
Concurrency and Process Logics

Ken Stevens

Language Review

E ::= A constant
| α .E prefixing
| ∑i∈I Ei summation
| E1 | E2 composition
| E[f] relabeling
| E\L restriction

LTS = (S,T ,{ t→: t ∈ T})
In composition, a label and colabel interact to form a single
indivisible communication action τ .

Transition Semantics

SORTS:

Definition: for any L⊆ L , if the actions of P and all its derivatives
lie in L∪{τ} then we say P has sort L, or L is a sort of P, and write
P:L.

Proposition: For every E and L, L is a sort of E if and only if,
whenever E α→ E ′, then

1. α ∈ L∪{τ}

2. L is a sort of E ′

Is l ∈ E??

Transition Semantics

SORTS:

Definition: for any L⊆ L , if the actions of P and all its derivatives
lie in L∪{τ} then we say P has sort L, or L is a sort of P, and write
P:L.

Proposition: For every E and L, L is a sort of E if and only if,
whenever E α→ E ′, then

1. α ∈ L∪{τ}

2. L is a sort of E ′

Is l ∈ E?? Undecidable!!

Syntactic Sort

Given constants L(A) and variables L(x), syntactic sort L(E) of
each agent expression E is defined as:

L(l.E) = {l}∪L(E)
L(τ .E) = L(E)
L(∑i∈I Ei) = ∪i∈IL(Ei)
L(E | F) = L(E)∪L(F)
L(E\L) = L(E)− (L∪L)
L(E[f]) = { f (l): l ∈ L(E)}
if A def= P = L(P)⊆ L(A)

Syntactic Sort

Proposition Let E α→ E ′ then

1. α ∈ L(E)∪{τ}

2. L(E ′)⊆ L(E)

Proof by transition induction

Example:

Foo = a.b.c.Nil ;
sort Foo = { a, b, c }
sort Foo \{b} = { a, c } <-- syntactic
min sort Foo \{b} = { a }

We will use min sort from here on out

Inference Proofs

((a.E +b.Nil) | a.F)\{a} τ→ (E | F)\{a}

Act ------------
a.E -a-> E

|
|

Sum1 -------------------- Act --------------
a.E + b.Nil -a-> E ’a.F -’a-> F

\ /
\ /

Com3 ---------------------------------
(a.E + b.Nil) | ’a.F -tau-> E|F

|
|

Res --
((a.E + b.Nil) | ’a.F)\{a} -tau-> (E|F)\{a}

Inference Proofs

Infer the action: (A | B)\{c} a→ (A′ | B)\{c}
Act --------------

a.A’ -a-> A’
|
|

Con -------------- (A =def=> a.A’)
A -a-> A’

|
|

Com1 --------------
A|B -a-> A’|B

|
|

Res --------------------------
(A|B)\{c} -a-> (A’|B)\{c}

SECTION 4

Classification of Combinators
Two classifications:

1. Static

l combinator remains after application – persistence
l only part that has changed are those that have derivative

actions
l “Operators on Flow Graphs”

2. Dynamic

l Combinator disappears after application – not persistent

The Expansion Law

l relates one group to another

l gives actions of static combinators in terms of themselves

Classification of Combinators

Static Composition
Restriction
Relabeling

Dynamic Act
Summation
Constants

Dynamic Laws

This allows us to axiomatize the language through equational
theory

Monoid Laws

(1) P+Q = Q+P (symmetric)
(2) P+(Q+R) = (P+Q)+R (associative)
(3) P+P = P
(4) P+Nil = P

When we write ‘=’ in the laws, we mean they have same
derivatives:
E1 = E2 E1

α→ E ′ iff E2
α→ E ′

Dynamic Laws
τ Laws

(1) α .τ .P = α .P
(2) P+ τ .P = τ .P
(3) α .(P+ τ .Q)+α .Q = α .(P+ τ .Q)

τ law (3) derivation trees (non-determinism of labels vs τ):

E1
�

�
�	

α @
@

@R

α

�
�
�

A
A

A

Q
�

�
�	

τ

�
�
�

A
A

A

P

�
�
�

A
A

A

Q

=

E2
@

@
@R

α

�
�

�	

τ

�
�
�

A
A

A

P

�
�
�

A
A

A

Q

Note: α-derivatives of 2 agents differ!
E1

α→ E ′ E2 6
α→ E ′ PROBLEM!!!

Dynamic Laws

Need a relation that supports E1
α→ Q′ and E1

α→ τ→ Q
as a native transition:

P α⇒ P′ if P(τ→)∗ α→ (τ→)∗P′

Note that (τ→)∗ is the transitive closure of τ actions (0 or more
τ→)

Prove with τ laws 2 and 3, so:
E1

α⇒ E ′ iff E2
α⇒ E ′

So
α⇒ derivatives are the same!!

Dynamic Laws

Now we can define an equivalence relation that holds given τ

transitions!

(3) α .(P+ τ .Q)+α .Q = α .(P+ τ .Q)

τ law (3) derivation trees (non-determinism of labels vs τ):

E1
�

�
�	

α @
@

@R

α

�
�
�

A
A

A

Q
�

�
�	

τ

�
�
�

A
A

A

P

�
�
�

A
A

A

Q

=

E2
@

@
@R

α

�
�

�	

τ

�
�
�

A
A

A

P

�
�
�

A
A

A

Q

Note: α-derivatives of 2 agents now the same!
E1

α⇒ E ′ E2
α⇒ E ′

Example Proof

α .(P+ τ .τ .P) = α .P

α .(P+ τ .P) τ(1)
α .τ .P τ(2)
α .P τ(1)

Why reject some laws?

Could we prove:

τ .P = P′ ??

Why reject some laws?

Could we prove:

if τ .P = P′

then a.P+ τ .b.Q = a.P+b.Q

if α .(P+Q) = α .P+α .Q (distributive)
then a.(b.P+ c.Q) = a.b.P+a.c.Q

Why reject some laws?

Could we prove:

if τ .P = P′

then a.P+ τ .b.Q = a.P+b.Q

if α .(P+Q) = α .P+α .Q (distributive)
then a.(b.P+ c.Q) = a.b.P+a.c.Q

These don’t make sense!

E1
α⇒ E ′ E2 6

α⇒ E ′

Note where the decision is made!

SECTION 5

Recursive Equations

1.
Assume A def= P where A occurs in P

Therefore P is of form E{A/X}

2. by defining A def= E{A/X} where E is agent expression, A is
constant, and X is a variable

3. intends A is a solution of equation X = E (variable is definition of
expression).

No time this term... Yay!!!

Expansion Law

Relates static and dynamic combinators – hierarchy and behavior.

Expansion Law derives actions of agents in standard concurrent
form.

Standard concurrent form: (P1 | . . . | Pn)\L

Example:
(Jobber | Jobber | Hammer |Mallet)\{getm, putm,geth, puth}
Many times Pi’s are purely sequential, i.e. prefix and summation
only.

Hardware agents at the lowest level (e.g. NAND gate)

Expansion law will derive all derivative actions from current
expression.

Expansion Law

Two forms of actions from transitional laws:

l α of a single component, and α 6∈ L∪L

(P1[f1] | . . . | Pi[fi] | . . . | Pn[fn])\L α→
(P1[f1] | . . . | P′i [fi] | . . . | Pn[fn])\L

Only change is in ith component.

l τ action

Pi
l1→ and Pj

l2→ (1≤ i < j ≤ n)
where fi(l1) = f j(l2)

(P1[f1] | . . . | Pi[fi] | . . . | Pj[f j] | . . . | Pn[fn])\L τ→
(P1[f1] | . . . | P′i [fi] | . . . | P′j[f j] | . . . | Pn[fn])\L

Exactly two components have changed.

Expansion Law

Formally:

let P = (P1[f1] | . . . | Pn[fn])\L with n≥ 1 then

P = ∑{ fi(α).(P1[f1] | . . . | P′i [fi] | . . . | Pn[fn])\L :

Pi
α→ P′i , fi(α) 6∈ L∪L}

+∑{τ .(P1[f1] | . . . | P′i [fi] | . . . | P′j[f j] | . . . | Pn[fn])\L :

Pi
l1→ P′i , Pj

l2→ P′j, fi(l1) = f j(l2), i < j}
Simplifying for clarity such that P[f] = P

let P = (P1 | . . . | Pn)\L with n≥ 1 then

P = ∑{α .(P1 | . . . | P′i | . . . | Pn)\L : Pi
α→ P′i , α 6∈ L∪L}

+∑{τ .(P1 | . . . | P′i | . . . | P′j | . . . | Pn)\L :

Pi
l1→ P′i , Pj

l2→ P′j, l1 = l2, i < j}

Expansion Law

“artificial” example from Milner:

P1 = a.P′1 +b.P′′1
P2 = a.P′2 + c.P′′2
P = (P1 | P2)\a

So, P = b.(P′′1 | P2)\a+ c.(P1 | P′′2)\a+ τ .(P′1 | P′2)\a

Further, assume

P3 = a.P′3 + c.P′′3
Q = (P1 | P2 | P3)\{a,b}
(substituting L for {a,b}):

Q = c.(P1 | P′′2 | P3)\L+ c.(P1 | P2 | P′′3)\L
+τ .(P′1 | P′2 | P3)\L+ τ .(P′1 | P2 | P′3)\L+ τ .(P1 | P′′2 | P′′3)\L

Expansion Law Example

a s��
��
A s c c s��

��
B s b

A def= a.A′ B def= c.B′

A′ def= c.A B′ def= b.B
Argued informally

(A | B)\c = a.D where D def= a.b.D+b.a.D

Formally, apply expansion law:

(A | B)\c = a.(A′ | B)\c
(A′ | B)\c = τ .(A | B′)\c
(A | B′)\c = a.(A′ | B′)\c+(A | B)\c
(A′ | B′)\c = b.(A′ | B)\c

Applying α .τ .P = α .P

(A | B′) = D
so (A | B) = a.(A | B′)

Expansion Law Example
By using Constant definitions, we can now turn hierarchcial
description into a canonical form:

a s��
��
A s c c s��

��
B s b

A def= a.A′ B def= c.B′

A′ def= c.A B′ def= b.B

(A | B)\c = E

where

E = a.E1

E1 = a.E2 +b.E
E2 = b.E1

(E is the minimized form of (A | B))

SECTION 6

Classification of Combinators

Static Composition
Restriction
Relabeling

Dynamic Act
Summation
Constants

The Static Laws

“Algebra of Flow Graphs”

l inner labels vs. outer labels

u “library parts”, connected with relabeling

l connected via l, l

Static laws:

l P | Q – joining every pair of ports with complementary labels

l P\L – erasing outer label l, l from P.∀l ∈ L

l P[f] – apply function f to all outer labels

The Static Laws

Composition Axiomitization

(1) P | Q = Q | P (symmetric)
(2) P | (Q | R) = (P | Q) | R (associative)
(3) P | Nil = P

The Static Laws

Restriction Axiomatization

(1) P\L = P
if L(P)∩ (L∪L) = /0 (vacuous)

(2) P\K\L = P\(K∪L)
(3) P[f]\L = P\ f−1(L)[f] (commutative∗)
(4) (P | Q)\L = P\L | Q\L

if L(P)∩L(Q)∩ (L∪L) = /0 (distributive+)

∗: restriction and relabeling commute with some adjustment:
f−1(L) = {l: f (l) ∈ L}
+: restriction distributes over composition only if communications
will not be restricted.

Static Laws

Examples

Assume FIFO is relabeled to use mid1 and mid2 for
communication.

Then

(2):(FIFO | FIFO | FIFO)\{mid1}\{mid2}= \{mid1,mid2}
(4):(FIFO | FIFO)\{mid1} 6= FIFO\{mid1} | FIFO\{mid1}

The Static Laws
Relabeling Axiomatization

(1) P[Id] = P (identity fn)
(2) P[f] = P[f ′]

if f � L(P) = f ′ � L(P)
(3) P[f][f ′] = P[f ′ ◦ f]
(4) (P | Q)[f] = P[f] | Q[f]

if f � (L∪L) is one-to-one
and where L = L(P | Q)

Symbol � restricts function to domain L(P)

Symbol ◦ represents function composition: f ′(f (x))

(4) is true if this will not create extra complementary port pairs.

f is one-to-one implies iff x 6= y implies f (x) 6= f (y)

The Static Laws
Examples:

agent FIFO = a.’b.FIFO ;

(2): FIFO[mid1/b] = FIFO[mid1/b, mid2/g]

(3): FIFO[g/b][mid1/g] != FIFO[g/b, mid1/g]

Usually [l′i/li, . . . , l′n/ln], l′∨ l distinct, l′i, l
′
i 6∈ L(P)

in this case, prop(4) usually applicable.
also for this case

[l′i/li, . . . , l′n/ln] = [l′n/ln]◦ . . .◦ [l′i/li]
so
P[l′i/li, . . . , l′n/ln] = P[l′n/ln] . . . [l′i/li] by prop(4)

SECTION 6

Linear Time / Branching Time

Process Theory

Processes: The behavior of a system, machine, particle,
protocol, etc.

E.g.: network of falling dominoes, chess players, etc.

Two activitites:

Modeling: Representing processes as elements of a
mathematical domain �properties� or expressions in a
system description language llbehavioralgg.

Verification: Proving statements about processes
E.g.: whether two processes behave similarly, whether they have

certain properties, (liveness, deadlock, etc.)

The verification constitutes the semantics of the laguage!

Comparative Concurrency Semantics

Process semantics are partially order by the relation:

“makes strictly more identifications on processes than”

truly creating a lattice of language strengths.

Comparative Concurrency Semantics
Semantic Notions of

Contemporary Process Theory

l Linear Time vs Branching Time
“trace runs” “internal branching structure”
To what extent should branching structure of execution path
effect equality?

l Interleaving semantics vs Partial Orders
To what extent should one identify processes differing in causal
dependencies (while agreeing on possible orders of execution)?

l Abstractions to internal actions
To what extent should we differentiate between processes
differing only in internal or silent actions?

Comparative Concurrency Semantics

Semantic Notions of
Contemporary Process Theory

l Infinity
What differences occur only in treating infinite behavior?

l Stochastic

l Real Time

l “Uniform Concurrency”
Actions α , β , . . . are not subject to further scrutiny.
E.g.: Assignments to variables, moon launch, falling dominoes,
signal voltage transition.

Comparative Concurrency Semantics
Limit to simple subset of above:

l Uniform concurrency

u actions not subject to further scrutiny

l Sequential processes

u Processes can perform one action at a time

l Finite Branching

u from all states

l External observation

u drop internal actions: CSP
u “concrete” processes without internal actions: vanGlabeek
u Modeled internal actions: CCS

Linear / Branching Time Spectrum
bisimulation

?

2-nested simulation
#

#
#

#
#

#
##	

?

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

QQs

ready simulation

?
possible failures

?

ready trace
!!!!!!!!�

aaaaaaaaj

readiness
aaaaaaaaj

failure trace
!!!!!!!!�

simulation
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��+

failure

?

complete trace

?

trace

Linear / Branching Time Spectrum

l bisimulation

u CCS: (park), observational equivalence (Hennesey & Milner,
strong bisimulation all coincide on LTBT spectrum.

l 2-nested simulation

u (Groote & Vaancrager)

l ready simulation

u (bloom, Istrail, Meyer) “GSOS Trace Congruence”
(Larsen/Skou) “2/3 bisimulation equivalence”

l ready trace

u (pnuelli) called “barbed semantics”, also (Baeten Bergstom
Klop) as “exhibited behavior semantics”

Linear / Branching Time Spectrum

l readiness

u (Olerog, Hoar) slightly finer than failures

l failure trace

u (philips) refusal semantics, must equiv in CWB

l Simulation

u (park) independent of 5 semantics to left of lattice

l failure

u CSP: (Brooks, Hoare, Roscoe), testing equivalence
(DeNicola/Hennesey) for LTBT systems

Linear / Branching Time Spectrum

l complete trace

u may equivalence in CWB

l Trace

u (Hoar) – partial traces okay

Equivalences

On-board example of Job Shop

Look at Four Equivalences

l (weak)(complete) Trace Equivalence =t

u simple
u not generally useful in arbitrary processes since it equates agents with

different deadlock properties.

l Strong Equivalence ∼
u useful but too strong
u makes too many distinctions between agents

l Observation Equivalence (Bisimulation) ≈
u The preferred notion of equivalence between agents
u . . . except that is is not a congruence (for summation).

n Thus it does not admit equational reasoning

l Observational Congruence =

Look at Four Equivalences

The relationship of these four equivalence relations:
P1 ∼ P2 ⊃ P1 = P2 ⊃ P1 ≈ P2 ⊃ P1 =t P2

All implications are proper

Venn diagrams complete inclusion

