Boolean Function Representation'

e Requirements for a Boolean Function Representation?
— Compact representation: small size
— Efficiently manipulable: should be easy to operate upon

— Versatile: Should be able to solve problems of different

nature; e.g. logic optimization, SAT, testing, verification,

etc.

— What about Canony?

Does a truth-table satisfy these requirements?
Does SOP form satisfy these requirements?
Does a POS form satisfy these requirements?
Factored form?

Check for containment, SAT, tautology, etc., is difficult

Binary Decision Diagrams (BDDs)

e Truth Table versus Binary Decision Diagrams

e f=ab+ bc+ac

U
@)
anr)

0

a
00O0]I
001
010
0111
1 00|
1011
1101
1111

Salient Features of a BDD'

BDD is a Decision Tree

Variables of the BDD are ordered: called OBDD
Terminals have numeric values; internal nodes = variables
Edges = decisions w.r.t variables

Each internal node has EXACTLY 2 children

Solid Edge = TRUE edge (var = 1), Dashed/dotted edge:
FALSE edge (var = 0)

Each node represents a function (computed at that node)

BDD = effectively a Shannon tree

OBDD (BDD w/ ordered variables) is a CANONY!
OBDD = IF-THEN-ELSE structure, hence called ITE DAG

Representing BDD on a Computer.

e Assign levels to the tree; level = variable order

e Assign unique identifiers to each node

e For our majority function: f = ab+ bc+ ac

DdNode{
int level /* index or variable order */
intid /* unique identifier */
int value /* for terminal nodes */
DdNode * T /* PTR to T-child */
DdNode * E /* PTR to E-child */

‘Reduction of an OBDD '

e For our same majority function:
f =ab+ bc+ ac=a’bec+ abc+ abc + abe

e Merge Terminal Nodes

DdNode{
level = 2;
unique id = 6;
value = -1 /* non-terminal */
T-child PTR =
E-child PTR =

‘Reduoe OBDD Further... '

e Remove Redundant Nodes

‘Reduee OBDD even Further... '

e Merge Isomorphic Subgraphs

Reduced Ordered Binary Decision Diagram'

Apply reduction operations from terminals to root

Reduction = remove redundant nodes and merge isomorphic

subgraphs
When you reach the root, you’re done!

ROBDD: subject to a variable order, it is a canony

If f =1 what does the ROBDD look like?

Equivalent Boolean Functions have isomorphic ROBDDs, if
the variable ordering is the same

What is the effect of Variable Ordering on the size of ROBDD?

‘Variable Ordering and ROBDD Size'

e fl=(a+b)c; f2=ac+ bc
o f1=f2=ac+bc=abc+ abc+ a'bc

e Which var order is better? How to find a good order?

‘Terminology + Deﬁnitions'

e An OBDD is a rooted directed graph with vertex set V. Each
non-leaf vertex has as attributes a pointer index(v)

€ {1,2,...,n} to an input variable in the set {z1,x2,...,z,},

and two children low(v), high(v) € V. A leaf vertex v has as an
attribute a value, value(v) € B.
An OBDD with root v denotes a function f¥ such that:
— If v is a leaf with value(v) =1, f¥ = 1.
— If v is a leaf with value(v) =0, f¥ = 0.
— If v is a non-leaf node with index(v) = 1,
fv _ LE; . flow('u) + x; - fhz'gh('u).

An OBDD is said to be reduced (ROBDD) if it contains no
vertex v with low(v) = high(v), nor any vertex pair {u,v} such
that subgraphs rooted at v and v are isomorphic.

‘Given a Circuit - How to Build ROBDDS?'

Build truth-table — then build non-reduced OBDD — then
reduce it — obtain ROBDD

Can you build truth-table from a huge circuit?

If you can, why not just work on it, why get into BDDs?

Recall Truth-table == non-reduced OBDD!

If you get a HUGE OBDD, Reduce operation becomes
infeasible

How do we “efficiently” build ROBDDs directly from a circuit

(function)?

— How do we obviate the process of first building non-reduced
BDD and then applying reduction steps?

Build ROBDD for a Circuit.

f =ac+ bc
Build Trivial ROBDDs for a, b, c
Build ROBDD for ac from ROBDDs for a and ¢

Operate on the GRAPHs of a and ¢ and get ac!

ge

First Learn the ITE Operator.

o Let Z=ITE(f,g,h)=f-g+ f -h
e Let an ROBDD w/ top-node = v compute a function = Z

e Apply Shannon’s expansion on Z w.r.t. v

Z ’UZU + U,Zv’
v(ite(f,g,h))s + v (ite(f, g, h))v

v(fg+ f'h)e + V' (fg+ fh)w

v(fogo + foho) + V' (forgo + firhor)
ite(v, (fogo + fohw), (forgor + forhor))
ite(v, ite(fo, gu, ho), ite(for, Gurs hyr))
v -ite(fy, gu, hy) + 0" - ite(for, gor, o)

e Apply ITE at top node — Apply ITE to its co-factors!

Boolean Computations and ITEI

Compute f - g using ITE operation

Compute f+g: ITE(_,__,_)=f+g
Compute f®g=ITE(__,__,_)=f-¢d+f g

Compute any and all functions using ITE

