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Agenda:

Wish to build a polynomial algebra model for hardware

Modulo arithmetic model is versatile: can represent both bit-level and
word-level constraints

To build the algebraic/modulo arithmetic model:

Rings, Fields, Modulo arithmetic
Polynomials, Polynomial functions, Polynomial Rings
Ideals, Varieties, Symbolic Computing and Gröbner Bases
Decision procedures in verification
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Consolidating the results so far....

Ideal J = 〈f1, . . . , fs〉 ⊆ R = F[x1, . . . , xd ] generated by any set of
polynomials f1, . . . , fs

J = 〈f1, . . . , fs〉 = {
∑s

i=1 fi · hi : hi ∈ R}

Many ideal generators: J = 〈f1, . . . , fs〉 = · · · = 〈g1, . . . , gt〉
Given: F = {f1, . . . , fs} ∈ R

Gröbner basis: G = {g1, . . . , gt} a canonical representation of ideal
J = 〈F 〉 = 〈G〉
Buchberger’s algorithm computes a Gröbner basis, which we will study
soon

Variety: the set of all solutions to f1 = · · · = fs = 0

Variety depends on the ideal J, not just on f1, . . . , fs

V (f1, . . . , fs) = V (g1, . . . , gt) = V (J)
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Some facts about ideals and varieties

When ideal J = 〈1〉 ⊆ F[x1, . . . , xd ], then J = F [x1, . . . , xd ]

J = 〈1〉 ⇐⇒ V (J) = ∅; as the polynomial 1 = 0 has no solutions

Variety: Set of ALL solutions to a given system of polynomial
equations: V (f1, . . . , fs)

V (x2 + y2 − 1) = {all points on circle : x2 + y2 − 1 = 0}
VR(x

2 + 1) = ∅;
VC(x

2 + 1) = {(±i)}

Important to analyze variety over a specific field (VR versus VC)

Modern algebraic geometry does not explicitly solve for the varieties.
Rather, it reasons about the Variety by analyzing the Ideals!

Solving for varieties is extremely hard
Reasoning about their presence, absence, union/intersection is easier
We need to do the same for hardware verification
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Formally define a variety

Let R = F[x1, . . . , xd ] be a ring, f ∈ R be a polynomial and
a = (a1, . . . , ad ) ∈ Fd be a point

We say that f vanishes on a when f (a) = 0

Definition

For any ideal J = 〈f1, . . . , fs〉 ⊆ F[x1, . . . , xd ], the affine variety of J over F
is:

V (J) = {a ∈ Fd : ∀f ∈ J, f (a) = 0}.
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Algebraically Closed Fields (ACFs)

A field F is algebraically closed, when every non-constant univariate
polynomial f ∈ F[x ] has a root in F

Every field is either algebraically closed, or it is contained in an
algebraically closed one

Algebraically closed fields are infinite fields

Only over algebraically closed fields can one reason (unambiguously)
about presence or absence of solutions (varieties)

Many famous mathematical results valid (only!) over ACFs

Examples: R is not ACF as VR(x
2 + 1) = ∅;

C is ACF; in fact C is the algebraic closure of R (R ⊂ C)

Finite (Galois) fields are NOT ACF!

But every GF Fpk ⊂ Fpk , where Fpk is the algebraic closure of Fpk

So how will we reason about VF
2k
(J)? We will, using some funky

Galois field results (Galois fields are awesome!)
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There’s a lot to study about Varieties, but...

This is a good time to first think in terms of a canonical
representation of ideals — i.e. a Gröbner Bases

Recall:

Given polynomials f1, . . . , fs ∈ F[x1, . . . , xd ]. Let F = {f1, . . . , fs} be
the given set of polynomials

Then ideal J = 〈F 〉 ⊂ F[x1, . . . , xd ]

Find another set of polynomials G = {g1, . . . , gt} ∈ F[x1, . . . , xd ]
such that:

J = 〈F 〉 = 〈G〉
V (J) = V (〈F 〉) = V (〈G〉)
The set G has some nice properties that F does not have
The set G is called a Gröbner basis of ideal J
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The power of Gröbner bases

A Gröbner basis G can help us solve (unambiguously) many
polynomial decision questions:

Ideal Membership Testing

Given ideal J = 〈f1, . . . , fs〉 ⊆ F[x1, . . . , xd ], and a polynomial f , is f ∈ J?

Hilbert’s Nullstellensatz: The polynomial SAT/UNSAT problem

Given ideal J = 〈f1, . . . , fs〉 ⊆ F[x1, . . . , xd ], is V (J) = ∅?

The polynomial #SAT problem

Given ideal J = 〈f1, . . . , fs〉 ⊆ R = F[x1, . . . , xd ], is V (J) infinite or finite?
If finite, then |V (J)| = ? [i.e. how many solutions to V (J)?]

Elimination ideals: help in solving polynomial equations

Generalize triangularization to polynomial equations
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A Gröbner basis example [From Cox/Little/O’Shea]

Solve the system of equations:

f1 : x
2 − y − z − 1 = 0

f2 : x − y2 − z − 1 = 0

f3 : x − y − z2 − 1 = 0

Gröbner basis with lex term
order x > y > z

g1 :x − y − z2 − 1 = 0

g2 :y
2 − y − z2 − z = 0

g3 :2yz
2 − z4 − z2 = 0

g4 :z
6 − 4z4 − 4z3 − z2 = 0

Is V (〈G 〉) = ∅? No, because G 6= {1}

G tells me that V (〈G 〉) is finite!

G is triangular: solve g4 for z , then g2, g3 for y , and then g1 for x
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To start thinking in terms of Gröbner bases....

Ideal Membership Testing

Given ideal J = 〈f1, . . . , fs〉 ⊆ F[x1, . . . , xd ], and a polynomial f , is f ∈ J?
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To start thinking in terms of Gröbner bases....

Ideal Membership Testing

Given ideal J = 〈f1, . . . , fs〉 ⊆ F[x1, . . . , xd ], and a polynomial f , is f ∈ J?

Can you think of an approach to decide ideal membership?
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To start thinking in terms of Gröbner bases....

Ideal Membership Testing

Given ideal J = 〈f1, . . . , fs〉 ⊆ F[x1, . . . , xd ], and a polynomial f , is f ∈ J?

Can you think of an approach to decide ideal membership?

Let f = y2x − x , f1 = yx − y , f2 = y2 − x ; (y > x)
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To start thinking in terms of Gröbner bases....

Ideal Membership Testing

Given ideal J = 〈f1, . . . , fs〉 ⊆ F[x1, . . . , xd ], and a polynomial f , is f ∈ J?

Can you think of an approach to decide ideal membership?

Let f = y2x − x , f1 = yx − y , f2 = y2 − x ; (y > x)

Is f ∈ 〈f1, f2〉?
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To start thinking in terms of Gröbner bases....

Ideal Membership Testing

Given ideal J = 〈f1, . . . , fs〉 ⊆ F[x1, . . . , xd ], and a polynomial f , is f ∈ J?

Can you think of an approach to decide ideal membership?

Let f = y2x − x , f1 = yx − y , f2 = y2 − x ; (y > x)

Is f ∈ 〈f1, f2〉?

Divide f by f1, obtain quotient and remainder (q1, r1)
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To start thinking in terms of Gröbner bases....

Ideal Membership Testing

Given ideal J = 〈f1, . . . , fs〉 ⊆ F[x1, . . . , xd ], and a polynomial f , is f ∈ J?

Can you think of an approach to decide ideal membership?

Let f = y2x − x , f1 = yx − y , f2 = y2 − x ; (y > x)

Is f ∈ 〈f1, f2〉?

Divide f by f1, obtain quotient and remainder (q1, r1)

Then, divide r1 by f2, obtain (q2, r2)
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To start thinking in terms of Gröbner bases....

Ideal Membership Testing

Given ideal J = 〈f1, . . . , fs〉 ⊆ F[x1, . . . , xd ], and a polynomial f , is f ∈ J?

Can you think of an approach to decide ideal membership?

Let f = y2x − x , f1 = yx − y , f2 = y2 − x ; (y > x)

Is f ∈ 〈f1, f2〉?

Divide f by f1, obtain quotient and remainder (q1, r1)

Then, divide r1 by f2, obtain (q2, r2)

If r2 = 0, then f = q1f1 + q2f2, so f ∈ 〈f1, f2〉.
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To start thinking in terms of Gröbner bases....

Ideal Membership Testing

Given ideal J = 〈f1, . . . , fs〉 ⊆ F[x1, . . . , xd ], and a polynomial f , is f ∈ J?

Can you think of an approach to decide ideal membership?

Let f = y2x − x , f1 = yx − y , f2 = y2 − x ; (y > x)

Is f ∈ 〈f1, f2〉?

Divide f by f1, obtain quotient and remainder (q1, r1)

Then, divide r1 by f2, obtain (q2, r2)

If r2 = 0, then f = q1f1 + q2f2, so f ∈ 〈f1, f2〉.

But, what if we divide f by f2 first and then by f1?
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To start thinking in terms of Gröbner bases....

Ideal Membership Testing

Given ideal J = 〈f1, . . . , fs〉 ⊆ F[x1, . . . , xd ], and a polynomial f , is f ∈ J?

Can you think of an approach to decide ideal membership?

Let f = y2x − x , f1 = yx − y , f2 = y2 − x ; (y > x)

Is f ∈ 〈f1, f2〉?

Divide f by f1, obtain quotient and remainder (q1, r1)

Then, divide r1 by f2, obtain (q2, r2)

If r2 = 0, then f = q1f1 + q2f2, so f ∈ 〈f1, f2〉.

But, what if we divide f by f2 first and then by f1?

The culprits are: term ordering issues and the division algorithm

P. Kalla (Univ. of Utah) Division+Term Orderings
Lectures: Sept 27, 2017 - onwards 10 /

29



To start thinking in terms of Gröbner bases....

Ideal Membership Testing

Given ideal J = 〈f1, . . . , fs〉 ⊆ F[x1, . . . , xd ], and a polynomial f , is f ∈ J?

Can you think of an approach to decide ideal membership?

Let f = y2x − x , f1 = yx − y , f2 = y2 − x ; (y > x)

Is f ∈ 〈f1, f2〉?

Divide f by f1, obtain quotient and remainder (q1, r1)

Then, divide r1 by f2, obtain (q2, r2)

If r2 = 0, then f = q1f1 + q2f2, so f ∈ 〈f1, f2〉.

But, what if we divide f by f2 first and then by f1?

The culprits are: term ordering issues and the division algorithm

Let us study these in detail
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The one variable case of F[x ]

f = anx
n + an−1x

n−1 + · · ·+ a1x + a0

The terms of f are ordered according to (descending) degrees

deg(f ) = n is the degree of f

lt(f ) = anx
n is the leading term of f

lm(f ) = xn is the leading monomial of f [often also called the leading
power of f (lp(f ))]

lc(f ) = an is the leading coefficient of f

lt, lm, lc are the main tools of the division algorithm

P. Kalla (Univ. of Utah) Division+Term Orderings
Lectures: Sept 27, 2017 - onwards 11 /

29



Polynomial Long Division (say, in Q[x ])

Divide f by g , get q, r s.t. f = qg + r , with r = 0 or deg(r) < deg(g)
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Polynomial Long Division (say, in Q[x ])

Divide f by g , get q, r s.t. f = qg + r , with r = 0 or deg(r) < deg(g)
Divide f = x3 − 2x2 + 2x + 8 by g = 2x2 + 3x + 1
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Polynomial Long Division (say, in Q[x ])

Divide f by g , get q, r s.t. f = qg + r , with r = 0 or deg(r) < deg(g)
Divide f = x3 − 2x2 + 2x + 8 by g = 2x2 + 3x + 1

1
2x −

7
4

2x2 + 3x + 1
)

x3 − 2x2 + 2x + 8
− x3 − 3

2x
2 − 1

2x

− 7
2x

2 + 3
2x + 8

7
2x

2 + 21
4 x + 7

4
27
4 x + 39

4

P. Kalla (Univ. of Utah) Division+Term Orderings
Lectures: Sept 27, 2017 - onwards 12 /

29



Polynomial Long Division (say, in Q[x ])

Divide f by g , get q, r s.t. f = qg + r , with r = 0 or deg(r) < deg(g)
Divide f = x3 − 2x2 + 2x + 8 by g = 2x2 + 3x + 1

1
2x −

7
4

2x2 + 3x + 1
)

x3 − 2x2 + 2x + 8
− x3 − 3

2x
2 − 1

2x

− 7
2x

2 + 3
2x + 8

7
2x

2 + 21
4 x + 7

4
27
4 x + 39

4

Multiply g by 1
2x and then compute: r = f − 1

2xg

The key step in division: r = f − lt(f )
lt(g)g

One-step reduction of f by g to r : f
g
−→ r

Repeatedly apply reduction: f reduces to r modulo g : f
g
−→+ r

P. Kalla (Univ. of Utah) Division+Term Orderings
Lectures: Sept 27, 2017 - onwards 12 /

29



Division Algorithm is so Simple...

Inputs: f , g ∈ F[x ], g 6= 0
Outputs: q, r s.t. f = qg + r with r = 0 or deg(r) < deg(g)
1: q ← 0; r ← f

2: while (r 6= 0 AND deg(g) ≤ deg(r)) do

3: q ← q + lt(r)
lt(g)

4: r ← r − lt(r)
lt(g) · g

5: end while

6: return q, r ;

Algorithm 1: Univariate Division of f by g

Run the algorithm on the previous example
Does this algorithm run on Zp[x ] as is? Say, over Z11[x ] for the previous
example? What about over Z8[x ]?
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Univariate Division

Remember: Division is modeled as cancellation of leading terms
(lt(f )) by leading terms (lt(g))

For r = f − lt(f )
lt(g)g = f − lc(f )

lc(g) ·
lm(f )
lm(g) · g

Requires computation of inverse of lc(g)

This division algorithm works over fields F = R,Q,C,Zp,F2k , etc.

This division algorithm does not always work over Z,Zn, n 6= p.
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Application to Ideal Membership Test

Let f = x ; f1 = x2; f2 = x2 − x in Q[x ]
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Application to Ideal Membership Test

Let f = x ; f1 = x2; f2 = x2 − x in Q[x ]

Is f ∈ J = 〈f1, f2〉?
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Application to Ideal Membership Test

Let f = x ; f1 = x2; f2 = x2 − x in Q[x ]

Is f ∈ J = 〈f1, f2〉?

f = f1 − f2, so surely f ∈ J?
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Application to Ideal Membership Test

Let f = x ; f1 = x2; f2 = x2 − x in Q[x ]

Is f ∈ J = 〈f1, f2〉?

f = f1 − f2, so surely f ∈ J?

f
f1−→ f

f2−→ f 6= 0
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Application to Ideal Membership Test

Let f = x ; f1 = x2; f2 = x2 − x in Q[x ]

Is f ∈ J = 〈f1, f2〉?

f = f1 − f2, so surely f ∈ J?

f
f1−→ f

f2−→ f 6= 0

f
f2−→ f

f1−→ f 6= 0
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Application to Ideal Membership Test

Let f = x ; f1 = x2; f2 = x2 − x in Q[x ]

Is f ∈ J = 〈f1, f2〉?

f = f1 − f2, so surely f ∈ J?

f
f1−→ f

f2−→ f 6= 0

f
f2−→ f

f1−→ f 6= 0

What’s happening?
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Application to Ideal Membership Test

Let f = x ; f1 = x2; f2 = x2 − x in Q[x ]

Is f ∈ J = 〈f1, f2〉?

f = f1 − f2, so surely f ∈ J?

f
f1−→ f

f2−→ f 6= 0

f
f2−→ f

f1−→ f 6= 0

What’s happening?

F = {f1, f2} is not a Gröbner basis of J
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Application to Ideal Membership Test

Let f = x ; f1 = x2; f2 = x2 − x in Q[x ]

Is f ∈ J = 〈f1, f2〉?

f = f1 − f2, so surely f ∈ J?

f
f1−→ f

f2−→ f 6= 0

f
f2−→ f

f1−→ f 6= 0

What’s happening?

F = {f1, f2} is not a Gröbner basis of J

Cannot decide ideal membership without Gröbner basis!
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Gröbner Bases over Univariate Polynomial Rings F[x ]

When F is a field, Every ideal J of F[x ] is generated by only one
element (polynomial).

These rings F[x ] are principal ideal domains (PID)
E.g. Zp[x ] = PID, but multivariate rings are not PIDs (e.g Zp[x1, x2] 6=
PID)
Ideal of vanishing polynomials is a good example: 〈xp − x〉 versus
〈xp1 − x1, x

p
2 − x2〉

Gröbner Basis of {f1, f2} = GCD(f1, f2)

Gröbner Basis of {f1, . . . , fs} = GCD(f1,GCD(f2, . . . , fs))

The Euclidean Algorithm computes the GCD of two polynomials

The algorithm is given in any math textbook, and can also be found
on wikipedia (Internet)

Homework assignment for you..... Euclidean algorithm

Univariate rings are of not much use in hardware verification
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Division in Multivariate Rings F[x1, . . . , xd ]

Divide f = y2x + 4yx − 3x2 by g = 2y + x + 1
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Division in Multivariate Rings F[x1, . . . , xd ]

Divide f = y2x + 4yx − 3x2 by g = 2y + x + 1

Recall: Division is cancellation by leading terms
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Division in Multivariate Rings F[x1, . . . , xd ]

Divide f = y2x + 4yx − 3x2 by g = 2y + x + 1

Recall: Division is cancellation by leading terms

What are lt(f ), lt(g)?
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Division in Multivariate Rings F[x1, . . . , xd ]

Divide f = y2x + 4yx − 3x2 by g = 2y + x + 1

Recall: Division is cancellation by leading terms

What are lt(f ), lt(g)?

We need to figure out how to order the terms of f , g
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Monomial (Term) Orderings

Power product: xα1
1 x

α2
2 . . . x

αd

d , αi ∈ Z≥0.

For simplicity: xα1
1 . . . x

αd

d = xα, α ∈ Zd
≥0.

Term = a · xα = coeff. times a power product

Td = {xα : α ∈ Z≥0} is the set of all power products

A multivariate polynomial is a sum of terms
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Impose a Monomial Ordering on F[x1, . . . , xd ]

A total order < on Td , and it should be a well-ordering:

Total order: One and only one of the following should be true:
xα > xβ or xα = xβ or xα < xβ.

1 < xα, ∀xα (xα 6= 1)

xα < xβ =⇒ xα · xγ < xβ · xγ .

Definition (LEX)

Lexicographic order: Let x1 > x2 > · · · > xd lexicographically. Also let
α = (α1, . . . , αd ); β = (β1, . . . , βd ) ∈ Zd

≥0. Then we have:

xα < xβ ⇐⇒

{

Starting from the left, the first co-ordinates of αi , βi

that are different satisfy αi < βi

For 2-variables: 1 < x2 < x22 < · · · < x1 < . . . x2x1 < · · · < x21 < . . .

P. Kalla (Univ. of Utah) Division+Term Orderings
Lectures: Sept 27, 2017 - onwards 19 /

29



DegLex and DegRevLex Orderings

Definition (DEGLEX)

Degree Lexicographic order: Let x1 > x2 > · · · > xd lexicographically.
Also let α = (α1, . . . , αd ); β = (β1, . . . , βd ) ∈ Zd

≥0. Then we have:

xα < xβ ⇐⇒

{

∑d
i=1 αi <

∑d
i=1 βi OR

∑d
i=1 αi =

∑d
i=1 βi AND xα < xβ w.r.t. LEX order

Definition (DEGREVLEX)

Degree Reverse Lexicographic order: Let x1 > x2 > · · · > xd
lexicographically. Also let α = (α1, . . . , αd ); β = (β1, . . . , βd ) ∈ Zd

≥0.
Then we have:

xα < xβ ⇐⇒











∑d
i=1 αi <

∑d
i=1 βi or

∑d
i=1 αi =

∑d
i=1 βi AND the first co-ordinates

αi , βi from the RIGHT, which are different, satisfy αi > βi
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Term Ordering Examples

f = 2x2yz + 3xy3 − 2x3

LEX with x > y > z , f is:
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Term Ordering Examples

f = 2x2yz + 3xy3 − 2x3

LEX with x > y > z , f is:

f = −2x3 + 2x2yz + 3xy3
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Term Ordering Examples
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Term Ordering Examples

f = 2x2yz + 3xy3 − 2x3

LEX with x > y > z , f is:

f = −2x3 + 2x2yz + 3xy3

DEGLEX x > y > z : f is:

f = 2x2yz + 3xy3 − 2x3

DEGREVLEX x > y > z : f is:

f = 3xy3 + 2x2yz − 2x3

Always fix a term order over a ring, and stick to it!
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Term Ordering Examples

f = 2x2yz + 3xy3 − 2x3

LEX with x > y > z , f is:

f = −2x3 + 2x2yz + 3xy3

DEGLEX x > y > z : f is:

f = 2x2yz + 3xy3 − 2x3

DEGREVLEX x > y > z : f is:

f = 3xy3 + 2x2yz − 2x3

Always fix a term order over a ring, and stick to it!

f = c1X1 + c2X2 + · · ·+ ctXt implies X1 > · · · > Xt
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Multi-variate Division

Divide f = y2x + 4yx − 3x2 by g = 2y + x + 1 with DEGLEX y > x in
Q[x , y ]
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Multi-variate Division

Divide f = y2x + 4yx − 3x2 by g = 2y + x + 1 with DEGLEX y > x in
Q[x , y ]
Solved on the board in the classroom
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Multivariate Division

Divide f by g : denoted f
g
−→ h, where h = f − X

lt(g)g . Here, X may not
be the leading term.

Definition

Let f , f1, . . . , fs , h ∈ F[x1, . . . , xn], fi 6= 0; F = {f1, . . . , fs}. Then f

reduces to h modulo F :
f

F
−→+ h

if and only if there exists a sequence of indices i1, i2, . . . , it ∈ {1, . . . , s}
and a sequence of polynomials h1, . . . , ht−1 ∈ k[x1, . . . , xn] such that

f
fi1−→ h1

fi2−→ h2
fi3−→ · · ·

fit−1
−→ ht−1

fit−→ h

f1 = yx − y , f2 = y2 − x , f = y2x ; DEGLEX y > x in Q[x ]. Divide

f
f1,f2−−→+ h:
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Multivar Division

To divide f by F = {f1, . . . , f3} (say)

Impose term order on the ring

Impose the given order on polynomials of F : f1 > f2 > f3

Divide f by f1 first:

Analyze terms of f = c1X1 + c2X2 + · · ·+ ctXt in order
Does lt(f1) | c1X1? If so, divide (or cancel lt(f)), update f , and check
if lt(f1) | the new lt(f ) (in updated f )?
Otherwise, does lt(f2) | c1X1? And so on...

If lt(f ) is not divisible by any lt(fi), then move lt(f ) into the
remainder (r = r + lt(f )), and update f (f = f − lt(f ))

Repeat... [See the algorithm in the next slides]
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Multivar Division

Definition

If f
F
−→+ r , then no term in r is divisible by LT(fi), ∀fi ∈ F . Then r is

reduced w.r.t. F and it is called the remainder.

Definition

Let f , f1, . . . , fs , r ∈ F[x1, . . . , xn], fi 6= 0; F = {f1, . . . , fs}. Then f

reduces to r modulo F :
f

F
−→+ r

then
f = u1f1 + · · · + us fs + r

and we have that:

r is reduced w.r.t. F

u1, . . . us ∈ F[x1, . . . , xn]

LP(f ) = MAX(LP(f1)LP(u1), . . . LP(fs)LP(us), LP(r))
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Multvariate Division Algorithm

Inputs: f , f1, . . . , fs ∈ F[x1, . . . , xn], fi 6= 0
Outputs: u1, . . . , us , r s.t. f =

∑

fiui + r where r is reduced w.r.t. F =
{f1, . . . , fs} and max(lp(u1)lp(f1), . . . , lp(us)lp(fs), lp(r)) = lp(f )

1: ui ← 0; r ← 0, h← f

2: while (h 6= 0 ) do
3: if ∃i s.t. lm(fi) | lm(h) then
4: choose i least s.t. lm(fi) | lm(h)

5: ui = ui +
lt(h)
lt(fi )

6: h = h − lt(h)
lt(fi )

fi
7: else

8: r = r + lt(h)
9: h = h − lt(h)

10: end if

11: end while

Algorithm 2: Multivariate Division of f by F = {f1, . . . , fs}
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Motivate Gröbner basis

Let F = {f1, . . . , fs}; J = 〈f1, . . . , fs〉 and let f ∈ J. Then we should be
able to represent f = u1f1 + · · ·+ us fs + r where r = 0. If we were to
divide f by F = {f1, . . . , fs}, then we will obtain an intermediate
remainder (say, h) after every one-step reduction. The leading term of
every such remainder (LT(h)) should be divisible by the leading term of at
least one of the polynomials in F . Only then we will have r = 0.

Definition

Let F = {f1, . . . , fs}; G = {g1, . . . , gt};
J = 〈f1, . . . , fs〉 = 〈g1, . . . , gt〉. Then G is a Gröbner Basis of J

⇐⇒

∀f ∈ J (f 6= 0), ∃i : LM(gi ) | lm(f )
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Gröbner Basis

Definition

G = {g1, . . . , gt} = GB(J) ⇐⇒ ∀f ∈ J,∃gi s.t. lm(gi ) | lm(f )

Definition

G = GB(J) ⇐⇒ ∀f ∈ J, f
g1,g2,··· ,gt−−−−−−→+ 0

Implies a “decision procedure” for ideal membership
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Buchberger’s Algorithm Computes a Gröbner Basis

Buchberger’s Algorithm

INPUT : F = {f1, . . . , fs}
OUTPUT : G = {g1, . . . , gt}
G := F ;
REPEAT
G ′ := G

For each pair {f , g}, f 6= g in G ′ DO

S(f , g)
G ′

−→+ r

IF r 6= 0 THEN G := G ∪ {r}
UNTIL G = G ′

S(f , g) =
L

lt(f )
· f −

L

lt(g)
· g

L = LCM(lm(f ), lm(g)), lm(f ): leading monomial of f
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