
1

Cyclic Timing Path Evaluation Using Commercial
Static Timing Analysis Algorithms

Mackenzie J. Wibbels, Baudouin Chauviere, and Kenneth S. Stevens

Electrical and Computer Engineering Department, University of Utah

Abstract— Many circuit design methodologies employ combi-
national logic with feedback to realize logic functions. Obtaining
accurate delay values for cyclic timing paths is an impediment
to the adoption of these technologies. Static timing analysis
(STA) algorithms are the standard for digital timing validation
but require that timing arcs form directed acyclic graphs. STA
algorithms can be used to evaluate cyclic timing paths with a
loss in accuracy by cutting cycles into acyclic segments and
summing each segment in a cyclic timing path. This paper
reports on sources of error in using static timing analysis to
evaluate acyclic timing segments of cyclic timing paths, and
shows that using timing segments to evaluate cyclic timing
paths with STA can lead to both overly pessimistic and incorrect
delay calculations. A method is presented to accurately evaluate
segmented cyclic timing paths and detect drafting conditions
using STA tools. The algorithm is executed on a number of
common cyclic circuits and has been shown to accurately eval-
uate segmented cyclic path delays compared to fully unrolled
circuit paths for different operating conditions, fanout loads,
and timing path cuts.

I. INTRODUCTION

Several digital circuit design methodologies employ com-
binational cycles to achieve power, performance, and area
(PPA) benefits over acyclic counterparts. These circuits often
use combinational feedback to implement sequential hand-
shake elements. Handshake circuits create coupled oscillators
that dictate the frequency of operation for such designs.
Fig. 1 shows a post-layout system cyclic timing path between
two instantiations of a handshake circuit module. Cyclic
combinational circuits have also been employed to realize
combinational functions at a reduced area and power relative
to acyclic implementations [1].

Cyclic sequential logic design methodologies have gained
little traction in commercial environments despite poten-
tial PPA benefits. One of the main impediments towards
the adoption of these technologies is the lack of support
for static timing analysis (STA) of cyclic timing paths by
commercial electronic design automation (EDA) tools. STA
algorithms use accurate models for delay, variation, and noise
across multiple process corners and operating conditions.
Additionally, variation and timing models used by STA
algorithms continue to evolve in order to improve timing
fidelity for advanced lithographic processes. For this reason,
the cyclic path evaluation (CPE) flow presented in this paper
leverages existing STA algorithms and tools. Leveraging STA
tools allows the CPE flow to use modern STA models and
algorithms, remain flexible to support future models and

algorithms, and empower future adoption of cyclic sequential
design methodologies by enabling timing verification using
industry-standard STA tools.

STA algorithms evaluate circuit timing efficiently by trans-
forming circuit structures into timing graphs. Circuit timing
graphs are used to calculate timing topographically. Worst
case arrival time and input slew are calculated from primary
inputs and propagated through intermediate nodes to com-
pute the best and worst output slew and delay. Topographical
timing analysis requires the circuit timing paths to form a
directed acyclic graph (DAG). DAGs are created for circuits
with cyclic timing graphs by cutting timing arcs that form
cycles in the design. However, the segmentation of cyclic
timing paths causes increased variation and delay pessimism
for advanced variation models and often leads to inaccurate
evaluation of segmented timing paths.

Cyclic oscillating paths can also introduce STA delay error
due to insufficient voltage stabilization between oscillations.
Cyclic oscillating paths may cause gates to only partially
transition to ground or VDD before the next input transition
arrives. This phenomenon is called drafting and may require
higher fidelity timing analysis which is out of the scope of
STA [2].

This work makes the following contributions. 1) Reports
STA inaccuracy introduced due to the segmentation of timing
paths into acyclic timing segments 2) Presents a path segment
characterization algorithm, which improves STA accuracy of
decomposed path segments. 3) Presents a cycle stabilization
algorithm which reports cyclic drafting conditions that may
cause inaccurate STA delay calculations. 4) Develops a
segment composition algorithm that composes characterized
path segments to accurately evaluate the delay and variation
of cyclic timing paths. To the best of the authors’ knowledge,
no method of directly handling variation of cyclic timing
paths using STA algorithms has been previously developed.
The algorithms have been developed in Tcl which allows
the CPE to interface with commercial STA tools. Results
generated in this paper use Synopsys PrimeTime and a 12nm
technology node with Composite Current Source (CCS)
delay models and Parametric On Chip Variation (POCV)
models.

II. BACKGROUND

A. Circuit Timing Evaluation
Two primary methods exist to evaluate circuit timing:

simulation and static timing analysis. Simulation uses explicit

2

Fig. 1. A system level cyclic timing path created by handshaking
between two instantiations of a handshake control circuit in a 12nm design.
The standard cells (yellow) implementing the controller and the request /
acknowledge wires (blue) between the controllers are highlighted.

input vectors and dynamic circuit computations to evaluate
circuit performance. SPICE simulations provide high timing
fidelity at the cost of run time. STA jointly optimizes run
time and timing fidelity to provide efficient evaluation and
scalability for large designs.

STA algorithms employ gate delay models to quickly and
accurately compute path delays within a design. STA tools
account for many second-order effects which contribute to
circuit delay, including cross-talk and signal noise. Delay
models use input slew and output capacitance to compute
gate delay and output slew. Technology scaling has driven
the advancement of timing models to provide better accuracy
of non-linear device behavior for advanced process nodes.

Various methods exist to evaluate cyclic timing paths
using both simulation and static timing analysis approaches.
STA was chosen for this work because it is the de facto
standard for commercial timing sign-off and the continued
development of STA tools to support timing closure for
advanced technology nodes.

B. Related Work

Integration of cyclic circuits into STA driven design flows
is an area of ongoing research. Timing analysis methods
can be separated into two categories. The first category
uses custom timing analysis environments to evaluate and
optimize circuit performance. These custom environments
either rely on SPICE simulations or use custom timing
environments to operate on data models used by STA tools
[3], [4]. SPICE methods provide high timing fidelity at the
cost of larger runtimes and also require a large number
of simulations to evaluate design variation. Additionally, as
shown in Fig. 1, cyclic timing paths often exist at a system
level and therefore cannot be evaluated by running SPICE
on a small hierarchical submodule.

Cyclic timing analysis methods that use STA data mod-
els within custom timing analysis engines have also been
developed [2], [4], [5]. These methods promise improved
scalability over SPICE based methods but require custom
tools that must be maintained to handle advancements in de-
lay and variation models. Timed separation of events (TSE)
represents an analysis technique which computes minimum
and maximum timing bounds between circuit pin transitions
[3], [6]. Charlie diagrams represent another method of timing
characterization that employs custom timing models, which
express gate delay as a function of the time between consec-
utive input transitions [2], [7].

The primary method of evaluating cyclic timing paths
using existing STA algorithms and tools requires cycle
cutting of a cyclic timing graph. Several methods have
been developed to cut and evaluate cyclic timing paths
as acyclic segments [8], [9], [10]. The set disable timing
constraint can be used to disable timing propagation between
from pin and to pin arguments to create a timing DAG to
allow timing driven synthesis of cyclic sequential circuits.
A method of evaluating cyclic timing paths which partitions
paths into acyclic segments with overlapping portions has
been developed [8]. Overlapping path segments allow for
more accurate slew propagation at cut points but requires
multiple STA runs to separately evaluate overlapping timing
segments.

This presented CPE flow also relies upon cycle cutting
methods to cut cyclic paths into acyclic segments, but
presents a characterization algorithm to calculate accurate
input slew values and path delays for acyclic path segments.
A segment composition method is also developed, which
derates variation of each timing segment across the complete
composed timing path. Lastly, a method that detects drafting
conditions and reports cyclic timing paths which may require
higher fidelity timing analysis is presented. The flow has been
applied to validate cyclic timing paths of a large 5nm chip.

III. CYCLE CUT STA PATH EVALUATION ERROR

STA calculates path delay by propagating slew informa-
tion across gates in the circuit timing graph. Cycle cutting
introduces cuts to form an acyclic timing graph. Timing cuts
may be applied using set min delay, set max delay, and
create clock constraints. Timing cuts can also be created by
library cell definitions. Standard cell libraries cut timing arcs
at the clock pins of sequential cells.

Timing cuts alter slew propagation and delay evaluation of
STA tools by creating invalid slews. Invalid slews are slew
values that are only used to calculate the delay of the first
gate in a segment and are not used to calculate input slew
values of downstream path gates. Instead, a zero delay slew
transition is applied at the segment start point and is used to
calculate the propagated input slews and subsequent segment
gate delays for all gates excluding the initial gate. Invalid
slews can be observed using the report delay calculation
command [11].

Path evaluation inaccuracy due to cycle cutting can be
categorized into three sources: (1) variation error, (2) input
slew (IS) error, and (3) input slew propagation (ISP) error.

Fig. 2 shows a circuit with a cyclic timing path from
enA- to out- and a timing cut at pin G2/A2, which decom-
poses the cyclic timing path into three acyclic segments.
Signal annotations {+,-} indicate rising and falling transition
respectively. The circuit is mapped to a 12nm technology
library with composite current source delay models and
POCV variation models. The set disable timing command
can be used to cut the cycle, but prevents timing arcs from
starting or terminating at disabled timing endpoints. This
paper instead uses set min delay and set max delay con-
straints in conjunction with from pin and to pin parameters to

3

enA

enB

out

out
G1

A1

A2
X

G2

A1

A2
X

G3

A X

Fig. 2. Simple oscillating circuit with segmented timing arcs.

TABLE I
REPORTED MAXIMUM DELAYS OF RING OSCILLATOR SHOWN IN FIG. 2.

1 2 3 4 5 6 7 8
Conf. Blue Green Red Nom. Var. Tot. IS Tot. ISP

(ps / 3σ) (ps / 3σ) (ps / 3σ) Dly. Dly. Dly. Dly.
(ps) (ps) (ps) (ps)

Unrl. 24.37 / 4.31 22.00 / 3.25 18.84 / 4.19 65.21 6.83 42.59 22.62
Cut 24.37 / 4.31 23.01 / 3.30 19.15 / 4.26 66.53 11.87 48.58 17.95

decompose cyclic timing paths into acyclic segments, which
allows constraints to originate or terminate at cut gate pins.

Table I shows the effects of timing cuts on maximum
delay path evaluation for the circuit in Fig. 2. Columns 2, 3,
and 4 report the respective delay and variation for timing
segments in the unrolled and cut versions of the circuit.
In the cut version of the circuit the segment values are
reported by STA directly. For the unrolled version, the values
have been manually decomposed into separate nominal delay
and 3σ variation segment values for comparison. Variation
calculation and composition is discussed in greater detail in
the following subsection. Column 5 reports the sum of the
nominal segment delays. Column 6 reports the sum of the
variation of the timing segments reported by STA in the
cyclic and cut configurations of the circuit. From column
6 it can be seen that evaluation of cyclic path variation as
the sum of decomposed timing segment variation leads to
significant variation penalty.

As mentioned above, timing cuts produce two effects on
path delay evaluation: (1) Pessimistic input slews are selected
for the initial gate delay calculation and (2) zero delay slews
are propagated to compute subsequent gate slews and delays.
These effects can be seen in columns 7 and 8. Column 7
reports the invalid slew (IS) delay, which is the sum of the
initial gate delays in the three segments. Column 8 reports
the invalid slew propagation (ISP) delay, which is the sum
of the subsequent gate delays in the three segments. For the
max delay paths, the invalid slew selection increases delay
estimates whereas invalid slew propagation decreases delay
estimates.

A. Variation Error

Cycle cutting prevents accurate evaluation of cyclic path
variation. Early variation models such as the on chip varia-
tion (OCV) model applied a fixed derate coefficient to each

gate in a timing segment. Fixed derate models are overly
pessimistic estimates for longer paths. Therefore advanced on
chip variation (AOCV) was introduced to reduce pessimism
of long paths [12]. AOCV uses a two dimensional lookup
table indexed by path distance and depth to compute a
gate derate value. The parametric on chip variation (POCV)
model was introduced for process nodes below 90nm. POCV
uses a coefficient to calculate the standard deviation of a
gate’s delay. Equations 1–3 show variation calculations for
a path segment using POCV models. The standard deviation
for each gate σgate in a path segment is calculated as the
product of POCV coefficient (Cpocv) and the nominal gate
delay (Delaygate). The variance of the path segment σ2

path

is computed in Equation 2 by summing the variance of
each individual gate. Equation 3 computes path variation by
multiplying the effective standard deviation of the path with
the SigmaGuardband coefficient.

σgate = Cpocv ∗Delaygate (1)

σ2
path =

n∑
i=1

σgatei
2 (2)

V ariationpath = SigmaGuardband ∗
√
σ2
path (3)

The SigmaGuardband value shown in Equation 3 is de-
fined by the user. The default value in PrimeTime is 3 sigmas.
POCV liberty variation format (LVF) is an extension to
the POCV format designed for process technologies 12nm
and below. LVF extends POCV by adding mean shift and
skewness parameters as well as output slew sensitivity
based on input slews [13].

Cycle cutting path segmentation prevents variation values
from being derated across full timing paths, which creates
overly pessimistic results. One of the primary benefits of
advanced and parametric variation models over OCV is
improved derate values for long paths. POCV models gate
variation as separate independent variables, which allows the
standard deviation of a path to be computed from the sum
of the variance of the path gates. Equation 4 shows that for
n path segments of equal delay, the variation overhead due
to segment composition grows as the square root of n. By
applying Equation 4 to Fig. 2 which contains three composed
timing segments (n = 3), we can see that

√
3 = 1.732,

which closely matches the difference reported “Var. Dly.”
column between the cyclic and unrolled rows in Table I.∑n

i=1

√
σi2√∑n

i=1 σi
2
=

n√
n
=
√
n (4)

Accurate evaluation of cyclic timing paths requires the
variation of the full path to be calculated directly rather
than adding segment variation values. Oscillating cyclic paths
contain multiple correlated transitions through a single gate.
Therefore, directly calculating cyclic path variation using
POCV models and Equations 1–3 may also create overly
optimistic variation results.

4

a

b
out

G0

A1

A2
X

G1

A X

G2

A X

G3

A X

G4

A X

C1

seg0 seg1

seg0 seg1

Fig. 3. Segmented timing path evaluation. Red arcs indicate max delay
path constraints, and blue arcs indicate min delay path constraints.

TABLE II
REPORTED DELAY FOR TIMING PATH CONSTRAINTS SHOWN IN FIG. 3.

Path G0/X+ G1/X- G2/X+ G3/X- G4/X+ Seg1 Seg1 Seg1 Tot.
Type IS Dly. ISP Dly. Dly. Dly.
Max 4.334 5.481 5.877 5.997 3.567 5.481 15.441 20.922 25.256

Cut Max 4.334 6.163 5.715 5.971 3.564 6.163 15.250 21.413 25.747
Min 6.279 6.115 5.958 6.010 3.568 6.115 15.536 21.651 27.930

Cut Min 6.279 5.426 5.870 5.996 3.567 5.426 15.433 20.859 27.138

B. Delay Error

Timing cuts produce invalid slews at cut locations. Fig. 3
shows an example invalid slew produced by applying timing
constraints which begin and terminate at pin G1/A. The red
arcs indicate max delay path constraints, and the blue arcs
indicate min delay constraints. The paths covered by the blue
arc have not been optimized to meet max delay requirements.
A capacitor, C1, is added to model the unoptimized path
and create a total capacitance on net b equal to the load
capacitance of four unit-sized inverters. Table II shows the
difference in path delay evaluation from a− to out+ as a
full path and as the composition of segments seg0 and seg1
with an invalid slew at pin G1/A. The timing cut at pin G1/A
produces two effects: 1) The worst input slew is applied
to pin G1/A to calculate the delay to G1/X, which is seen
by the increased pessimism cut min and max delay G1/X-
columns of Table II. 2) A zero delay slew is applied to
G1/A to calculate the slew value at G2/A, which can be seen
by the difference in delay in columns G2/X+ and the slews
propagated to calculate delay at pins G3/X- and G4/X+.

1) Convergence of Invalid Slew Values: The error in gate
delay due to invalid slew propagation decreases with path
depth, as seen in Table II. Path slew convergence is shown
in Fig. 4 for each gate in a path of inverters in a 12 nm finFET
technology node. Maximum delay slew error is reported as a
function of input slew applied to the path. The z axis reports
the gate slew error for each gate, computed as the percent
difference in slew values between gates in paths with the
applied scaled input slew and the nominal 5.25ps slew value.
The x axis is the “Path Index” that ranges from [0..n − 1]
where n is the path length in gates. The error at index 0 is
the slew error reported at the input of the first gate in the
path. The y axis, “Scaled Path Input Slew”, reports the scaled
slew time applied at the input of the first gate in the path.
The scaled path input slew value is achieved by applying the
set annotated transition command to the input pin of the first
gate in the path, with a nominal input slew time of 5.25ps
scaled across the range of 52.5ns (104) to 52.5fs (10−2).

As can be seen in Fig. 4, the largest slew error occurs

10−2
100

102
104

0 1 2 3 4 5 6 7 8 9

−100
−75
−50
−25

0

25

50

75

100

Scaled Path Input Slew Path Index

G
at

e
In

pu
t

Sl
ew

E
rr

or
(%

)

−100

−50

0

50

100

Fig. 4. Inverter gate input slew error as a function of path input slew and
depth.

for gates near the start of the path and converges as the
gate index increases. For a gate at index 1 with a -90%
path input slew error, the gate output slew is approximately
10% faster. Gate delay sensitivity to input slew has been
previously explored for 45nm design. The gate delay for a
path consisting of nand gates with input slew times of 5ps
and 50ps were shown to converge to 0.03% delay error at a
path depth of 15 [14]. Fig. 4 shows that both fast and slow
inverter slews converge as as the gate index increases. Fast
slews experience RC filtering at the gate output network,
where the minimum slew time is largely dictated by load
capacitance and maximum drive current of the device. Slow
input slews appear to speed up due to device gain. From
experiments conducted on different devices, slow slew values
appear converge more quickly for gates with greater small
signal gain. Sensitivity experiments with different gate types
have shown that input slew sensitivity is greater for simple
gates with small output loads, whereas tests on complex gates
which contain multiple diffusive stages, such as full adder
circuits, show much lower slew sensitivity. This may be due
to complex gates providing a higher effective small-signal
gain due to multiple gain stages [15].

C. Drafting Condition Error
Drafting refers to a path transition condition in which

gate outputs do not reach the full power or ground rail
before the next path transition occurs. This affects the
delay of subsequent oscillations [2]. Cyclic circuits present
additional drafting challenges with internal loops, which may
oscillate and cause drafting conditions. Significant research
has been performed to provide high fidelity timing analysis
of output slew and gate delay under drafting conditions [7].
However, drafting evaluation is not handled natively by STA
algorithms. Drafting conditions can occur in oscillators with
very short cycle times; therefore, a method of detecting and
reporting cyclic timing paths which may exhibit drafting is
presented.

D. Net Effect Cycle Cutting and Evaluation of Cyclic Paths
From the presented examples it can be seen that cycle

cutting and invalid slew values produce three effects on the

5

delay evaluation of segmented paths. First, path segmentation
increases path variation pessimism due to variation calculated
for individual path segments rather than a full path. Fur-
thermore, cyclic paths contain multiple transitions on single
gates, which may be correlated and are not accounted for in
variation models. Second, invalid slews are created at path
segment inputs. This produces two effects: 1) The selected
invalid slew is pessimistic which increases pessimism for
the first gate in the path. 2) Propagating the invalid zero
delay slew value from the first gate in the path reduces
path delay, which increases delay pessimism for min delay
paths and decreases pessimism of max delay paths. For the
path evaluated in the example, the invalid slew error is the
dominant source of error which results in a pessimistic path
delay evaluation. However, as will be shown later, there
are instances where invalid slew propagation is the greatest
source of delay error, which can cause overly optimistic max
delay estimates, which can result in circuit errors.

IV. CYCLIC TIMING PATH EVALUATION

The CPE flow consists of three steps: (1) The path segment
characterization (PSC) algorithm that characterizes delay
and variation values of acyclic timing segments, which are
created by decomposing full timing paths into segments. (2)
The segment composition algorithm that reports the delay
and variation of the full timing path from the composition
of characterized segments. (3) The cycle stabilization algo-
rithm reports cycles that may exhibit drafting conditions and
require higher fidelity timing analysis.

A. Path Segment Characterization

The objective of the PSC is to characterize each cut
point with a catalog of pairs of propagated slew values and
fanin paths. Each cut point ni is associated with a segment
startpoint or primary output. The PSC characterizes slew
values at cut points in the timing graph by propagating slew
across multiple cut points. Slew values are propagated using
the set annotated transition command. At each cut location,
the algorithm maintains slew values for each fanin path
segment.

Segments between connected cut locations in the timing
graph may not be sufficiently long to accurately select
a slew value during segment composition. Therefore, the
path segment characterization algorithm records slew values
produced by a sequence of fanin segments across multiple
cut points. Each segment in the sequence fans in to the input
of the next segment in the sequence. These sequences are
referred to as composite prefixes.

The red path of Fig. 2 shows an example where the com-
posite prefixes provides improved slew selection accuracy.
For an output transition caused by the internal oscillating
ring of the circuit, the max segment prefix depth of the green
and blue prefix segments for G2/A2 have path depths of two,
which may be insufficient to accurately select a characterized
slew value for oscillating iterations of the loop. By applying
composite prefixes, the PSC algorithm records slew values

for different oscillations with composite prefixes consisting
of the blue segment with zero or more green segments.

The PSC algorithm provides a target depth parameter tpd
that defines the maximum gate length of the recorded com-
posite prefix set. At each cut point a list of unique composite
prefixes of length tpd is maintained. This allows the segment
composition algorithm to select slew values during segment
composition by matching composite prefix gates with the
partially formed full timing path. In Fig. 2 for a tpd of 6, the
segment characterization algorithm records three composite
prefixes and transition pairs {〈GGG, s0〉, 〈BGG, s1〉, 〈B, s2〉},
where B denotes the blue segments and G denotes the green
segment and si denotes the characterized input slew.

B. Segment Composition

Segment composition consists of two steps. (1) Segment
prefix matching that selects and composes characterized path
segments to form a complete timing path. (2) Segment
variation composition that composes path segment delay and
variation to evaluate a full timing path.

1) Segment Prefix Matching: Segment prefix matching
iteratively selects characterized segments with prefixes with
contain the greatest number of matching gate pins with
the partially formed full timing path. The tgtPrefxDepth
parameter dictates the length of the longest recorded prefix
and, therefore, the segment slew selection accuracy.

2) Segment Variation Composition: After characterized
segments are selected, the segment variation composition
algorithm evaluates the delay and variation of the full timing
path. Adding the variation of each segment in a cyclic
timing path does not leverage the path based derate values
of current variation models, and produces overly pessimistic
results. Evaluating multiple transitions on a single gate as
independent gate transitions does not account for correlation
between the transitions, which may also lead to overly
optimistic results. Equation 5 shows the delay variance (σ2)
calculation for a cyclic path composed of signal transitions
on nets a, b, and c. Notice the path contains two transitions
on signal b.

σ2
path = σ2

a+ + σ2
b+ + σ2

c− + σ2
b− (5)

Both b+ and b- transitions occur on the same gate. These
variation values may not be independent and therefore should
not be added as independent variables. Therefore, during
path composition, the correlation between transitions on the
same gate must be taken into account. Equation 6 shows the
calculation of variance for a linear combination of Gaussian
random variables X and Y with covariance term σxy .

σ2
aX+bY = a2σ2

x + b2σ2
y + 2abσxy (6)

Equation 7 calculates the correlation coefficient between
two variable distributions such that −1 ≥ ρxy ≤ 1, where
ρxy = −1 and ρxy = 1 represent fully anti-correlated and
correlated variables respectively [16].

ρxy =
σxy
σxσy

(7)

6

Equation 8 is obtained by substituting Equation 6 into
Equation 5. The covariance term 2σb+− of Equation 8
represents the correlated variation of the rising and falling
transitions of signal b.

σ2
path = σ2

a+ + σ2
b+ + σ2

c− + σ2
b− + 2σb+− (8)

Substituting Equation 7 into Equation 8 yields Equation 9.

σ2
path = σ2

a+ + σ2
b+ + σ2

c− + σ2
b− + 2ρb+−σb+σb− (9)

The transition polarity indexes of ρb+− in Equation 9
can be extended to specify input and output pin transition
pairs and side input states by defining a mapping function
from transition conditions, such as input pin, polarity, and
side input states, to a specific correlation coefficient index.
Equation 10 shows the calculation of the correlated variance
of multiple transitions on a gate with gate pin pair indexes
i and j.

CorrelatedV ariance(ρ, σi, σj , i, j) = 2ρijσiσj (10)

An example matrix of correlation coefficient values is
shown in Equation 11. The diagonal of the matrix is applied
to slews with identical pin indexes. Therefore a cross-
correlation value of ρij = 1 is used, which represents fully
correlated variables.

P =

 1 . . . ρ1n
...

. . .
ρn1 1

 (11)

The correlation matrix P can be generated empirically us-
ing SPICE and Monte Carlo simulations, similar to standard
cell variation models [17]. Correct variation models may also
be obtained without additional library characterization by
setting ρij to the upper bound 1 for all i, j pairs. Calculations
in this work apply a correlation matrix where equivalent
transitions are fully correlated (ρij = 1) for i == j, and
transitions on the same gate are strongly correlated (ρij =
0.7) for i 6= j. The value ρij = 0.7 was selected as a typical
correlation coefficient lower bound for strongly correlated
variables. This result provides a method to calculate the delay
variance of a cyclic path which accounts for the correlation
of multiple transitions on the same gate.

V. CYCLIC TIMING PATH EVALUATION FLOW
IMPLEMENTATION

A. Path Segment Characterization

The path segment characterization algorithm operates on a
constraint timing graph of the circuit (CTG). The constraint
timing graph CTG = {N,E, T} defines the timing graph
for a set of segment timing constraints. CTG contains a set
of timing segment end points ni ∈ N as nodes in the graph,
a set of causal timing path segments ei ∈ E of edges, and a
transition relation ti ∈ T where ti is a tuple 〈ns × ei × ne〉,
where ns is the first timing end point in ei and ne is the last.

Each edge of the CTG is a timing constraint applied to
the circuit, and each node of the CTG is a primary I/O or a
cut point in the timing graph which corresponds to a start or
end point of a timing path constraint. Timing constraints used
for CTG construction define the desired causal or evaluated
path of the circuit. They are provided by the user and may be
generated manually or by automatic characterization methods
[18]. An example set of timing constraints for the circuit of
Fig. 2 is shown in Table III.

TABLE III
TIMING CONSTRAINT SEGMENTS FOR THE CIRCUIT OF FIG. 2

Constraint Segment Delay Input Depth Path Depth Index

[enA- G2/A1- G2/X- G1/A2- G1/X+ G2/A2+] max 6 2 1
[enB+ G1/A1+ G1/X- G2/A2-] max 6 1 2
[G2/A2+ G2/X+ G1/A2+ G1/X- G2/A2-] max 0 2 3
[G2/A2- G2/X- G1/A2- G1/X+ G2/A2+] max 0 2 4
[G2/A2+ G2/X+ G3/A+ G3/X- out-] max 0 2 5
[G2/A2- G2/X- G3/A- G3/X+ out+] max 0 2 6

Segment characterization is performed as a search of the
CTG. At each iteration of the search, fanout segments from
a node nS ∈ T are used to propagate new output slew
values to an adjacent node ne ∈ T . Each instance of the
search maintains a currently propagated slew value sti for a
composite prefix cpi. The composite prefix cpi is a sequence
that contains the most recently explored timing segments, for
which slew propagation results in a slew time sti. During
each iteration of the search an additional timing segment ej is
explored. A new slew time stj is computed by applying sti to
the input of ej . A new composite prefix cpj is also generated
by appending ej to cpi. To maintain the correct target prefix
depth, cpj is trimmed by removing the first, or least recently
explored, segment while the remaining cpj [1 : n] has a depth
equal to or greater than tpd. The adjacent node ne, composite
prefix cpj , and slew time stj are added to the search if the
node ne has not been previously explored or if the node
has been explored and one of two conditions hold. (1) The
search arrives with a composite prefix cpj that has been
previously reported but computes a new slew value sti that
has not converged for cpj . (2) The search arrives with a new
composite prefix cpj that has not been previously recorded
for the node ne. A slew sti has converged with respect to
previous slew stj if sti is less pessimistic than stj or is
within percentage convergence threshold of stj .

The function Gates(ei, GT) maps each segment ei to
a sequence of gates gti ∈ GT where gti is the gate
sequence traversed by ei. The function DelayType(ei) 7→
{Min,Max} maps a segment path to a min or max con-
straint type.

The function SegmentDepth(ei, GT) returns the number
of gates traversed by a timing segment in ei. Function
OutputSlewT ime(ei) returns the calculated output slew for
timing segment ei. Output slew is calculated internally by the
STA engine using path based analysis of a constraint edge ei
that maps from a node ns to ne (the transition ns×ei×ne).
The output slew calculated for node ne depends on the slew
annotated at ns. If no slew value is annotated at ns, the
default path based analysis behavior of the STA tool is used

7

to calculate the output slew time as described in Section III-
B.

The cyclic characterization algorithm takes five inputs: the
constraint timing graph CTG, a set of primary input nodes
with slew values for the circuit IN , a gate sequence set
GT , the timing prefix depth tpd, and the slew threshold ct.
A search space {EX,PSD} is maintained, where EX is
a set of slew propagation nodes to explore and PSD is a
prefix slew dictionary. Each propagation node exi ∈ EX is
a pair, exi = 〈cpi, s〉, which consists of composite prefix
cpi and output slew s. Propagated composite prefixes and
their associated slew values are recorded in the prefix slew
dictionary PSD. Each prefix slew element psi ∈ PSD
maps a CTG node ne to a prefix slew record psri ∈ PSR.
Each psri is a pair psri = 〈cpi, sto〉 which contains a
composite prefix cpi and characterized slew time sto such
that OutputSlew(cpi) == sto, and sto is the output slew
computed by propagating an input slew time sti across
constraint segments sg ∈ cpi. A composite prefix is a
concatenation of prefix segments from EX and is formally
defined by Definition 1.

Definition 1: A Composite Prefix cpi is a sequence of
timing path segments [e0 . . . en] such that ej ∈ E, where
∀ej , ej+1 ∈ cpi and ∃tj , tj+1 ∈ T such that ne of tj equals
ns of tj+1.

The function PrefixDepth() computes the depth of a
composite prefix consisting of n timing segments as shown
in Equation 12, where InputDepth() returns the target depth
parameter tpd if the composite prefix e0 begins at a primary
input (ns ∈ IN), and 0 otherwise. The |Gates(ei, GT)| term
returns the number of gates in each path segment ei ∈ cpi.

PrefixDepth(cpi, IN,GT, tpd) =
n−1∑
i=0

InputDepth(ei, IN, tpd) + |Gates(ei, GT)|

(12)

The SlewConv(s0, s1, ct, delayType) function deter-
mines if slew s1 has converged with respect to a previous
slew s0, a user specified threshold ct, and timing constraint
type if either of the following conditions apply:

1) Max Delay: s1 ≤ (s0 ∗ (1 + ct))
2) Min Delay: s1 ≥ (s0 ∗ (1− ct))
PropagatePrefixSlew(cpi, sto, PSR, tpd) 7→ {T, F}

function defines the termination function for the slew propa-
gation algorithm. For a composite prefix cpi, output slew
time sto, previously slew prefix record PSR, and target
prefix depth tpd, the search continues while no equivalent
prefix has been recorded, the prefix is not contained in
another prefix, and the slew has not converged as defined
here.

1) PrefixDepth(cpi, IN,GT, tpd) ≥ tpd and ∀psrj ∈
PSR : psri 6= psrj

2) PrefixDepth(cpi, IN,GT, tpd) < tpd and ∀psrj ∈
PSR : psri 6v psrj

3) ∀psrj ∈ PSR where cpi == cpj and
SlewConv(stj , sti, ct, CstrType(cpi)) == F

The PropagatePrefixSlew function propagates slew
values for composite prefixes of path depth greater than or
equal to tpd which produce the most conservative path delay
values. The third propagation condition, which propagates
slew values when SlewConv returns false, assumes that
larger slew values produce greater path delays and smaller
slew values produce smaller path delays. Although it is
possible for large input slew times to produce negative gate
delay values, which would invalidate this assumption, none
of the propagated slew times produced negative gate delay
values in the examples evaluated.

1) Implementation: Pseudocode for the prefix slew char-
acterization algorithm is shown in Algorithm 1. The algo-
rithm performs a depth first search of the constraint timing
graph (CTG). Lines 2–8 initialize the prefix slew dictionary
PSD and explore queue EX . For the CTG in Fig. 5,
node G2/A2+ in PSD is initialized with composite prefixes
{{4}, {1}}. Line 7 creates a new composite prefix slew
record for the CTG node and appends the PSD entry.

The GetFanoutPrefixes function on line 28 returns com-
posite prefixes for each newly explored CTG node. The func-
tion identifies fanout segments from the node (line 30). For
each fanout segment, a new composite prefix is created by
appending the segment to composite prefix cp (line 35). After
the segment is appended, cp is trimmed by removing the
first prefix segment while the PrefixDepth of the remaining
composite prefix is greater than tpd (lines 36–37).

At each explored node, the algorithm evaluates the
recorded slew. Termination of slew propagation is deter-
mined by the PropagatePrefixSlew function (line 19). Prop-
agatePrefixSlew propagates a slew value when the search
arrives at a previously explored CTG node which already
contains an equivalent composite prefix, but propagates a
new slew value st that has not converged within a specified
threshold of the previously calculated slew value (line 25).
Slew values are also propagated when the search arrives
at a previously explored node with a composite prefix that
was not previously recorded and is not a sub-sequence
of a previously recorded composite prefix (line 27). If a
composite prefix cpj is shorter than tpd and is contained in
another composite prefix cpk (cpj v cpk), the PSC algorithm
marks cpj as invalid (line 15). Invalid prefixes are removed

enA-

enB+

G2/A2+

G2/A2-

out-

out+

1 5

43

2 6

Fig. 5. Constraint timing graph of the circuit in Fig. 2 using timing
constraint segments in Table III

8

Algorithm 1 Prefix Slew Characterization Algorithm
1: procedure CHARACTERIZETIMINGPATHS(CTG, IN,GT, tpd, ct)
2: PSD = {}
3: EX = {}
4: for each 〈ns, ei, ne〉 ∈ CTG do
5: sto = OutputSlewTime(ei)
6: cpi = CompositePrefix(ei)
7: PSD[ne] = PSD[ne] ∪ 〈cpi, sto〉
8: EX = EX∪ GetFanoutPrefixes(cpi, sto, tpd, CTG)
9: while EX != {} do

10: 〈cp, sto〉 = removeFirst(EX)

11: ne = GetDestinationNode(cp[n], CTG)
12: psri = PSD[ne]
13: if PropagatePrefixSlew(cp, sto, psri, ct, tpd) then
14: psri = psri ∪ 〈cp, sto〉
15: invalidPrefixes = GetInvalidPrefixes(psri, tpd)
16: PSD[ne] = (psri − invalidPrefixes)

17: EX = EX∪ GetFanoutPrefixes(cp, sto, tpd, CTG)
18: return PSD;
19: procedure PROPAGATEPREFIXSLEW(cp, st, psr, ct, tpd)
20: isUniquePrefix = !(cp ∈ psr)
21: isSubsetPrefix = IsContainedSubSequence(cp, psr)
22: if !isUniquePrefix then . If equivalent composite prefix exists
23: 〈cpi, sti〉 = GetRecordWithPrefix(cp, psr)
24: if !SlewConv(sti, st, ct, DelayType(cp[n])) then
25: return True . Propagated slew has not Converged
26: else
27: return (!isSubsetPrefix) or (cp.depth≥ tpd)
28: procedure GETFANOUTPREFIXES(cp, sti, tpd, CTG)
29: fanoutPrefixes = {}
30: ne = GetDestinationNode(cp[n], CTG) . Get node for last index of cp
31: SetAnnotatedSlew(ne, sti)
32: update timing –full . Compute STA with new slew values
33: for each ej ∈ GetFanoutEdges(ne) do
34: sto = GetOutputSlewTime(ej)
35: cp′ = {cp, ej}
36: while PrefixDepth(cp′[1 : n]) > tpd do
37: cp′ = cp′[1 : n] . Trim First element of cp
38: fanoutPrefixes = fanoutPrefixes ∪ 〈cp′, sto〉
39: return fanoutPrefixes

from the prefix slew dictionary PSD and are not explored.
Table IV shows a prefix slew dictionary created by running

the path segment characterization algorithm on the circuit in
Fig. 2 that has a CTG shown in Fig. 5. The PSC algorithm
was configured with a tpd of 6 and convergence threshold
ct of 0.001 which specifies a slew convergence of 0.1%.
Node G2/A2- is shown to have characterized prefix paths
from both the primary inputs enB ({2}) and enA ({1, 3})
and from the internal oscillation path ({3, 4, 3}). Although
paths {2, 4, 3, 4, 3} and {1, 3, 4, 3} are also unique composite
prefixes for tpd = 6, both prefixes are trimmed to {3, 4, 3}
because the path has six gates.

2) Greedy Implementation: To improve run time, a greedy
implementation of the slew propagation algorithm was de-
veloped. The greedy implementation concurrently propagates
slews across multiple non-interfering prefix segments simul-
taneously. The greedy PSC algorithm replaces the prefix
exploration queue EX with a data structure that allows items
to be removed at a specific index. The algorithm greedily
removes as many non-interfering segments as possible.

The function Interfering(cpi, cpj) 7→ {T, F} is true
when the prefix segments cpi and cpj share the destination
node ne. If Interfering(cpi, cpj) is false the two segments
can be propagated concurrently with a single STA engine

update timing command.
At each search iteration, the greedy algorithm attempts

to explore the largest possible set of non-interfering com-
posite prefixes. The output slew time of each segment in
the set is annotated and are all propagated using a single
update timing command. Composite Prefixes with propa-
gated slew values are then pushed to the explore queue. The
greedy implementation reduces the number of timing updates
which is one of the most timing consuming steps of STA.

B. Segment Composition

The segment composition algorithm uses a prefix slew
dictionary (PSD), variation correlation matrices for each gate
transition, and a list of timing path segments that form the
desired cyclic timing path. For each segment of the cyclic
timing path, the segment composition algorithm matches
gates in the full cyclic timing path with composite prefixes
in the prefix slew dictionary. The characterized slew value of
the prefix with the maximum matched gate count is used to
calculate delay and variation values for the segment. Equa-
tion 2 is used to calculate the full path variance by summing
gate variance values in each timing segment. Individual gate
variance values are stored in a dictionary, where the index
is the gate instance and the value is a pair consisting of the
variance and the index in the transition correlation matrix
for the gate type (Pgate). For each transition on the same
gate, the matrix Pgate is indexed to report ρij which is then
applied in Equation 10 to calculate the covariance of the two
transitions. The covariance of the transitions is added to the
full path variance. After adding covariance of all transitions,
path variation is calculated using Equation 3.

C. Cycle Stabilization Evaluation

The cycle stabilization evaluation (CSE) algorithm iden-
tifies cycles where drafting may occur. The stabilization of
a cyclic path is evaluated as the difference between the sum
of the gate output slew times and the sum of gate delays
within a cycle. Unstable cycles are identified as cyclic paths
which have a total gate output slew time that is greater than
the total gate delay. The CSE algorithm allows the user to
specify a guard-band margin for path stabilization using a
draftGB parameter, which applies a fixed derate output slew
time. The CSE algorithm is formulated as a negative cycle
weight problem in which the objective of the algorithm is to
identify cycles with a total weight that is less than zero. The
algorithm operates on the same constraint timing graph as
the path segment characterization algorithm. The weight of
each edge ei in CTG is computed as the difference between
the sum of the gate delays in the path and the sum of slew
times in a path created by applying input slew time sti to
ns of ei, as shown in Equation 13.

StabilizationSlack(ei, sti, draftGB) =

TotalGateDelay(ei, sti) −
TotalOutputSlewT ime(ei, sti)× draftGB

(13)

Negative weight cycles are identified using the Bellman
Ford algorithm which reports the shortest path from a single

9

TABLE IV
MAX DELAY SLEW CHARACTERIZATION RESULTS FOR CTG OF FIG. 5

CTG Node Characterized Prefixes

G2/A2- 〈 {2}, 9.049 〉
〈 {1, 3}, 7.639 〉
〈 {2, 4, 3}, 7.639 〉
〈 {3, 4, 3}, 7.163 〉

G2/A2+ 〈 {1}, 5.997 〉
〈 {2, 4}, 5.990 〉
〈 {1, 3, 4}, 5.985 〉
〈 {4, 3, 4}, 5.985 〉

out- 〈 {1, 5}, 3.796 〉
〈 {2, 4, 5}, 3.796 〉
〈 {3, 4, 5}, 3.796 〉

out+ 〈 {2, 6}, 4.406 〉
〈 {1, 3, 6}, 4.402 〉
〈 {4, 3, 6}, 4.402 〉

source node to all other connected vertices in the graph [19].
In order to detect all negative cycles in the graph, a virtual
source node is created which connects to every node in the
graph with zero weight edges.

The Bellman ford algorithm performs (|N |−1)∗|E| slack
relaxation operation to refine the approximate minimum dis-
tance from the virtual source node to each node in the CTG.
After completing (|N | − 1) ∗ |E| iterations, the distances
from the virtual source to nodes without negative cycles have
converged. In order to detect negative cycles, the algorithm
iterates over all edges in the CTG to determine if additional
relaxations can be performed. A negative cycle exists if, for
any node, an additional relaxation can be performed. If a
negative cycle exists, the node and the necessary weight and
predecessor information are returned in order to recreate the
negative cycle.

VI. RESULTS

Table V and Table VI show the summary of 1200 circuit
timing path evaluations of handshake controller modules
which include a burst-mode controller (bmc), weak-condition
half-buffer (wchb) [20], a micropipeline implemented using
nand gates (mcrp), a speed independent micrpopeline imple-
mented using complex logic gates (mcrpsi), and a mousetrap
(mtrp). For each control circuit a cyclic timing path was
created by composing two controller instances and evaluating
the delay path from a primary input request through a full
internal handshake cycle of the controller circuits to the
primary output request of the controller pipeline. In order
to evaluate the accuracy of the CPE and cycle cut (CC)
STA, a golden STA model was created by unrolling the
netlist of the cyclic timing path. For each evaluation the
sensitivity of CPE and CC to slew load and number of
path cuts was assessed by permuting simulation parameters
across the following ranges: (1) the fanout of four (FO4)
slew load at the cyclic path cut point was enumerated
across {FO0, FO4, FO8}, (2) the number of timing cuts in
the timing path was enumerated across {C0, C2, C4, CA}

where “A” indicates a cut at each gate input pin, and (3) the
operating voltage across {0.3v, 0.6v}.

The columns of Table VI report length of the evaluated
path in gates (2), the sum of the input slew time of gates in
the path (3), the golden model variation of the unrolled path
(4) and the golden model cyclic path delay (5).

Table V compares golden model data to the CC and
CPE results and reports cycle stabilization evaluation (CSE)
results. Column 2 reports the average target prefix depth
required for the CPE flow to converge with the golden
model results. Column 3 reports the number possible drafting
condition instances identified across STA evaluations. The ∗
indicates that the number of stable cycles were not consistent
for the varied number of timing cuts. Column 4 reports
the average number of timing updates required for depth
first search (DFS) and greedy implementation (GD) of the
CPE flow. For large designs the number of timing updates
primarily dictates STA runtime. Columns 5 and 6 report the
percent difference of input slew time of gates in the path
between GM vs. CC and GM vs. CPE respectively. Column
7 reports the percent of additional correlated variation calcu-
lated for the cyclic timing path using a correlation coefficient
ρ = 0.7 for different polarity and pin transitions on a shared
gate and ρ = 1 for multiple transitions on a shared gate
with identical pins and transition polarity. Columns 8 and 9
compare uncorrelated path variation of the golden model and
the two methods. Columns 10 and 11 report the percent delay
difference between GM vs. CC and GM vs. CPE respectively.

As can be seen in Table V, the CPE algorithm maintains a
consistent path slew propagation (6), variation (9), and delay
(11) across all timing cuts and slew loads. There are instances
in the nominal delay results where the lowest order bit does
not match, these difference account for at most 30fs delay
difference, which the authors believe is due to the precision
of attribute reporting of the STA tool. Across all of the
designs evaluated, the CC nominal maximum delay error (10)
results range from −2.33% to .17% at 0.6V and −4.36%
to .49% at 0.3V supplies. The delay ranges from negative
to positive values indicates that CC STA may compute
values above and below maximum full path delay estimates.
Overestimates require greater delay margins; however, un-
derestimates can produce circuit failures. The CC nominal
minimum delay error results range from −4.72% to 0.03%
at 0.6V and −6.36% to 0.01% at 0.3V. For minimum delay
paths negative values indicate that default STA behavior will
underestimate path delay which will add additional min delay
margin, while positive values could produce circuit failures.
The cycle stabilization algorithms reported unstable cycles in
the bmc and mcrp module configurations, which both have
relatively low handshake periods.

VII. CONCLUSION

The presented cyclic path evaluation algorithm provides a
method to accurately evaluate cyclic timing path delay using
STA tools. Sources of error in the evaluation of cyclic timing
paths using STA tools to evaluate acyclic timing segments
are identified. A prefix slew characterization algorithm is

10

TABLE V
COMPARISON OF CYCLE CUT (CC) FLOW, CPE FLOW AND GOLDEN MODEL TIMING PATH EVALUATION.

1 2 3 4 5 6 7 8 9 10 11
Design Tgt. CSE Neg. Number Slew Difference Slew Difference Corr. Variation Diff. Variation Diff. Delay Diff. Delay Diff.

Prefix Cycles Updt. CPE CC vs. GM CPE vs. GM Var. CC vs. GM CPE vs. GM CC vs. GM CPE vs. GM
Depth (CC/CPE) (DFS/GD) (Min/Avg./Max) (Min/Avg./Max) (%) (Min/Avg./Max) (Min/Avg./Max) (Min/Avg./Max) (Min/Avg./Max)

Max Delay 0.3v:
bmc 6.89 2*/9 36.89/7.67 -11.59/-7.43/-1.79 0.00/ 0.00/0.00 57.14 93.26/172.06/268.92 0.00/0.00/0.00 -4.36/-2.71/-0.67 0.00/0.00/0.00
wchb 3.33 0/0 28.22/3.89 -7.28/-2.06/ 0.00 0.00/ 0.00/0.00 74.59 98.56/188.00/290.62 0.00/0.00/0.00 -1.35/-0.44/ 0.02 0.00/0.00/0.00
mtrp 2.56 0/0 24.00/2.89 -1.33/-0.51/ 0.00 0.00/ 0.00/0.00 72.29 91.44/165.03/236.04 0.00/0.00/0.00 -0.25/-0.09/ 0.00 0.00/0.00/0.00

mcrpsi 3.22 0/0 30.22/3.44 -1.96/-1.45/-0.79 0.00/ 0.00/0.00 73.91 88.72/188.58/319.53 0.00/0.00/0.00 -0.23/ 0.09/ 0.49 0.00/0.00/0.00
mcrp 3.67 6*/9 32.11/4.33 -8.50/-4.05/-0.34 0.00/ 0.00/0.00 66.39 92.31/189.81/311.45 0.00/0.00/0.00 -2.39/-1.07/-0.08 0.00/0.00/0.00

Min Delay 0.3v:
bmc 6.89 7*/6 36.89/7.67 -2.22/-0.83/ 0.00 0.00/ 0.00/0.00 57.18 96.65/173.15/263.22 0.00/0.00/0.00 -6.36/-2.22/-0.01 0.00/0.00/0.00
wchb 3.33 0/0 28.22/3.89 -0.54/-0.11/ 0.13 0.00/ 0.00/0.00 75.24 98.91/187.68/288.13 0.00/0.00/0.00 -2.32/-0.72/ 0.01 0.00/0.00/0.00
mtrp 2.56 0/0 24.00/2.89 -0.02/-0.01/ 0.00 0.00/ 0.00/0.00 74.86 95.04/171.98/248.36 0.00/0.00/0.00 -0.59/-0.21/ 0.00 0.00/0.00/0.00

mcrpsi 3.22 0/0 30.22/3.44 -0.24/-0.07/ 0.00 0.00/ 0.00/0.00 78.18 94.81/196.34/329.83 0.00/0.00/0.00 -1.44/-0.47/0.00 0.00/0.00/0.00
mcrp 3.67 9/9 32.11/4.33 -1.14/-0.37/ 0.00 0.00/ 0.00/0.00 70.25 95.40/194.13/315.91 0.00/0.00/0.00 -4.85/-1.61/-0.01 0.00/0.00/0.00

Max Delay 0.6v:
bmc 6.33 9/9 35.33/7.00 -9.07/-6.15/-1.28 0.00/ 0.00/0.00 59.55 93.85/173.65/272.26 0.00/0.00/0.00 -2.33/-1.57/-0.33 0.00/0.00/0.00
wchb 2.67 0/0 25.33/3.67 -6.59/-1.57/ 0.00 0.00/ 0.00/0.00 74.06 97.28/187.39/292.59 0.01/0.00/0.00 -0.68/-0.17/ 0.05 -0.01/0.00/0.00
mtrp 2.44 0/0 23.67/2.56 -1.18/-0.45/ 0.00 0.00/ 0.00/0.00 76.68 96.98/175.45/253.81 0.00/0.00/0.00 -0.14/-0.05/ 0.00 0.00/0.00/0.00

mcrpsi 2.44 0/0 27.00/2.89 -1.72/-1.22/-0.60 0.00/ 0.00/0.00 81.65 98.40/200.61/334.91 0.00/0.00/0.00 -0.25/-0.05/0.17 0.00/0.00/0.00
mcrp 3.56 9/9 31.56/4.11 -7.96/-3.00/ 0.00 0.00/ 0.00/0.00 68.49 97.26/192.73/334.79 0.01/0.00/0.00 -1.74/-0.54/ 0.01 0.00/0.00/0.00

Min Delay 0.6v:
bmc 6.33 9/9 35.33/7.00 -2.02/-0.79/-0.01 0.00/ 0.00/0.02 58.98 95.52/169.46/257.21 0.00/0.00/0.01 -4.72/-1.80/-0.01 0.00/0.00/0.01
wchb 2.67 0/0 25.33/3.67 -0.55/-0.07/ 0.11 0.00/ 0.00/0.00 74.54 97.61/186.57/289.16 0.00/0.00/0.00 -1.53/-0.46/ 0.00 0.00/0.00/0.00
mtrp 2.44 0/0 23.67/2.56 -0.02/-0.01/ 0.00 0.00/ 0.00/0.00 76.30 96.78/174.22/252.23 0.00/0.00/0.00 -0.46/-0.17/ 0.00 0.00/0.00/0.00

mcrpsi 2.44 0/0 27.00/2.89 -0.03/ 0.04/ 0.23 -0.04/-0.01/0.00 82.61 99.77/201.75/336.65 0.00/0.00/0.00 -0.96/-0.31/0.00 0.00/0.00/0.00
mcrp 3.56 9/9 31.56/4.11 -0.96/-0.29/ 0.20 0.00/ 0.00/0.00 69.56 97.54/193.28/328.32 0.00/0.00/0.00 -3.52/-1.11/0.03 0.00/0.00/0.00

TABLE VI
GOLDEN MODEL RESULTS.

1 2 3 4 5
Num. Golden Model Golden Model Golden Model

Design Gates slew (ps) Variation (ps) delay (ps)
Path (Min/Avg./Max) (Min/Avg./Max) (Min/Avg./Max)

Max Delay 0.3v:
bmc 19 1254.70/1520.91/1749.88 140.03/167.52/191.59 1205.13/1623.28/1623.28
wchb 19 650.06/ 876.74/1065.56 124.36/149.60/171.64 1172.24/1524.92/1524.92
mtrp 14 995.42/1120.21/1244.89 269.96/286.51/303.10 1766.09/2003.91/2003.91

mcrpsi 22 854.09/1025.10/1198.36 208.80/234.76/260.87 1679.80/1966.21/1966.21
mcrp 22 1483.13/1632.68/1790.19 124.49/136.67/149.96 1406.90/1633.15/1633.15

Min Delay 0.3v:
bmc 19 1006.19/1255.73/1475.74 89.74/107.60/123.83 1005.07/1391.05/1391.05
wchb 19 640.06/ 852.83/1034.87 92.72/109.77/124.94 1125.57/1460.21/1460.21
mtrp 14 979.59/1093.13/1211.81 179.56/190.23/201.36 1706.16/1930.62/1930.62

mcrpsi 22 717.47/ 890.39/1064.72 127.23/145.24/163.52 1448.47/1741.00/1741.00
mcrp 22 1483.13/1610.56/1756.09 98.48/105.83/114.50 1406.91/1610.26/1610.26

Max Delay 0.6v:
bmc 19 282.81/ 353.53/ 413.10 11.02/ 13.77/ 16.19 241.60/ 335.64/ 335.64
wchb 19 152.19/ 212.92/ 263.45 10.00/ 12.52/ 14.79 251.58/ 335.82/ 335.82
mtrp 14 231.08/ 271.83/ 311.69 21.62/ 23.61/ 25.54 379.14/ 445.19/ 445.19

mcrpsi 22 238.34/ 290.03/ 342.02 18.59/ 21.07/ 23.57 396.73/ 473.50/ 473.50
mcrp 22 300.11/ 351.45/ 401.83 8.89/ 10.95/ 13.08 272.75/ 336.87/ 336.87

Min Delay 0.6v:
bmc 19 237.27/ 303.12/ 360.80 8.30/ 10.43/ 12.40 210.36/ 296.82/ 296.82
wchb 19 150.19/ 206.63/ 255.08 8.76/ 10.73/ 12.56 247.40/ 326.56/ 326.56
mtrp 14 227.65/ 262.10/ 298.47 18.02/ 19.50/ 21.04 364.81/ 423.63/ 423.63

mcrpsi 22 189.57/ 241.44/ 293.98 13.17/ 15.30/ 17.48 330.95/ 409.35/ 409.35
mcrp 22 300.11/ 342.99/ 389.24 7.63/ 9.08/ 10.73 272.75/ 329.27/ 329.27

developed, which reduces sources of STA error by character-
izing prefix paths to calculate accurate slew values at timing
segment cuts.

The cycle stabilization algorithm presents a method to
report paths where STA results may be invalidated due to
cycle drafting conditions. The cycle stabilization algorithm
reported potential drafting conditions for the bmc and mcrp
designs in module configurations without inserted buffer or
delay elements.

The segment composition algorithm presents a method
to combine segment variation, which leverages path based
POCV derate across multiple timing segments and accounts
for covariance between multiple transitions on a gate. In
certain configurations the lack of slew characterization led
STA tools to underestimate max delay segments, which
can result in unmet timing constraints and result in incor-
rect circuit behavior. The CPE flow is applied to several
handshake controller circuits, and results show that slew
propagation and segment variation composition produces
results equivalent to the golden model.

Without using the CPE flow, maximum nominal delay
errors range from −4.72% to 0.49% and variation error
ranges from 88.72% to 334.91%. Nominal minimum delay
errors range from −6.36% to 0.03% and variation error range
from 94.81% to 336.65%. The greatest reported source of
pessimism is variation error, particularly at the near threshold
0.3V operating condition, where 3σ variation adds significant
path delay overhead.

The cyclic timing path evaluation flow has been shown
to accurately evaluate cyclic timing paths using STA tools
for different operating conditions, fanout loads, and for an
arbitrary number of timing cuts. The cyclic path evaluation
flow provides a step towards commercial STA support for
design methodologies that employ cyclic timing paths.

ACKNOWLEDGMENTS

This material is based upon work supported by the Granite
Mountain Technologies, Inc. The authors would like to thank
Daniel R. McCulley for his contributions to this work.

11

REFERENCES

[1] M. D. Riedel, “Cyclic Combinational Circuits,” Ph.D. dissertation,
California Institute of Technology, 2004.

[2] A. Winstanley and M. Greenstreet, “Temporal Properties of Self-Timed
Rings,” in Correct Hardware Design and Verification Methods, ser.
Lecture Notes in Computer Science. Springer, Aug 2001, pp. 140–
154.

[3] S. M. Burns, “Performance Analysis and Optimization of Asyn-
chronous Circuits,” Ph.D. dissertation, California Institute of Tech-
nology, USA, 1992.

[4] N. Xiromeritis, S. Simoglou, C. Sotiriou, and N. Sketopoulos, “Graph-
Based STA for Asynchronous Controllers,” in 29th International Sym-
posium on Power and Timing Modeling, Optimization and Simulation
(PATMOS), July 2019, pp. 9–16.

[5] W. Hua, Y.-S. Lu, K. Pingali, and R. Manohar, “Cyclone: A Static
Timing and Power Engine for Asynchronous Circuits,” in 26th Inter-
national Symposium on Asynchronous Circuits and Systems (ASYNC).
IEEE, May 2020, pp. 11–19.

[6] H. Hulgaard, S. M. Burns, T. Amon, and G. Borriello, “An Algorithm
for Exact Bounds on the Time Separation of Events in Concurrent
Systems,” IEEE Transactions on Computers, vol. 44, pp. 1306–1317,
nov 1995.

[7] J. C. Ebergen, S. Fairbanks, and I. E. Sutherland, “Predicting Perfor-
mance of Micropipelines Using Charlie Diagrams,” in Proceedings
of the Fourth International Symposium on Adanced Research in
Asynchronous Circuits and Systems. IEEE, March 1998, pp. 238–246.

[8] W. Lee, V. S. Vij, and K. S. Stevens, “Timing Path Driven Cycle
Cutting for Sequential Controllers,” The ACM Transactions on Design
Automation of Electronic Systems (TODAES), vol. 21,4, no. 64, pp.
1–25, Sept 2016.

[9] G. Gimenez, A. Cherkaoui, G. Cogniard, and L. Fesquet, “Static
Timing Analysis of Asynchronous Bundled-Data Circuits,” in 24th In-

ternational Symposium on Asynchronous Circuits and Systems. IEEE,
May 2018, pp. 110–118.

[10] W. Lee, T. Sharma, and K. S. Stevens, “Path Based Timing Validation
for Timed Asynchronous Design,” in The 29th International Confer-
ence on VLSI Design (VLSID). IEEE, Jan 2016, pp. 511–516.

[11] Synopsys, PrimeTime User Guide and Reference Manual, Synopsys,
Inc., 690 East Middlefield Road, Mountain View, CA 94043 USA,
2017.

[12] S. Walia, “PrimeTime Advanced OCV Technology,” Synopsys, Inc.,
White Paper, April 2009.

[13] Synopsys, Liberty User Guide and Reference Manual, Synopsys, Inc.,
690 East Middlefield Road, Mountain View, CA 94043 USA, 2017.

[14] T.-B. Chan, P. Gupta, A. B. Kahng, and L. Lai, “DDRO: A Novel
Performance Monitoring Methodology Based on Design-Dependent
Ring Oscillators,” in Thirteenth International Symposium on Quality
Electronic Design (ISQED), March 2012, pp. 633–640.

[15] P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, Analysis and
Design of Analog Integrated Circuits, 5th ed. John Wiley & Sons,
January 2009.

[16] D. Wackerly, W. Mendenhall, and R. L. Scheaffer, Mathematical
Statistics with Applications, 7th ed. Belmont, CA: Thomson
Brooks/Cole, January 2008.

[17] S. Mittal, “A Survey of Architectural Techniques for Managing
Process Variation,” ACM Computing Surveys (CSUR), vol. 48, no. 4,
pp. 1–29, May 2016.

[18] M. J. Wibbels and K. S. Stevens, “Causal Path Identification for
Timed and Sequential Circuits,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 41, no. 3, pp.
571–582, March 2022.

[19] R. Bellman, “On a Routing Problem,” Quarterly of Applied Mathe-
matics, vol. 16, no. 1, pp. 87–90, 1958.

[20] A. M. Lines, “Pipelined Asynchronous Circuits,” Master’s thesis,
California Institute of Technology, Pasadena, CA, 1998.

