Lecture 3 - Boolean Algebra contd.

- Shannon's Expansion: $f = xf_x + x'f_{x'}$
- If $f_x \supseteq f_{x'}$, f is +ve unate in x
- Reduction due to unateness: $f = xf_x + f_{x'}$
- Corollary of Shannon's Theorem:

$$- f \cdot g = x \cdot f_x \cdot g_x + x' \cdot f_{x'} \cdot g_{x'}$$

• If f, g are +ve unate in x

$$- f \cdot g = x \cdot f_x \cdot g_x + f_{x'} \cdot g_{x'}$$

• Significance?

Binate Functions

•
$$f = a'b'c + a'bc' + abc$$
 and $g = abc + a'b'c'$

• Are f and g unate in any variable?

$$\bullet \ f \cdot g = af_ag_a + a'f_{a'}g_{a'}$$

$$\bullet$$
 $f_a = f_{a'} = f_{a'} = f_{a'}$

$$\bullet \ g_a = g_{a'} =$$

- Is f_a +ve unate in b? $(f_{ab} \supseteq f_{ab'})$?
- Is g_a +ve unate in b? $(g_{ab} \supseteq g_{ab'})$

Shannon's expansion - Application

$$\bullet \ f = ab + ac + bc, g = ab' + ac'$$

•
$$f_a = b + c; g_a = b' + c'$$

$$\bullet \ f_{a'} = bc, g_{a'} = b'c'$$

• $f \cdot g$ is compute intensive: Apply Shannon's theorem

$$\bullet \ f \cdot g = a \cdot f_a \cdot g_a + f_{a'} \cdot g_{a'}$$

- Let us try to find solution in $f_{a'} \cdot g_{a'}$
- $f_{a'} \cdot g_{a'} = 0$. Does that mean $f \cdot g == 0$?
- \bullet $f_a \cdot g_a =$

What if NO Solution Exists?

•
$$f = ab + ac + a'bc, g = ab'c'$$

•
$$f \cdot g = 0$$
 (obviously)

• Suppose $f \cdot g$ is compute intensive

$$\bullet$$
 $f_a =$

$$f'_a =$$

$$\bullet$$
 $g_a =$

$$g'_a =$$

$$\bullet \ f \cdot g = a \cdot f_a \cdot g_a + f_{a'} \cdot g_{a'}$$

Boolean Difference

- Computed as $f_x \oplus f_{x'}$
- If $f_x \oplus f_{x'} = 0$, then $f_x = f_{x'}$
- When is $f_x = f_{x'}$?
- f = ab + ac + bc, $f_a \oplus f_{a'} = b'c + bc'$
- As a changes, f changes if b'c + bc' = TRUE

Consensus and Smoothing

- Consensus: $f_x \cdot f_{x'}$
- ullet Represents the component in f independent of x
- f = ab + bc + ac, consensus w.r.t. a =
- Smoothing: $f_x + f_{x'}$
- Makes the function independent of that variable

