Boolean Function Representation

- Requirements for a Boolean Function Representation?
 - Compact representation: small size
 - Efficiently manipulable: should be easy to operate upon
 - Versatile: Should be able to solve problems of different nature; e.g. logic optimization, SAT, testing, verification, etc.
 - What about Canony?
- Does a truth-table satisfy these requirements?
- Does SOP form satisfy these requirements?
- Does a POS form satisfy these requirements?
- Factored form?
- Check for containment, SAT, tautology, etc., is difficult

Binary Decision Diagrams (BDDs)

- Truth Table versus Binary Decision Diagrams
- f = ab + bc + ac

Salient Features of a BDD

- BDD is a Decision Tree
- Variables of the BDD are ordered: called OBDD
- Terminals have numeric values; internal nodes \equiv variables
- Edges \equiv decisions w.r.t variables
- Each internal node has EXACTLY 2 children
- Solid Edge = TRUE edge (var = 1), Dashed/dotted edge: FALSE edge (var = 0)
- Each node represents a function (computed at that node)
- BDD = effectively a Shannon tree
- OBDD (BDD w/ ordered variables) is a CANONY!
- OBDD = IF-THEN-ELSE structure, hence called ITE DAG

Representing BDD on a Computer

- Assign *levels* to the tree; level \equiv variable order
- Assign *unique* identifiers to each node
- For our majority function: f = ab + bc + ac


```
DdNode{
int level /* index or variable order */
int id /* unique identifier */
int value /* for terminal nodes */
DdNode * T /* PTR to T-child */
DdNode * E /* PTR to E-child */
}
```

Reduction of an OBDD

• For our same majority function: f = ab + bc + ac = a'bc + ab'c + abc' + abc

• Merge Terminal Nodes

|C|

Reduce OBDD Further...

• Remove Redundant Nodes

Reduce OBDD even Further...

• Merge Isomorphic Subgraphs

Reduced Ordered Binary Decision Diagram

- Apply reduction operations from terminals to root
- Reduction = remove redundant nodes and merge isomorphic subgraphs
- When you reach the root, you're done!
- ROBDD: subject to a variable order, it is a canony
- If f = 1 what does the ROBDD look like?
- Equivalent Boolean Functions have **isomorphic ROBDDs**, if the variable ordering is the same
- What is the effect of Variable Ordering on the size of ROBDD?

Variable Ordering and ROBDD Size

- f1 = (a+b)c; f2 = ac + bc
- f1 = f2 = ac + bc = ab'c + abc + a'bc
- Which var order is better? How to find a good order?

Terminology + Definitions

- An **OBDD** is a rooted directed graph with vertex set V. Each non-leaf vertex has as attributes a pointer index(v) $\in \{1, 2, ..., n\}$ to an input variable in the set $\{x_1, x_2, ..., x_n\}$, and two children low(v), high(v) $\in V$. A leaf vertex v has as an attribute a value, value(v) $\in \mathbf{B}$.
- An OBDD with root v denotes a function f^v such that:
 - If v is a leaf with value(v) = 1, $f^v = 1$.
 - If v is a leaf with value(v) = 0, $f^v = 0$.
 - If v is a non-leaf node with index(v) = i, $f^v = x'_i \cdot f^{low(v)} + x_i \cdot f^{high(v)}$.
- An OBDD is said to be **reduced** (ROBDD) if it contains no vertex v with low(v) = high(v), nor any vertex pair $\{u, v\}$ such that subgraphs rooted at u and v are isomorphic.

Given a Circuit - How to Build ROBDDs?

- Build truth-table \rightarrow then build non-reduced OBDD \rightarrow then reduce it \rightarrow obtain ROBDD
- Can you build truth-table from a huge circuit?
- If you can, why not just work on it, why get into BDDs?
- Recall Truth-table == non-reduced OBDD!
- If you get a HUGE OBDD, Reduce operation becomes infeasible
- How do we "efficiently" build ROBDDs directly from a circuit (function)?
 - How do we obviate the process of first building non-reduced
 BDD and then applying reduction steps?

Build ROBDD for a Circuit

- f = ac + bc
- ullet Build Trivial ROBDDs for a,b,c
- ullet Build ROBDD for ac from ROBDDs for a and c
- Operate on the GRAPHs of a and c and get ac!

First Learn the ITE Operator

- Let $Z = ITE(f, g, h) = f \cdot g + f' \cdot h$
- Let an ROBDD w/ top-node = v compute a function = Z
- Apply Shannon's expansion on Z w.r.t. v

$$Z = vZ_v + v'Z_{v'} \tag{1}$$

$$= v(ite(f,g,h))_v + v'(ite(f,g,h))_{v'}$$
 (2)

$$= v(fg + f'h)_v + v'(fg + f'h)_{v'}$$
 (3)

$$= v(f_v g_v + f'_v h_v) + v'(f_{v'} g_{v'} + f'_{v'} h_{v'})$$
 (4)

$$= ite(v, (f_v g_v + f'_v h_v), (f_{v'} g_{v'} + f'_{v'} h_{v'}))$$
 (5)

$$= ite(v, ite(f_v, g_v, h_v), ite(f_{v'}, g_{v'}, h_{v'}))$$

$$(6)$$

$$= v \cdot ite(f_v, g_v, h_v) + v' \cdot ite(f_{v'}, g_{v'}, h_{v'}) \tag{7}$$

• Apply ITE at top node → Apply ITE to its co-factors!

Boolean Computations and ITE

- Compute $f \cdot g$ using ITE operation
- $ITE(f, g, h) = f \cdot g + f' \cdot h$
- $ITE(f, g, 0) = f \cdot g + 0$
- Compute f + g: $ITE(_, _, _) = f + g$
- Compute $f \oplus g = ITE(\underline{\ },\underline{\ },\underline{\ },\underline{\ }) = f \cdot g' + f' \cdot g$
- Compute any and all functions using ITE