
Equivalence Checking of Sequential Circuits

Implicit State Enumeration, Image Computations, Traversal of Product
Machines

Priyank Kalla

Associate Professor
Electrical and Computer Engineering, University of Utah

kalla@ece.utah.edu
http://www.ece.utah.edu/~kalla

Nov 29, 2017 - onwards

http://www.ece.utah.edu/~kalla

The FSM Model

Define a Mealy Machine as an n-tuple:

M = (
∑

,O,S ,S0
,∆,Λ)

∑

: Input label; O: output label

S : Set of States; S0 ⊂ S : set of initial states

∆ : S ×
∑

→ S : Next State Transition function

Λ : S ×
∑

→ O: Output function

Comb. Logic
In Out

Yy NS
PS DQ

P. Kalla (Univ. of Utah) FSM Verification Nov 29, 2017 - onwards 2 / 17

FSM Equivalence

Two Machines,M1 andM2, are equivalent if

They are identical; or

They have identical states but different encoding; or

M1 ⊆M2 or vice-versa; or

They have different reachable states but same distinguishable states
(same condition as above); or

Different unreachable states, and unreachable states are a don’t care

condition

Prove that two machines (sequential circuits) produce the same output
response on application of all possible input sequences

P. Kalla (Univ. of Utah) FSM Verification Nov 29, 2017 - onwards 3 / 17

Approach

Build a product machine, and traverse the product machine

Machine traversal is the core computational engine

At every step of traversal, see observe of the output responses are the
same

Explicit traversal (DFS) is infeasible

We use Implicit State Enumeration (BFS traversal) based on Boolean
formulas

Implementation is BDD based (can also use Gröbner)

First, we will study Implicit State Enumeration, then apply it to
product machine

P. Kalla (Univ. of Utah) FSM Verification Nov 29, 2017 - onwards 4 / 17

BFS Traversal Algorithm

Input: Transition functions ∆, initial state S0

from0 = reached = S0;
i = 0;
repeat

i ← i + 1;
to i ←Img(∆, fromi−1);

new i ← to i ∩ reached ;
reached ← reached ∪ new i ;
fromi ← new i ;

until new i == 0;
return reached

The main computation: to i ←Img(∆, fromi−1)

Img(∆, fromi−1): The “forward” image of the set fromi−1 under the
transition function ∆

Let us apply this to a FSM

P. Kalla (Univ. of Utah) FSM Verification Nov 29, 2017 - onwards 5 / 17

FSM Example: Perform BFS traversal

P. Kalla (Univ. of Utah) FSM Verification Nov 29, 2017 - onwards 6 / 17

Algorithm run on the FSM

from0 = reached = S1. At iteration i = 1:

to1 ← Img(∆,S1) = {S0,S2}

new1 = {S0,S2} ∩ {S0,S2, . . . S5} = {S0,S2}

reached = {S1,S0,S2}, and from1 = {S0,S2}

At iteration i = 2 and i = 3:

to2 = {S0,S2,S3}, new
2 = {S3} = from2

, reached = {S1,S0,S2,S3}

to3 = {S3,S4,S5}, new
3 = {S4,S5} = from3

, reached = {S0, . . . ,S5}

to4 = {S2,S5}, new
4 = ∅, algorithm terminates!

P. Kalla (Univ. of Utah) FSM Verification Nov 29, 2017 - onwards 7 / 17

BFS traversal without computing new
i states

Input: Transition functions ∆, initial state S0

from0 = reached0 = S0;
i = 0;
repeat

i ← i + 1;
to i ←Img(∆, fromi−1);
reached i ← reached i−1 ∪ to i ;
fromi ← reached i ;

until reached i == reached i−1;
return reached i

This basic approach can be easily implemented using the Gröbner Basis
algorithm, details follow in the next few slides.

P. Kalla (Univ. of Utah) FSM Verification Nov 29, 2017 - onwards 8 / 17

Traverse a circuit?

If a sequential circuit is given:

The transition function ∆ is given by Boolean equations of the
flip-flops of the circuit: ti = ∆i(s, x)

ti is the next state variable, s represents the present state variables and
x represents the input variables

The Transition relation of the FSM: T (s, x , t) =
∏

n

i=1(ti⊕∆i)

n is the number of flip flops
⊕ is XNOR operation

Let C (s) denote the set of initial (or current) states

Image Img(∆,C) = ∃s∃x [T (s, x , t) · C (s)]

Remember Smoothing: ∃x f = fx ∨ fx
∃x f is the smallest function that contains f and makes f independent
of x

It is not that exotic....

P. Kalla (Univ. of Utah) FSM Verification Nov 29, 2017 - onwards 9 / 17

Image of a function

B B

C N

n m

N = IMAGE(F, C)

IMAGE(F, 1)

P. Kalla (Univ. of Utah) FSM Verification Nov 29, 2017 - onwards 10 / 17

Image Computation on a Circuit

11

p
q

p

x

p

q

Z

P

Q

P = x’p’q’ + pq
Q = p’x + pq’

S0

S2

S1

S3

0/1

/1/1

1/1

1/1

0/0

00 10

01

x
p
q

P. Kalla (Univ. of Utah) FSM Verification Nov 29, 2017 - onwards 11 / 17

Image Computation

Init State: C (s) = p′q′ = {00}

t1⊕∆1 = P⊕(x ′p′q′ + pq)

t2⊕∆2 = Q⊕(xp′ + pq′)

T (s, x , t) = [P⊕(x ′p′q′ + pq)] ∧ [Q⊕(xp′ + pq′)]

Starting from initial state 00, what is the set of next states?

to1 = Img(∆, from0 = C (s)) = ∃p, q, x T (p, q, x ,P ,Q) ∧ C (s)

= PQ ′ + P ′Q

new1 = to1 ∩ reached

= PQ ′ + P ′Q

reached = reached ∪ new = P ′Q ′ + PQ ′ + P ′Q = P ′ + Q ′

In the next iteration: C (s) = from1 = new1 = PQ ′ + P ′Q, continue...

P. Kalla (Univ. of Utah) FSM Verification Nov 29, 2017 - onwards 12 / 17

BFS Traversal is the core of Sequential Verification

Z2

PS DQ

Comb. Logic

x
M1

M2

Z1

NS
PS DQ

Comb. Logic

NS

GivenM1 = (
∑

,O,S1
,S1

0 ,∆1,Λ1); M2 = (
∑

,O,S2
,S2

0 ,∆2,Λ2)

Build a product machineM1 ×M2 = (
∑

,O12
,S12

,S12
0 ,∆12,Λ12)

P. Kalla (Univ. of Utah) FSM Verification Nov 29, 2017 - onwards 13 / 17

Product Machine

GivenM1 = (
∑

,O,S1
,S1

0 ,∆1,Λ1); M2 = (
∑

,O,S2
,S2

0 ,∆2,Λ2)

Build a product machineM1 ×M2 = (
∑

,O12
,S12

,S12
0 ,∆12,Λ

12),
where:

s12 = (s1, s2) ∈ S12: Concatenation of states

∆12 ≡ ∆12(s
12
, x) :(S1 × S2)×

∑

→ (S1 × S2)

=⇒ ((S1 ×
∑

)→ S1) ∧ ((S2 ×
∑

)→ S2)

=⇒ (∆1(s
1
, x),∆2(s

2
, x))

z12 = Λ12(s
12
, x) : (S1 × S2)×

∑

→ {0, 1}, where:

Λ12(s
12
, x) =

{

1 if Λ1 = Λ2

0 otherwise

P. Kalla (Univ. of Utah) FSM Verification Nov 29, 2017 - onwards 14 / 17

In other words...

The product machine has:

States that are concatenation of the states of the original machine

Transition relation is also a concatenation (or conjunction) of the
transition relations of the original machines

Verification Problem

Find a sequence of inputs that distinguishes the initial states of the
individual machines.

Verification Approach

Compute Next States independently and concatenate the results to form
the next state of the product. The outputs specified for the two
corresponding transitions are then compared. If equal, then the product
machine outputs a 1, otherwise 0 (BUG!)

P. Kalla (Univ. of Utah) FSM Verification Nov 29, 2017 - onwards 15 / 17

FSM Verify Example

1/0
S3

S1

S2

S4

S5S6

0/0

0/0

1/1

1/0

1/1

0/0

1/1

1/1
0/0

0/0

0/0

Build the Product Machine.....

P. Kalla (Univ. of Utah) FSM Verification Nov 29, 2017 - onwards 16 / 17

FSM VERIFY

Input:
∑

,∆1,∆2,Λ1,Λ2, initial states S
1
0 ,S

2
0

from0 = reached = new0 = (S1
0 ,S

2
0); i = 0;

repeat

i ← i + 1;
to i ←Img(∆12, from

i−1);

new i ← to i ∩ reached ;
for each S12 ∈ new i do

for each x ∈
∑

do

if Λ12(s, x) = 0 then

return FALSE;
end

end

end

fromi ← new i ;
reached ← reached ∪ new i ;

until new i 6= 0;

P. Kalla (Univ. of Utah) FSM Verification Nov 29, 2017 - onwards 17 / 17

