
ECE/CS 3700
Digital System Design

Chapter 3: Fast Adders and Multipliers

Priyank Kalla
Professor

Electrical & Computer Engineering

Problems with Ripple Carry Adders
• Ripple carry adders are compact, simple to design and

implement, and there is uniformity of design fabrication

• Ripple carry adders can be slow, when the carry ripples
all the way across the carry chain

Figure	3.5.			An	n-bit	ripple-carry	adder.

FA

x n – 1

c n c n 1 ”

y n 1 –

s n 1 –

FA

x 1

c 2

y 1

s 1

FA
c 1

x 0 y 0

s 0

c 0

MSB position LSB position

0 0 0 1 0 1 1 1

c i
1

+

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

c i
x i

y i

00
01

11
10

0 1

x i y i
c i

1

1

1

1

s i
x i

y i
c i

⊕

⊕

=

00
01

11
10

0 1

x i y i
c i

1

1
1

1

c i
1

+
x i y i

x i c i
y i c i

+
+

=

c i

x i

y i
s i

c i
1

+

(a) Truth table

(b) Karnaugh m
aps

(c) C
ircuit

0 1 1 0 1 0 0 1 s i

0 0 0 1 0 1 1 1

c i
1

+

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

c i
x i

y i

00
01

11
10

0 1

x i y i
c i

1

1

1

1

s i
x i

y i
c i

⊕

⊕

=

00
01

11
10

0 1

x i y i
c i

1

1
1

1

c i
1

+
x i y i

x i c i
y i c i

+
+

=

c i

x i

y i
s i

c i
1

+

(a) Truth table

(b) Karnaugh m
aps

(c) C
ircuit

0 1 1 0 1 0 0 1 s i

0 0 0 1 0 1 1 1

c i
1

+

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

c i
x i

y i

00
01

11
10

0 1

x i y i
c i

1

1

1

1

s i
x i

y i
c i

⊕

⊕

=

00
01

11
10

0 1

x i y i
c i

1

1
1

1

c i
1

+
x i y i

x i c i
y i c i

+
+

=

c i

x i

y i
s i

c i
1

+

(a) Truth table

(b) Karnaugh m
aps

(c) C
ircuit

0 1 1 0 1 0 0 1 s i

• Observation:

• Carry-out of each stage relies on carry-in of the previous stage

• This creates a multi-level logic circuit, where levels = topological depth = gate delay

• Objective to Speed-up the circuits:

• Can we have the carry-out of each stage rely mostly on the primary inputs of previous

 stages?

• Example: can we have carry-out(stage 2) = F(x2, y2, x1, y1, x0, y0, c0)?
• Then, � does not have to wait for � (cause of the delay)ci+1 ci

Towards a Faster Circuit
• Since carry-chains are a culprit, target the � signal:ci+1

December 31, 2012 09:12 vra80547_ch03 Sheet number 26 Page number 146 magenta black

146 C H A P T E R 3 • Number Representation and Arithmetic Circuits

3.4.1 Carry-Lookahead Adder

To reduce the delay caused by the effect of carry propagation through the ripple-carry adder,
we can attempt to evaluate quickly for each stage whether the carry-in from the previous
stage will have a value 0 or 1. If a correct evaluation can be made in a relatively short time,
then the performance of the complete adder will be improved.

From Figure 3.3b the carry-out function for stage i can be realized as

ci+1 = xiyi + xici + yici

If we factor this expression as

ci+1 = xiyi + (xi + yi)ci

then it can be written as

ci+1 = gi + pici [3.3]

where

gi = xiyi

pi = xi + yi

The function gi is equal to 1 when both inputs xi and yi are equal to 1, regardless of the value
of the incoming carry to this stage, ci. Since in this case stage i is guaranteed to generate
a carry-out, g is called the generate function. The function pi is equal to 1 when at least
one of the inputs xi and yi is equal to 1. In this case a carry-out is produced if ci = 1. The
effect is that the carry-in of 1 is propagated through stage i; hence pi is called the propagate
function.

Expanding the expression 3.3 in terms of stage i − 1 gives

ci+1 = gi + pi(gi−1 + pi−1ci−1)

= gi + pigi−1 + pipi−1ci−1

The same expansion for other stages, ending with stage 0, gives

ci+1 = gi + pigi−1 + pipi−1gi−2 + · · · + pipi−1 · · · p2p1g0 + pipi−1 · · · p1p0c0 [3.4]

This expression represents a two-level AND-OR circuit in which ci+1 is evaluated very
quickly. An adder based on this expression is called a carry-lookahead adder.

To appreciate the physical meaning of expression 3.4, it is instructive to consider its
effect on the construction of a fast adder in comparison with the details of the ripple-
carry adder. We will do so by examining the detailed structure of the two stages that add
the least-significant bits, namely, stages 0 and 1. Figure 3.14 shows the first two stages
of a ripple-carry adder in which the carry-out functions are implemented as indicated in
expression 3.3. Each stage is essentially the circuit from Figure 3.3c except that an extra
OR gate is used (which produces the pi signal), instead of an AND gate because we factored
the sum-of-products expression for ci+1.

x 1 y 1

g 1 p 1

s 1

Stage 1

x 0 y 0

g 0 p 0

s 0

Stage 0

c 0
c 1 c 2

Figure	3.14.			A	ripple-carry	adder	based	on	Expression	3.3.

N
ot

 a
 fa

st
 a

dd
er

 ju
st

 y
et

, s
til

l a
 ri

pp
le

-c
ar

ry
 a

dd
er

Towards a Faster Circuit
• Since carry-chains are a culprit, target the � signal:ci+1

December 31, 2012 09:12 vra80547_ch03 Sheet number 26 Page number 146 magenta black

146 C H A P T E R 3 • Number Representation and Arithmetic Circuits

3.4.1 Carry-Lookahead Adder

To reduce the delay caused by the effect of carry propagation through the ripple-carry adder,
we can attempt to evaluate quickly for each stage whether the carry-in from the previous
stage will have a value 0 or 1. If a correct evaluation can be made in a relatively short time,
then the performance of the complete adder will be improved.

From Figure 3.3b the carry-out function for stage i can be realized as

ci+1 = xiyi + xici + yici

If we factor this expression as

ci+1 = xiyi + (xi + yi)ci

then it can be written as

ci+1 = gi + pici [3.3]

where

gi = xiyi

pi = xi + yi

The function gi is equal to 1 when both inputs xi and yi are equal to 1, regardless of the value
of the incoming carry to this stage, ci. Since in this case stage i is guaranteed to generate
a carry-out, g is called the generate function. The function pi is equal to 1 when at least
one of the inputs xi and yi is equal to 1. In this case a carry-out is produced if ci = 1. The
effect is that the carry-in of 1 is propagated through stage i; hence pi is called the propagate
function.

Expanding the expression 3.3 in terms of stage i − 1 gives

ci+1 = gi + pi(gi−1 + pi−1ci−1)

= gi + pigi−1 + pipi−1ci−1

The same expansion for other stages, ending with stage 0, gives

ci+1 = gi + pigi−1 + pipi−1gi−2 + · · · + pipi−1 · · · p2p1g0 + pipi−1 · · · p1p0c0 [3.4]

This expression represents a two-level AND-OR circuit in which ci+1 is evaluated very
quickly. An adder based on this expression is called a carry-lookahead adder.

To appreciate the physical meaning of expression 3.4, it is instructive to consider its
effect on the construction of a fast adder in comparison with the details of the ripple-
carry adder. We will do so by examining the detailed structure of the two stages that add
the least-significant bits, namely, stages 0 and 1. Figure 3.14 shows the first two stages
of a ripple-carry adder in which the carry-out functions are implemented as indicated in
expression 3.3. Each stage is essentially the circuit from Figure 3.3c except that an extra
OR gate is used (which produces the pi signal), instead of an AND gate because we factored
the sum-of-products expression for ci+1.

December 31, 2012 09:12 vra80547_ch03 Sheet number 26 Page number 146 magenta black

146 C H A P T E R 3 • Number Representation and Arithmetic Circuits

3.4.1 Carry-Lookahead Adder

To reduce the delay caused by the effect of carry propagation through the ripple-carry adder,
we can attempt to evaluate quickly for each stage whether the carry-in from the previous
stage will have a value 0 or 1. If a correct evaluation can be made in a relatively short time,
then the performance of the complete adder will be improved.

From Figure 3.3b the carry-out function for stage i can be realized as

ci+1 = xiyi + xici + yici

If we factor this expression as

ci+1 = xiyi + (xi + yi)ci

then it can be written as

ci+1 = gi + pici [3.3]

where

gi = xiyi

pi = xi + yi

The function gi is equal to 1 when both inputs xi and yi are equal to 1, regardless of the value
of the incoming carry to this stage, ci. Since in this case stage i is guaranteed to generate
a carry-out, g is called the generate function. The function pi is equal to 1 when at least
one of the inputs xi and yi is equal to 1. In this case a carry-out is produced if ci = 1. The
effect is that the carry-in of 1 is propagated through stage i; hence pi is called the propagate
function.

Expanding the expression 3.3 in terms of stage i − 1 gives

ci+1 = gi + pi(gi−1 + pi−1ci−1)

= gi + pigi−1 + pipi−1ci−1

The same expansion for other stages, ending with stage 0, gives

ci+1 = gi + pigi−1 + pipi−1gi−2 + · · · + pipi−1 · · · p2p1g0 + pipi−1 · · · p1p0c0 [3.4]

This expression represents a two-level AND-OR circuit in which ci+1 is evaluated very
quickly. An adder based on this expression is called a carry-lookahead adder.

To appreciate the physical meaning of expression 3.4, it is instructive to consider its
effect on the construction of a fast adder in comparison with the details of the ripple-
carry adder. We will do so by examining the detailed structure of the two stages that add
the least-significant bits, namely, stages 0 and 1. Figure 3.14 shows the first two stages
of a ripple-carry adder in which the carry-out functions are implemented as indicated in
expression 3.3. Each stage is essentially the circuit from Figure 3.3c except that an extra
OR gate is used (which produces the pi signal), instead of an AND gate because we factored
the sum-of-products expression for ci+1.

c1 = g0 + p0 ⋅ c0
c2 = g1 + g0 ⋅ p1 + p1 ⋅ p0 ⋅ c0
c3 = g2 + g1 ⋅ p2 + g0 ⋅ p1 ⋅ p2 + p2 ⋅ p1 ⋅ p0 ⋅ c0

Specifically, for 3 stage ripple-carry adder:

December 31, 2012 09:12 vra80547_ch03 Sheet number 28 Page number 148 magenta black

148 C H A P T E R 3 • Number Representation and Arithmetic Circuits

x1 y1

g 1 p1

s1

x0 y0

s0

c2

x0 y0

c0

c1

g 0 p0

Figure 3.15 The first two stages of a carry-lookahead adder.

cn would also be produced after only three gate delays because expression 3.4 is just a large
two-level (AND-OR) circuit.

The total delay in the n -bit carry-lookahead adder is four gate delays. The values of
all gi and p i signals are determined after one gate delay. It takes two more gate delays to
evaluate all carry signals. Finally, it takes one more gate delay (XOR) to generate all sum
bits. The key to the good performance of the adder is quick evaluation of carry signals.

The complexity of an n -bit carry-lookahead adder increases rapidly as n becomes larger.
To reduce the complexity, we can use a hierarchical approach in designing large adders.
Suppose that we want to design a 32-bit adder. We can divide this adder into 4 eight-bit
blocks, such that block 0 adds bits 7 . . . 0, block 1 adds bits 15 . . . 8, block 2 adds bits
23 . . . 16, and block 3 adds bits 31 . . . 24. Then we can implement each block as an
eight-bit carry-lookahead adder. The carry-out signals from the four blocks are c8, c16, c24,

c1 = g0 + p0 ⋅ c0
c2 = g1 + g0 ⋅ p1 + p1 ⋅ p0 ⋅ c0
c3 = g2 + g1 ⋅ p2 + g0 ⋅ p1 ⋅ p2 + p2 ⋅ p1 ⋅ p0 ⋅ c0

Carry Lookahead Adder
Design for Lab 2

• Design the logic in such a way that the topological depth for each
carry-out is 3-levels

• Use assign statements:

December 31, 2012 09:12 vra80547_ch03 Sheet number 29 Page number 149 magenta black

3.4 Fast Adders 149

Block

x31 24–

c32 c24

y31 24–

s31 24–

x15 8–

c16

y15 8–

s15 8–

c8

x7 0– y7 0–

s7 0–

c03
Block

1
Block

0

Figure 3.16 A hierarchical carry-lookahead adder with ripple-carry between blocks.

and c32. Now we have two possibilities. We can connect the four blocks as four stages in a
ripple-carry adder. Thus while carry-lookahead is used within each block, the carries ripple
between the blocks. This circuit is illustrated in Figure 3.16.

Instead of using a ripple-carry approach between blocks, a faster circuit can be designed
in which a second-level carry-lookahead is performed to produce quickly the carry signals
between blocks. The structure of this “hierarchical carry-lookahead adder” is shown in
Figure 3.17. Each block in the top row includes an eight-bit carry-lookahead adder, based
on generate and propagate signals for each stage in the block, as discussed before. However,
instead of producing a carry-out signal from the most-significant bit of the block, each block
produces generate and propagate signals for the entire block. Let Gj and Pj denote these
signals for each block j. Now Gj and Pj can be used as inputs to a second-level carry-
lookahead circuit at the bottom of Figure 3.17, which evaluates all carries between blocks.
We can derive the block generate and propagate signals for block 0 by examining the
expression for c8

c8 = g7 + p 7g6 + p 7p 6g5 + p 7p 6p 5g4 + p 7p 6p 5p 4g3 + p 7p 6p 5p 4p 3g2

+ p 7p 6p 5p 4p 3p 2g1 + p 7p 6p 5p 4p 3p 2p 1g0 + p 7p 6p 5p 4p 3p 2p 1p 0c0

The last term in this expression specifies that, if all eight propagate functions are 1, then
the carry-in c0 is propagated through the entire block. Hence

P0 = p 7p 6p 5p 4p 3p 2p 1p 0

The rest of the terms in the expression for c8 represent all other cases when the block
produces a carry-out. Thus

G0 = g7 + p 7g6 + p 7p 6g5 + · · · + p 7p 6p 5p 4p 3p 2p 1g0

The expression for c8 in the hierarchical adder is given by

c8 = G0 + P0c0

For block 1 the expressions for G1 and P1 have the same form as for G0 and P0 except that
each subscript i is replaced by i + 8. The expressions for G2, P2, G3, and P3 are derived in

• � is a look-ahead carry

• �

• But � ripples to the next block

• �

• And so on..

c8

c8 = g7 + g6p7 + g5p6p7 + … + p7⋯p0 ⋅ c0

c8

c16 = g15 + g14p15 + … + p15 ⋅ p8 ⋅ c8

Figure	3.34.	Multiplication	of	unsigned	numbers.

Figure	3.35.			A	4x4	multiplier	circuit.

