is
to permit special forms for specifying
pragmas and type infortnation. These are,
respectively, the Pragma and Proclaim
special forms. Pragmas fall into three
categories:

* estimates of the probability of taking
a particular branch in a decision,

* estimates of the size of dynamic data
structures, and

* hints about appropriate allocation
decisions.

In all other respects procedural OIL is
isomorphic to T.

Logical OIL. Logic behaviors are writ-
ten in a parallel form of Prolog that is syn-
tactically similar to DEC-10 Prolog. The
same notation is used for clauses, lists, and
several "evaluable predicates." In gener-
al, operations such as arithmetic func-
tions, which do not have an inherent se-
quential semantics, are the same in both
languages. Operations like assert and
retract are not supported.
An OIL logical program consists ofa set

of named objects, each of which contains
any number of clauses. The names of the
objects serve as names of worlds. The logic
objects can be nested, giving the effect of
additional worlds. The programmer may
indicate a goal as solve(x,W), meaning
that goal x is to be solved in the context of

world W. This implies that the rules for
solving x are defined in world W. An inner
world inherits all the rules of the outer
worlds. If the programmer omits the world
specification, then a default single-world
model is used. The programnmer may also
indicate private rules that are not inherited
by inner worlds. Logical objects differ
from procedural objects in that they can-
not have internal state variables. Program-
mers must use procedural code to describe
operations that modify an object's local
state. Variable bindings invoked under
unification can affect local state only after
they are passed back to a procedural
module, which assigns the value to one of
the object's state variables.

Clauses of logic programs are compiled
into sets of primitive processes. These
primitive processes are objects that use
local state variables to represent a portion
of the global runtime environment. The
processes respond to incoming messages
by changing state and generating messages
for other processes. The two types of
primitive processes are AND processes
and ORprocesses. AND processes execute
the bodies of nonunit clauses, and OR
processes manage execution of procedures
that are defined by more than one clause.
In the compiled logic program, there is at
least one AND process for the right hand
side of each nonunit clause, and at least
one OR process for each procedure (set of
clauses with heads that have the same
functor and arity). An overall view of the
computation would show an AND/OR
process tree, with AND processes creating
OR descendants to solve each literal in a
goal statement, and OR processes creating
AND descendants to solve bodies of
matching clauses.

InAND processes, the basic actions, the
internal states, and the reaction to a partic-
ular message depend on the desired con-
trol model. The programmer may provide
mode declarations on logical variables; for
example, the literal p(x.?,y!) implies that
when p is evaluated, it will consume a
binding for x and produce one for y. The
parallelism in logical OIL is primarily the
nondeterministic pattern-directed search
mechanism that is obtained through OR
parallelism. 4 Limited forms ofAND paral-
lelism similar to that proposed by De-
GrootI are also provided in cases where in-
dependentAND processes can be identified
at compile time or by a simple runtime
ground check. The use of mode declara-
tions significantly enhances the pro-
grammer's ability to control the amount
ofAND parallelism that can be exploited.

Interfacing logical and procedural
behaviors. The interface between the two
types of behavior components is essential-
ly a form of procedure call. A logical be-
havior calls a procedural behavior by
means of an evaluable predicate that is
syntactically identified. The primary dif-
ference in the semantics is that the solution
of a logical subgoal by a procedural be-
havior may succeed more than once. In
this sense procedural behaviors behave
more like normal subgoal solutions than
like conventional Prolog built-in predi-
cates. Subsequent calls to the procedural
component will result in next messages
that will retrieve the next stream element.
A procedural behavior may call a logical

behavior by sending it a solve message
containing a goal and a world in which
that goal is to be solved. Calling the con-
tinuation of the logical behavior will
retrieve the next element in its solution
stream.

Resource allocation. OIL programs are
compiled into object code on a host Lisp
Machine. The host then downloads the
object code onto the FAIM-1 for exe-
cution. Critical decisions about where to
load individual objects are made during a
phase of compilation called resource
allocation. The resource allocation pro-
cess involves balancing the use of the par-
allel execution hardware with the cost of
runtime communication overhead. The
resource allocation phase permits the writ-
ing of programs, even if the writer lacks a
detailed understanding of the hardware,
interconnection structure, or communica-
tions costs.

In general, there are three basic ap-
proaches to resource allocation:

* Programmer-defined allocation,
which can be implemented either as
part of the programming language or
by an alternative description, places
responsibility for making all resource
allocation decisions on the
programmer.

* In dynamic allocation, the overall
processor utilization must be mea-
sured at runtime by the system. By
means of this analysis, the workload is
adjusted during program execution.

* Static allocation involves analyzing
the source program and partitioning it
into a set of allocatable tasks in a way
that maximizes processing concurren-
cy while minimizing overhead from
interprocessor communication.

The complexity of resource allocation
for large programs makes it unlikely that
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programmer-defined allocation will be a
viable long-term solution. Dynamic allo-
cation inherently implies significant levels
of runtime overhead. Hence, the primary
focus for FAIM-1 is on static methods.
The OIL programmer can influence the
static allocator by special annotations (see
the discussion of pragmas, above), and
some simple dynamic load balancing can
be performed when runtime conditions in-
dicate that it is necessary.

Hardware structure

The FAIM-1 architecture consists of a
number of independent processing ele-
ments, called Hectogons, interconnected
in a hexagonal mesh. The following sec-
tions describe the overall structure of the
machine and provide insight into some of
the design decisions made in creating it.

Communication topology. Many possi-
ble multiprocessor interconnection
schemes are currently being investigated.
See, for example, the current research ef-
forts on the Cosmic Cube,6 Butterfly,7
and DADO. 8 Desirable topology charac-
teristics include high performance, re-
duced wiring complexity, flexibility, fault
tolerance, and simplicity of implementa-
tion. Furthermore, a goal is that these
properties remain attractive under scaling.
The topology used in the FAIM-1 is a

hexagonal mesh. Processing elements
communicate directly with six neighbors;
the processing elements themselves are
organized into hexagonal surfaces that are
combined in a similar six-neighbor
fashion.
When wires leave a processing surface

through the processing elements at the
periphery, they are folded back onto the
surface in a three-axis variant of a twisted
torus. In Figure 1, the basic topology is il-
lustrated, along with the wrap lines and
switches that complete the interconnect
structure. For purposes of illustration,
only a single, wrapped axis is shown; in the
complete topology, all edge ports are con-
nected, requiring two additional sets of
wraps like the one shown in the diagram.

This particular wrapping scheme results
in a simple routing algorithm and provides
a minimal switching diameter for a hex-
agonal mesh. All PEs are viewed as if they
were the center PE of the surface, and
routing decisions are based on three-axis
relative coordinates. This simple algo-
rithm is implemented in custom hardware
for performance reasons.

Each peripheral port communicates
with an off-surface device, as well as being
wrapped back to the opposite edge of the
surface. These off-surface connections
permit communications with I/O devices
and with other surfaces. The external con-
nections are made by introducing a simple
three-way switch, which is shown in Figure
1. Communication with other processors
on the surface is via the three-way switch,
which routes signals back to the other edge
of the surface. The switches have three
ports:

* internal (for local surface messages),
* external (for adjacent surfaces, I/O
devices, or the host), and

* wrap (for the local surface via the
wrap line).

Switching decisions are based on which of
the three ports a message arrives on and
the destination contained in the message
header.
The size of a surface is defined by the

number of processors n on each edge of
the hexagonal surface. The surface is re-
ferred to as an E-n surface; the number of
processors in a surface scales as 3n(n-1) +
1. For example, an E-3 processor surface
has three processors on each of the six
edges and contains a total of 19 processors.
For surface sizes between E-J and E- 7in-
clusive, the number ofPEs is a prime num-
ber, which is advantageous from the stand-
point of fault tolerance and initialization.
A hierarchical instance of a FAIM-1

processor is built by tessellating multiple
hexagonal surfaces. Locality among
groups of processors is increased and the
communication diameter of the system is
decreased as compared with a single-
surface instance that has the same number
of processors. These properties can be
demonstrated by the following example.
An E-7 surface contains 127 processors
and has a diameter of six, while seven E-3
surfaces can be tiled to form an S-2 E-3
machine (shown in Figure 2) that contains
133 processors with a diameter of five. The
switching diameter improves dramatically
as the processor count is increased. A
58,381-processor E-140 has a diameter of
139, while a 58,807-processor S-9 E-10
FAIM instance results in a diameter of 89,
a full 50 hops better (worst case) than the
single E-140 surface.
The probability ofcomponent failure in

a system statistically increases as more
components are added to the system,9
making fault tolerance an important as-
pect of highly replicated architectures.
Fortuitously, distributed ensemble archi-
tectures intrinsically contain redundant

elements that can be used to support fault-
tolerant behavior. Koren 10 has shown that
hexagonal meshes are particularly attrac-
tive fault-tolerant topologies. In addition,
fault-tolerant message routing is possible
because of the multiplicity of paths over
which a message may be routed to its
destination.

In the FAIM-1 machine, all ofthe topol-
ogy-dependent hardware is contained in a
single subsystem called the Post Office,
which is described in detail in a later sec-
tion. The remainder of the machine is in-
dependent of connection topology, and
could be utilized in other connection
schemes.

The Hectogon. The processors located
at each node in the communication topol-
ogy are called Hectogons. A Hectogon can
be viewed as the homogeneously repli-
cated processing element of the FAIM-1
architecture on one hand, and as a
medium-grain, highly concurrent, hetero-
geneous, shared-memory multiprocessor
on the other. Internally, each Hectogon is
constructed of several subsystems or
coprocessors, all of which may be active
concurrently.

This double view is the result of the con-
sistent exploitation of concurrency at all
levels of the FAIM-1 system, and is moti-
vated by our belief that the scalability of a
multiprocessor architecture is ofprime im-
portance. Performance of an architecture
as it is scaled up is critically affected by
four factors:

* the performance of each individual
processor,

* the average percentage of processors
that are active,

* the efficiency of interprocessor com-
munication, and

* the total number of processors in the
aggregate machine.

The intent of the FAIM-1 project is to
pursue aggressively each of the four as-
pects by designing a powerful processing
element that permits high levels of
replication.

Individual coprocessors directly sup-
port logic programming, parallel Lisp,
and complex runtime system duties, such
as task switching and scheduling. Within
each coprocessor, other linguistic features
are supported by specific aspects of the ar-
chitecture. For example, the evaluation
processor contains parallel tag hardware
to support the polymorphic function-
calling nature of Lisp. Rather than
allocating a single task to each processing
element and risking a low percentage of
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active processors, FAIM-1 allocates a
number of parallel tasks to each process-
ing element. Tasks can be complex pro-
gram fragments requiring a wide range of
computational support. This strategy im-
proves processing element utility by in-
creasing the probability that a runnable
task will exist at any given time. Inter-
process communication is facilitated by
including a high-performance message-
handling coprocessor (the Post Office). A
large number of Hectogons can be tiled
together (as described in the section on
"Communication topology," above) to
form a fully distributed (that is, with no
shared memory or control) multiprocessor
system.
The Hectogon's subsystems are con-

nected by an asynchronous System Bus
(SBus), and by custom interfaces in some
cases. Subsystems communicate with each
other by means of a flexible, speed-
independent signalling protocol. The self-
timed behavior of the subsystems allows
them to be independently tuned in terms
of both performance and function with-
out impacting the designs of the other sub-
systems. While each of the six subsystems
is a reasonably general system-level com-
ponent for distributed ensemble architec-
tures, the particular instantiation of each
has been tailored with a specific view ofthe
Hectogon in mind. A Hectogon's subsys-
tems and their interconnection are shown
in Figure 3.
The six subsystems connected by the

SBus are

Hectogon,

Three-port switch

20-bit-wide data path
plus two-wire control

- -o4

Off-surface connection

Figure 1. E-3 surface with three-way switches. (Reprinted from the Proceedings ofthe
Sixth International Conference on Distributed Computing Systems © IEEE.)

* Evaluationprocessor (EP). A stream-
lined, non-microcoded, stack-based
processor responsible for evaluating
machine instructions.

* Switching processor (SP). A small
context-switching processor that is
responsible for interpreting the run-
list in data memory (the Scratch
RAM) and moving blocked contexts
out of processor registers and into
SRAM process-control blocks, and
then loading a new, runnable context
into the processor registers.

* Instruction stream memory (ISM).
A specialized instruction memory that
not only stores the instructions, but is
also responsible for finding the ap-
propriate instruction, partially

Figure 2. S-2 tesselation of E-3 surfaces.
(Source: Proceedings ofthe 1985 Interna-
tional Joint Conference on Artificial In-
telligence, 1985. Used by the courtesy of
Morgan Kaufman Publishers.)

Figure 3. Bhock diagram of a Hectogon.
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decoding it, and handing it to the EP.
* Scratch random access memory
(SRAM). The SRAM is the local-
data memory of the Hectogon. It is a
four-ported subsystem that provides
concurrent access to the EP, SP,
SBus, and Post Office.

* Pattern-addressable memory
(PAM). A parallel associative
memory system capable of matching
complex structures, such as
S-expressions, in which don't cares
may exist either in the query or in the
data. In the present instantiation, the
match function is "mock unification,"
that is, the extent to which unification
can be done without dereferencing
bound logical variable pointers.

* Post Office. An autonomous com-
munications subsystem responsible
for all aspects of the physical delivery
ofinter-Hectogon messages. The Post
Office is the only topology-dependent
coprocessor in a Hectogon.

The remainder of this article presents
each coprocessor in some detail.

A two-processor
partnership
The processor is designed to be a high-

speed evaluator of OIL programs. As
such, it contains specific features that pro-
vide efficient support mechanisms for
object-oriented, procedural, and logic
programming. Processor utilization on
the FAIM-l is improved if a small number
of independent, and therefore concurrent,
tasks are allocated onto a single Hectogon.
This increases the probability that for any
particular Hectogon, a runnable task will
be available at any given time. This im-
poses a need for a processor to support
multitasking and rapid context switches
between tasks.
To achieve the goal of rapid context

switching, the processor is implemented as
a partnership of two processors; the two
processors are called the evaluation pro-
cessor (EP) and the switching processor
(SP). The EP evaluates the currently ac-
tive task, while the SP sets up the next run-
nable task. Tasks run in a context-specific
register set; the processor contains two
context-register sets. Each set contains the
stack buffers, processor status word, gen-
eral-purpose registers, and so on. One set
is marked active and is used by the EP,
while the other is marked idle and is used
by the SP to save the old context and load
the next context from process-control

blocks stored in the SRAM. This concur-
rent and cooperative partnership is also
supported by the SRAM design in that
both the EP and the SP have separate
dedicated ports to the SRAM. It typically
takes a single instruction time to switch
contexts. This assumes that the SP has
completed its next-task prefetch activity. If
this is not the case, then the EP will halt*
until the new context becomes valid.

Normally there are four ways that the
currently running task can be suspended:
an interrupt, a trap, task termination, or
task block. A task block can occur at the
program's request, or when an unforeseen
delay is incurred, for example, when a
message sent to a remote processor re-
quires a reply before the sending task can
continue.

In FAIM-1, the same context sets and
switching mechanism are used for all four
cases. There is no special supervisor or
kernel context. In both task termination
and task blocking, the next reasonable ac-
tion is to run another task, as nothing
more can be done on the evaluationof the
current task. Since traps usually require in-
formation from the current context (for
example, the arguments to the trapped in-
struction require modification by the ser-
vice routine), trap service routines are run
in the current context in a manner similar
to that of a simple function call. Interrupt-
driven tasks inherently start and terminate
cleanly, and therefore can also be
evaluated in the current context.

The EP. The EP executes instructions
that it receives from the ISM by making
use of the active-context register set. To
reduce the complexity of the EP and
achieve high performance, a stack-based
RISC"I organization was chosen. The
need for a long word length does not exist,
since the address space of the local mem-
ory is small and since the focus of the ar-
chitecture is on symbolic processing rather
than large-value numeric computation.
The EP is further simplified by the exis-
tence of the ISM, which selects, formats,
and delivers the proper instruction to the
EP.
The existence of a separate instruction

delivery subsystem (the ISM) permits a
simple two-stage pipeline to be employed
for the EP. The first stage supports in-
struction decode, operand selection, and
modification. The second stage performs

Actually, the EP is not explicitly aware that the SP is
not ready. The self-timed interface between the EP and
SP will automatically and transparently inhibit the EP
from evaluating an invalid context.

the ALU operation, modifies the result if
necessary, and stores the result. The ISM
runs concurrently with the EP and effec-
tively contains another two pipeline stages
that perform effective-address trans-
lation, instruction fetch, and partial in-
struction decode.
The EP datapath is 28 bits wide. Eight

bits are reserved for tags that are processed
in parallel by separate tag-manipulation
hardware. The tags are analyzed concur-
rently with the processing of the 20-bit
data field, and may generate a trap when
the operand tags are inappropriate for a
particular operation.
The EP also contains a full 20-bit wide

ALU that supports logical operators,
integer arithmetic, and shifting of
instructions.
The EP instructions combine the small

instruction size of stack-organized proces-
sors and the streamlined style of the RISC
methodology. This is achieved by trading
register-based arithmetic and logical
operations for stack-based operations. In
addition, the instruction set supports a
simple load-and-store model, which may
also be indexed from any of the general-
purpose index registers.
The instruction set is tuned so that most

instructions run in a single cycle. The only
instructions that consume additional
cycles explicitly are instructions that
generate memory references, and interface
instructions to the other subsystems.
However, any instruction may trap and
thus effectively consume additional cycles.
In this case, the instruction is completed
whenever the target trap routine returns.
The result is a simple RISC-processor

that provides significant support for the
efficient evaluation of OIL programs and
that is physically small enough to permit
the high levels of replication required for a
cost-effective, high-performance FAIM-1
PE.

The SP. The context switcher is a small
processor that loads values found in a pro-
cess control block stored in the SRAM
into the idle context-register set and
unloads them, too; it thus permits context
switching without stealing cycles from the
EP. The main data structure that the SP
manipulates is the run-list. The run-list is
produced by the scheduler, which is an EP
task that is run when necessary. The run-
list is a linked list ofprocess-control blocks
(PCBs)** in which each PCB contains a
pointer to the next PCB in the list.

**The actual implementation is more complex than
this, but additional detall is omitted here for clarity.
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In blocking, a process calls a system
routine that requests that the SP perform a
context swap and save the process's state.
(Depending on why the process is block-
ing, it may be moved to the blocked-list or
may remain on the run-list.) The SP imme-
diately switches to the other set of context
registers, and the EP can execute instruc-
tions from the new context. The SP then
moves the contents of the now idle context
register set to the appropriate task PCB in
SRAM, examines the run-list to find the
next runnable task, moves its context from
the PCB to the idle context register set,
and sets the proper context validity flag.
The SP will halt at this point and remain
halted until another context switch is
signalled.

Arriving message traffic from other
Hectogons may cause idle processes to be
rescheduled as runnable tasks. The mes-
sage handler and scheduler support this by
linking arriving messages with their target
tasks and moving them to the run-list. The
scheduler can therefore be invoked by a
"message-delivered" interrupt from the
Post Office or host machine.

The instruction stream
memory
The instruction stream memory (ISM) is

one of the specialized "smart memories"
that are employed in the FAIM-l process-
ing element, and is designed to deliver in-
structions to the processor at high speed.
To accomplish this task efficiently, the
ISM performs several functions that are
usually performed by the processor in a
conventional system. These include calcu-
lation of instruction addresses, processing
of branches and subroutine calls, and han-
dling of traps and interrupts.

Implementing a separate instruction
delivery module can have several advan-
tages, as is demonstrated in the Dorado ar-
chitecture. 12 Since only instructions are
stored in the ISM, it can be optimized for
its sole function of instruction delivery.
Conventional solutions place a specialized
intermediate piece of hardware between
the processor and main memory, such as
an instruction cache or translation look-
aside buffer. This implies more compli-
cated control and requires that relatively
slow off-chip signals be driven twice. The
ISM organization capitalizes on the co-
placement ofboth the instruction memory
and the instruction-delivery-control logic
on the same VLSI device. Since on-chip
bandwidth is usually an order of magni-

tude faster than off-chip bandwidth, a
significant level of manipulation can be
performed concurrently with processing
activity in the EP. In addition, very wide
bus widths are practical on-chip but im-
practical at chip boundaries, thus increas-
ing the effective on-chip bandwidth.

In addition to the advantages of more
efficient access to instructions, the design
of the EP is simplified. The instruction-
fetch stage of the pipeline has effectively
been transferred to the ISM, along with
the program counter. The resulting shorter
pipeline in the EP increases the through-
put of the processor and simplifies excep-
tion-handling duties.
The ISM capitalizes on the fact that in-

structions are not randomly accessed. In
most programs, code is naturally parti-
tioned into small sequences of linearly
ordered instructions that terminate in
branches or subroutine calls. These se-
quences are formalized in the FAIM-1
machine and are called tracks. As one in-
tuits, instruction tracks vary in length;
however, the ISM's instruction storage
maps them onto a set of fixed-length phys-
ical tracks. Linkage information corre-
sponding to control instructions is associ-
ated with the physical tracks in a header
field.

Control point information is main-
tained in a current track-address register
(CTR), which is similar in function to the
program counter of a conventional sys-
tem. An individual instruction address
consists of a track number and a track
offset.

Branch processing. Execution of
branch-type instructions is quite complex
in most large machines, owing to the large
number of instructions that can cause a
branch and the wide variety of addressing
modes allowed. In keeping with the
streamlined RISC theme, the FAIM-1 uses
only one jump format, which is flexible
enough to support conditional and uncon-
ditional branches, calls, and returns.
Branch-addressing modes that require
multiple accesses to memory (for example,
indirect addressing) or branches requiring
additional arithmetic operations (for ex-
ample, indexed or decrement-and-skip-if-
zero) are not implemented. Instruction
decoding becomes simple both for the EP
and ISM. The ISM examines each instruc-
tion as the instruction is prepared for
delivery to the EP. When a jump is
detected, the ISM autonomously and con-
currently processes that instruction, con-
tinuing delivery with the first instruction

from the target stream.
Conditional branches are a canonical

problem, and delay the delivery of source
code in pipelined program execution.
They are usually the main bottleneck in
lookahead and prefetch strategies. In con-
ventional systems, the problem is that by
the time the branch is executed and the
correct path is resolved, some succeeding
instructions have already entered the pipe-
line. If the branch is taken, the current
contents ofthe pipeline must be discarded,
incurring a delay while the pipe is filed
again. The standard method of keeping
the pipeline full is to use a delayed branch
instruction, as is done in the MIPS
architecture. I I

In FAIM-1, the ISM decodes jump in-
structions before they even enter the pipe-
line, so a pipeline flush is not necessary
and the delayed branch strategy is not ap-
plicable. This is because the required con-
tinuation of the instruction stream is
always correctly delivered. There is,
however, an analogous dependence prob-
lem in that the outcome of a conditional
jump may depend on the result of a previ-
ous instruction that has not yet finished
executing. To ensure that the branch con-
dition has become valid by the time the
ISM detects the jump, an advance condi-
tion code set method is used.

Subroutine calls andreturns. A subrou-
tine, or function call, in the OIL language
compiles to a simple jump instruction and
is processed by the ISM in almost exactly
the same manner as a normal jump. The
jump instruction format contains a
"save" bit that is set for a "calling" jump
and indicates that the current contents of
the "program counter" (the CTR) should
be saved in a special register called the
jump track-address register (JTR) before
the jump is executed. A return from sub-
routine consists of a Jump instruction spe-
cifying the current contents of the JTR as
the target address. If the called subroutine
needs to call other subroutines, then it
must explicitly save and restore the JTR by
making use of the control stack.

Exception handling. Traps and inter-
rupts are additional factors that cause a
break in the instruction stream. As such,
they have an impact on the operation of
the ISM. Traps correspond to error condi-
tions arising during the course ofexecuting
an instruction, while interrupts are gener-
ated by some external device and are com-
pletely asynchronous with the program be-
ing run. In both cases, the current code
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stream must be broken to permit the exe-
cution of the trap or interrupt-service
routine. This is accomplished in a manner
similar to that of a subroutine call.

ISM utility. In a conventional process-
ing system, there is a large amount of un-
desirable traffic between the processor
and main memory. Not only useful data,
but information on where to find the data,
and even information needed to compute
this information, must be sent to and from
memory.

In FAIM-1, one major class of memory
references is associated with the access of
the machine code instruction stream.
Studies indicate that instruction fetches
can account for 50 percent of all memory
references on computers such as a VAX or
IBM S/370. The single-chip organization
of the ISM greatly reduces the severity of
this bottleneck. By reflecting the structure
of instruction tracks in the structure of the
memory and providing integrated logic to
perform in an autonomous manner com-
mon functions, such as branching, pre-
fetching and subroutine calls, the design
of the processor is simplified and new
levels of performance are made possible.
The proposed design is simple enough

to allow single-chip implementation; mul-
tiple ISM chips can be cascaded to provide
a maximum-size instruction bank of one
million instructions. The EP organization
permits an arbitrary number of banks to
be used in a single PE; however, the first
prototype will contain only a single
maximum-size bank per Hectogon.

The Scratch RAM
The SRAM is a four-ported, random-

access memory that is the local-data mem-
ory system of the Hectogon. An SRAM
contains I Meg of 28-bit data words. Each
data word is further divided into eight tag
bits and 20 data bits. The SRAM allows
access to memory through any of its four
ports, which may all be active concurrent-
ly. The ports are connected to the SBus,
the evaluation processor, the switching
processor, and the Post Office.

The Post Office
Operational responsibilities of the Post

Office. The Post Office13 is an auton-
omous coprocessor of messages that is
capable of delivering messages concur-
rently with program execution in the pro-

cessor. The FAIM-1 Post Office contains
seven data ports: six to Post Office com-
munication processors in topologically ad-
jacent Hectogons, plus an internal port to
the SRAM of the local Hectogon. There is
also a system bus link to control communi-
cation with the EP and other devices in the
Hectogon. All message-delivery control is
handled autonomously by the Post Office,
freeing the local Hectogon to process tasks
rather than stealing EP cycles to support
inter-Hectogon message traffic.
The Post Office is responsible for the

physical delivery of messages across the
communication topology. Communica-
tion is initialized by the EP, which gener-
ates a message header for and pointer to
the variable-length message body and
places them in the SRAM. The Post Office
extracts the message from the SRAM and
delivers it by means of virtual cut-
through14 over the communication net-
work. The receiving Post Office places the
message in the destination Hectogon's
SRAM and notifies its EP that a new mes-
sage has arrived. Since messages may vary
in length, the Post Office may break larger
messages up into a series of fixed-length
packets that are physically transmitted
across the topology. These packets are
delivered to their intended destination
individually.
The normal mode of delivery is to route

a message to its destination by means of a
hardware routing algorithm. In richly con-
nected topologies, such as the hexagonal
FAIM-l topology, it is possible for a
packet to take multiple paths to a nonlocal
destination. The routing algorithm calcu-
lates the shortest paths and secondary
paths to the destination. General com-
munication efficiency can be significantly
enhanced with a routing mechanism
capable of detecting congestion and of
routing packets around such congested
areas in the communications network. All
routes for packets in the Post Office are
chosen dynamically at delivery time by
prioritizing the paths and selecting a path
according to the state of the buffers and
the network. This mechanism can also be
extended to introduce fault tolerance,
since messages can be routed around non-
functional nodes and ports.
The capability of dynamically routing

packets around congestion and failed
components implies that the order of
packet arrival may vary from the order in
which the packets were sent. The capabil-
ity of reordering packets at their final
destination is essential to ensure both
deterministic behavior and to permit prop-

er reassembly ofmultiple packet messages.
Although this increases the amount of
work required at the receiving Post Office,
it reduces congestion and failure-related
message delays.
From the EP's point of view, messages

are assumed to be delivered error-free.
This assumption places the burden on the
Post Office to verify checksums for each
packet, organize retransmission when an
error is detected, and synchronize packet-
copy destruction in a way that ensures that
at least one correct copy of the packet ex-
ists in some Hectogon. Positive and nega-
tive acknowledgment messages can be au-
tomatically echoed back to the sender
from the destination Post Office upon
receipt of a message. To avoid deadlock,
the Post Office prevents unrestricted in-
cremental resource claiming, thereby en-
suring that each Post Office will not be
congested indefinitely.

Post Office components. The Post Of-
fice is constructed from three types of
basic components-port controllers, buf-
fer controllers, and a buffer pool-as
shown in Figure 4.
Most of the functions of the Post Office

are performed by independent port con-
trollers to enhance concurrency. The
packet ports transmit data to an adjacent
Hectogon across the topology, while the
PEport stores and retrieves data from the
local SRAM. The buffer pool acts as a
temporary storage site and queue for mes-
sages that have arrived at the destination
or require intermediate buffering between
the source and destination nodes.

All seven ports share the same internal
buffer pool. The function of the buffer
controllers is to arbitrate and control ac-
cess to this limited shared resource. The
controllers are responsible for freeing
space in the buffers by matching buffered
packets with free ports on the path to the
packets' respective destinations. The
dynamic behavior of packet delivery is
further enhanced by the buffer control-
lers, which access the buffers in a fair but
unordered fashion.

Performance. Each of the seven ports
of a Post Office node can potentially be
transmitting data simultaneously. A
pessimistic estimate of 20 MHz cycle time
per port yields a burst communication
bandwidth of 2 4gigabits per second per
processor-Post Office pair. An E-3 FAIM
instance with 19 Hectogons will have a
total peak communication bandwidth of
approximately 25 gigabits per second. The
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Figure 4. Block diagram
of the Post Office.

speed-independent nature of the commu-
nication links automatically avoids syn-
chronization and timing problems when
peak demands are greater than buffering
capacity or are owing to resource conflict.
Such a high bandwidth is desirable for ex-
perimenting with machine scalability and
supporting large processor counts.

In general, it is our belief that direct sup-
port for communications will be required
in MIMD multiprocessors with many pro-
cessing sites. This requires a significant
reallocation of the transistor budget to
achieve the proper balance between pro-
cessing and communication performance.
The Post Office is an experiment that
couples a scalable topology and architec-
ture with a communication coprocessor
that is completely responsible for the phys-
ical delivery of messages. By operating
concurrently with program execution and
allowing all ports to transfer data simulta-
neously, the performance of the Post Of-
fice should be sufficient even for large-
scale networks of processors.

The PAM
Pattern matching and logic program-

ming. One of the most common functions
used in Al programming is pattern match-
ing (that is, matching on the LHS of rules,
database searches, and so on). We feel that
special pattern-matching support is neces-
sary to achieve high-performance symbol-
ic processing. As elsewhere in the Hecto-

gon, this support takes the form of a
specialized memory component, here
caled thepattern-addressable memory (or
PAM). The PAM is designed to store and
match on S-expression structures of sym-
bols and words, in much the same way that
a traditional content-addressable memory
(CAM) deals with single words. Like a
CAM, the PAM does its matching in par-
allel over the whole of its stored contents.
The logic-programming part of OIL is

based on Prolog, in which the execution
mechanism, unification, is a special form
of pattern matching. The PAM can there-
fore be used as a high-performance sub-
system to support the evaluation of logical
OIL behaviors. In a wider sense, the de-
clarative semantics of Prolog provides a
way of indicating data to be pattern
matched and a means to control the appli-
cation of that pattern matching.

PAM operation. The PAM consists ofa
number of PAM chips and the PAM con-
troller, the latter providing the interface
with the rest of the Hectogon. The PAM is
used to store the heads of logic-program
clauses as a linear array of symbols. Each
clause head ends in a pointer to the com-
piled code area for that clause. When a
logic program is evaluated by the EP, it
sets up the goal to be solved in the SRAM;
makes a call to the PAM controller; and
then blocks, awaiting the results. The
PAM controller, accessing SRAM over the
SBus, fetches the goal and enters it into the
PAM chips. The goal is entered symbol by

symbol and the match computed for all
the clause heads stored "on the fly.," The
PAM contains circuitry to detect the
absence of any matches as soon as that
condition occurs. In that case, matching
stops and control of the process returns to
the EP.

Otherwise, the controller puts a list of
the code pointers from the matching ex-
pressions in the SRAM, and reports to the
EP that it has completed the task. The EP
then uses the code indicated to complete
the unification with the clause head. If
successful, it then processes the clause
body.

The most obvious function of the PAM
is, therefore, as a clause-indexing device.
Pattern matching is, however, more than
just a useful means of clause selection; it is
also a significant part of the unification al-
gorithm (unification = pattern matching
+ the logical variable15). The matchinig
that takes place in the PAM amounts to
full unification for all those terms not in-
volving variables. Recording and checking
variable bindings is, however, outside of
the PAM's scope. Such "bookkeeping" is
therefore left to the EP, which acts as a
unification post-processor.

The PAM memory chip. Each PAM
chip consists of a number of blocks, each
of which in turn consists of storage and
logic parts. The storage part contains the
symbol name and special tag and status
bits used in the matching operation. In the
current implementation, 10 such words
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Figure 5. PAM floor plan.

are stored for every "match" section of
logic. In effect, this logic is multiplexed
over the storage so as to achieve a work-
able memory density.
The logic part consists of comparators

for the name fields and small finite-state
machines operating on the tags to perform
the matching function. Fifty-six of these
blocks are included on each PAM chip, as
shown in Figure 5.
The chip contains 560 words of 16-bit

symbols. If an average clause head has a
size of seven PAM words, one chip can
store 80 such expressions. ThePAM chip is
designed so that the controller can run a
number of them together and in parallel
without the need for "glue" logic. In this
way, the total capacity of the PAM is only
limited by the number of chips used. Ow-
ing to its parallel operation, the speed of
the matching function is independent of
the PAM's size.

W* r e have presented an overview of
the physical architecture of a

VVw novel, high-performance, sym-
bolic multiprocessing system known as
FAIM-1. A small-scale prototype of

FAIM-I that consists of a single E-3 sur-
face (19 PEs) is under construction. The
primary performance mechanism is the ex-
ploitatioh of concurrency at all levels of
the system. From the top, the FAIM-I ap-
pears as a medium-grain, homogeneous
multiprocessor. The topology scales to
permit an arbitrary number of processing
elements to be interconnected. Each pro-
cessing element can be viewed from the
bottom as a heterogeneous, shared-
memory multiprocessor containing ser-
vers that are specialized to perform mes-
sage delivery, mock-unification, data
storage and delivery, instruction storage
and delivery, instruction evaluation, and
rapid context switching.
The architecture takes advantage of ad-

vanced circuit and packaging technology
as a secondary performance enhancernent
mechanism. The present small-scale pro-
totype is being implemented with custom
CMOS VLSI circuits (the Post Office,
PAM, and ISM subsystems) and commer-
cially available components (the processor
and SRAM). The 19-PE initial prototype
will be attached to a host Symbolics Lisp
Machine. The programming environ-
ment, OIL compiler, resource allocator,

debugging tools, and a complete system
simulator that can be used for initial appli-
cation development all run on the Host
machine. All of these characteristics will
enable the FAIM-1 prototype to serve as a
symbolic acceleratoi to the host Lisp
Machine.
While the architecture represents a

novel and significant reallocation of the
conventional transistor budget so as to
provide high performance and efficient
evaluation of highly concurrent symbolic
progranis, the programming environment
departs from conventional Al program
development systems only minimally so as
to incorporate concurrent application de-
velopment. This eliminates the need to re-
educate programmers, and it means that
the architecture can be scaled to provide
two to three orders of magnitude perfor-
mance improvement over conventional Al
machines. D
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