RECONFIGURABLE PATTERN GENERATOR CHIPS (MS THESIS)

Project Overview

This is joint project between the University of Utah and Case Western Reserve University. The aims of the project are two-fold: 1) study reconfigurable central pattern generators and develop mathematical models that adequately describe their operation, and 2) develop and characterize an analog VLSI implementation of the pattern generators. The first portion of the project is being conducted by researchers at Case Western (PIs: Randall Beer and Hillel Chiel). The second portion of the project is being conducted here at the University of Utah (PI: Reid Harrison).

CPGs are relatively small neural networks found in the spinal cord of all animals. CPGs are responsible for creating the rhythmic patterns of motor activity necessary for common animal behaviors such as walking, swimming, breathing etc. It has been shown that in the absence of sensory input CPGs are capable of generating the basic pattern of motor activity which results in walking in cats. Moreover, it has been observed that CPGs with fixed neural connectivity can create multiple stable patterns of motor activity.
 

Modeling

Many options are available for modeling neurons and neural networks. Some models strive to capture the spiking nature of real neurons in hopes of exploiting the timing relationships among many neurons. At the opposite end of the spectrum are the so-called 'mean rate' models which assume that the information of interest is encoded by a neuron's average firing rate. For this work the Continuous-time Recurrent Neural Network (CTRNN) model, a mean rate model, was chosen. Each CTRNN neuron is described by a first-order differential equation
where yi is the state of the ith neuron,i is the time constant of the ith neuron, wij is the synaptic weight from the jth neuron to the ith neuron, j is the bias value for the jth neuron, and (x) is the logistic sigmoid function,
and Ii is an unweighted input. The neuron states, yi, can be thought of as modeling the mean cellular membrane potential of a biological neuron. In biological neurons, the instantaneous value of the membrane potential determines when the neuron will fire an action potential (spike). In many systems information is encoded by the rate at which a neuron fires action potentials. Models such as CTRNNs make the assumption that the average firing rate, not the individual spikes, carries the information. It further assumes that the neurons have some maximum firing rate (this assumption is directly supported by experiment). Therefore, the output of each neuron in a CTRNN is defined to be (yii).

Block diagram of a CTRNN neuron
Block diagram of a CTRNN neuron (the Ii input is omitted)

Notice that as the name implies CTRNNs allow for fully interconnected networks with recurrent (self) connections. For this reason, CTRNNs exhibit rich dynamical behavior. Of particular interest in this project are the stable limit cycles that may by encoded into a CTRNN. Typically, the weights, biases, and time constants of a given network are determined through the use of a genetic algorithm. Once the network parameters are determined, they remain fixed i.e. no on-line learning takes place. Rather, inputs may be applied to the network via each neuron?s Ii input in order to effect change in the network's activity. This can most easily be seen through an example.
 

Reconfigurability Example

Consider a three neuron network with fixed parameters (connectivity) and one external input. If the outputs of the neurons are plotted in 3D state-space, we can see that two stable limit cycles exisit. You can click on the figure to view an animation of the figure as it rotates. The figure shows that the system began with zero initial conditions and quickly slipped into a stable limit cycle. After some time, the I1 input was pulsed with a value of 10 and the system followed a new trajectory to a new region of the state space. After, the stimulus on I1 is removed, the system again settles into a limit cycle. However, the shape of the limit cycle has been distorted because it is located in a different region of the state space.
Two Stable Limit Cycles 3D
Perhaps the best way to visualize the state space is though the use of a direction field and a thorough examination of the system equilibria as revealed by the intersection of system's nullsurfaces. However, for a 3D system, the nullsurfaces and hence equilibrium solutions are complicated and a bit hard to plot in a way that is easy to interpret.

Fortunately, all is not lost. When the limit cycles are examined in the 3D animation, one may observe that they are relatively flat with respect to neuron 1's membrane potential. Suppose we deal with a series of 2D slices through the 3D state space as the system evolves in time. This would allow us to see how the state space is distorted as a function of neuron 1's membrane potential. The direction information along neuron 1's axis would still be absent of course, but that along the other two neurons's axes would be preserved.

The following figure is a snapshot of a movie (click on the figure to view the movie) that illustrates the evolution of the three neuron system in time.

Snapshot of the evolution of a three neuron system

Several graphs are shown:
The large plot on the top represents state space slice described above. The direction field is indicated using a series of red and blue lines. The red half of the line indicates the direction and the total length of the line segment is representative of the local spatial rate of change (spatial derivative). The dashed magenta and green lines represent the intersections between the neuron 2 and neuron 3 nullsurfaces and the 2D state space slice. The intersection of these two nullsurfaces is marked as an unstable spiral and this behavior is confirmed by the surrounding direction field. Projections of limit cycles near the current slice are indicated in blue and the 10 most recent samples of the system trajectory are indicated by the moving black dots. Finally, the current value of neuron 1's membrane potential is indicated along with the current time in the upper left of the graph.

The three plots on the bottom left of the figure are simply the neuron membrane potentials plotted versus time. Note that time units are arbitrary here. In the upper left plot, which corresponds to neuron 1's membrane potential, the I1 signal is plotted in red.

The three plots on the bottom right show the neuron outputs. Recall that CTRNNs model the mean firing rate of the neurons, therefore the plots in the bottom right represent mean firing rate, normalized to the maximum possible firing rate.
 

The Chips

I have designed two chips to implement four-neuron CTRNNs. The first chip, neuralnet1, made use of external RC networks to implement the dynamics of the CTRNN neurons. The main focus of the chip was the development of a compact, current-mode programmable synapse. For the second chip, I eliminated the external RC networks to realize a fully-integrated CTRNN chip. Both chips contained four fully-interconnected neurons with programmable weights and biases. They were fabricated through MOSIS using AMI's 1.5-µm process.

neuralnet1

The neuralnet1 chip uses a mix of internal and external components to implement the CTRNN neurons. The programmable synapses, input summing, and logistic sigmoid circuits are on-chip while the low-pass filter is realized by an off-chip RC-network. The low-pass filter is located off-chip for two reasons: 1) it functions simultaneously as a LPF and an I-to-V converter and wide linear range I-to-V converters are difficult to realize in subthreshold CMOS, 2) the primary objective of the chip is to develop digitally programmable synapses and including integrated LPF circuitry might make it difficult to characterize the synapses.

Schematic of neuron 1 in the four neuron network on the neuralnet1 chip
Schematic of neuron 1 in the four neuron network on the neuralnet1 chip

The basic schematic of one neuron on the neuralnet1 chip is shown above. The synapses (labeled MDAC) are passive current-mode digital-to-analog converters. The reference currents for the DACs are taken from 4:1 current mirror copies of the output currents from the other neurons i.e. they are wired as multiplying DACs (MDACs).  The MDACs have 5-bit precision and are capable of storing positive and negative (excititory and inhibitory) weights. Details of the MDAC implementation and characterization and the overall performance of the network will be available in an upcoming paper to be published at ISCAS 2004.
 

Die Photos
The chip contains two test circuits (a DAC and a sigmoid circuit), a fully-programmable four neuron network, and a hard-wired two neuron network. It was layed out using Tanner's place and route tool because of time constraints.

neuralnet1 die photo                            neuralnet1 die photo labelled
         neuralnet1 die                                neuralnet1 labelled die

neuralnet2

The neuralnet2 chip eliminates the need for external RC networks. Two operational transconductance amplifiers (OTAs) and an integrated capacitor array replace implement the I-to-V converter and low-pass filter functions. The low-pass filter time constants are made independently programmable by using an MDAC circuit to control the bias current in the low-pass filter OTA. More details and schematics to come soon.
 
Die Photos
The chip contains several test structures: two types of MDACs, two types of OTAs, a sigmoid circuit, and a translinear CMOS 1/x circuit. The test structures are in the upper left and lower rigtht corners of the die. The four blocks on the lower left of the die are large 80:1 output current mirrors for the neuron outputs.

A four-neuron CTRNN is located in the center of the chip. This chip was layed out by hand and incorporates a large bus structure that saves alot a routing space (space that was wasted in the neuralnet1 chip). The capacitor array can be seen in the center of the chip. It contains 160 1-pF poly-poly caps. The circuitry for each neuron can be seen surrounding the capacitor array with one neuron per side.  Most of the neuron area is taken up by the MDACs. The OTAs and sigmoid circuit are located between the MDACs and the capacitor array.

neuralnet2 die photo                                neuralnet2 die photo labelled
        neuralnet2 die                                     neuralnet2 labelled die



Copyright © 2004 by Ryan Kier. All Rights Reserved.